How coverage can be used (and abused) to

guide testing

Mauricio Aniche

https://www.effective-software-testing.com

Cove coverage is useless because ...

It can be easily tricked!

o

® |t forces me to write useless tests, like tests for my getters!

® | can have tests without assertions, and coverage will be high!
L

100% coverage doesn't mean your tests are good!

, that's
iNg |

If you hate code coverage
because you @are not us

properly!

:» ,\/«\%
R \\\P\A //,Y/;

%
A&M «««\ vvw\wvw.»
3

MAMW ///\\\ S

5 \\\\ n«/s/ S
R 4/3;9, 5 \&3 R
\A««, 5 »mt« S RRRE
.,\\SAA\ I S5
RS
& R
RIS »vw%
R

s
s RIS
RN \N»M\,\M

RS
%N M R
LS %«««? SRR

s SRR
\««vy,w,w LIS fvm R
RRRLES 3

2 »\/ N«A S

2
«\A 3

The developer starts the

implementation of a feature

The developer writes some piece

of code

[
y D

A

The developer writes tests to

guide them to the next step

The developer writes more tests

The developer starts the

implementation of a feature

The developer writes some piece

of code

[
y D

A

The developer writes tests to

guide them to the next step

The developer writes more tests

Is this enough?

What's where coverage

steps inl!

The developer starts the

implementation of a feature

The developer writes some piece

of code

[
y)

A

The developer writes tests to

guide them to the next step

Coverage to augment the test suitel

N N You are donel
e .@

No

Is there
something else

to test?

The developer writes more tests

Is this enough?

The developer checks the code

coverage

How to take the "we are done" decision?

® \Why is it not covered by a test?

O Should we cover it?

® Does this test have a real chance of revealing a bug or a

regression? .
s this enough?

® . oram ljust doing it to increase my coverage number?

Does higher coverage really

lead to better

software?

¥

t detecting
ites that have over 90% coverage do better a
Test suite

faults!

effectiveness of a test set.

[indi f the
% code coverage alone is not a reliable indicator o
100% co

— Hutchins et al. (1994)

Experiments on the Effectiveness of

Dataflow- anqd Controlﬂow-Based Test Adequacy Criteria
Research Paper

Monica Hutchins, Herp Foster, Tarak Goradia, Thomas Ostrangd
Siemens Corporate Research, Inc,
755 College Road East, Princeton, Ny 08540 USA,
Email: { mhurchins.hfosler,tgoradia,msr:znd) @scr.siemens.cum

In an effort ¢o answer these questions, we haye
performed i i

of our exXperiments, test seps achieving coverage leyels
OVer 90% usually showeq significantly berter fyy
detection thap randomly chosen 1est sets of the same size,
In addition, significant mprovements in the effectiveness

effectiveness,
1 Introduction

coverage, the payback for that cost, and in particular,
whether fault detection increases signiﬁcanrly if test sets
are adequate or close to adequate according to the criteria,

0270-5257/94 $3.00 © 1994 IEEE

ts comy
controlflow COverage using the dataflow Coverage system
Tactic developed a Siemeps Corporate Research [20) 1o

contains conclusions,
2 The Test Adequacy Criteria
2.1 Datafiow Coverage

Dataflow-baseq adequacy criterig stipulate that a test
Set must exercise Cerntain def-use associations that exjst in
the code. A defof 5 memory location is an operatign that
writes a value o the location. A use of a location js an

in the set exercises the DU
Note that a DU is defined in terms of static properties
of the code, i.e., in terms of the existence of 5 Path in the
code’s controlflow graph, while exercising a py is
defined in terms of dynamip execution. To satisfy the).

i |
Keep adding tests by itself is not an efficient strategy!

i i : test first
Recommends the same thing | did two minutes ago: tes
ec

nt!
based on the specs and then use coverage to augme

— Namin and Andrews (2009)

The Influence of Size and Coverage on Test Suite
Effectiveness

Akbar Siami Namin
Department of Computer Science
Texas Tech University at Abilene
302 Pine St., Abilene, TX 79601
akbar.namin @ttu_eqy

ABSTRACT

We study the relationship between three Properties of test
suites: size, structural coverage, and fault-finding effective.
ness: In particular, we study the Question of whether achiey.
ing high coverage leads directly to greater effectiveness, or
only indirectly through forcing a test suite to be larger. Our
eXperiments indicate that coverage is sometimes correlated
with eflectiveness when sizo 15 controlled for, and that ys.
ing both size and coverage Yields a more accurate prediction

of effectiveness than size alone. This in turn suggests that
ness. Our experiments also indicate that 1o linear relation-

ship exists among the thrce variabjey -t size, coverage and
effectiveness, but that a nonlineay relationship does exist,

Categories and Subject Descriptors

D.2.5.m [Software Engineering]: Testing and Debugging
Test coverage of code

General Terms

Experimentation, Measurement

Keywords

Coverage Criteria, Statistical Analysis

1. INTRODUCTION
Structural coverage measures, such as block coverage and
decision coverage, have long beor used as adequacy criteria

Pemmission to make digital or harg COPies of all or part of this work for
petsonal o classroom use is granted withon; foe provided that copies are
bons 124e or distributed for profit or commocial advantage and that copis
bear this notice and the ull citaion on g first page. To copy otherwise, (o
£epublish, 0 post on servers or 0 redistribute 1y lists, requires prior specific
Permission and/or a fee,

SSTA09, July 19-23, 2009, Chicago, Illinois, USA,

Copyright 2009 ACM 978-1-60558-338-9/09/07 .. 310,00,

James H. Andrews
Department of Computer Science
University of Western Ontario
London, Ontario, Canada N6A 212
andrews @csd.uwo.ca

2] Here, effectiveness is usually being measured by the pum.
ber of faulty versions of subjort Programs that can be de.
tected by the test suite. The experiments indicated that test

of feasible coverage on weakor coverage measures (such as
block coverage).

However, correlation is not causation, and there is an.
other factor that could potentially explain the effectivenesy
of high-coverage test suites: toqt suite size, as measured in
number of test cases,

Adding a test case to a test suite makes it at least as of.
fective as it was before, and possibly more effective, There-
fore, on average, if test, suite 4 15 bigger (contains more test
cases) than test suite B, A will be at least as effective as B,

the work reported on in this PAper, we attempted to
determine how size anq coverage separately influence fos
suite effectiveness, by performing experiments o subject
software. We generated test suites of fixed size but varying
foverage, and measured the correlation of coverage and ef.
fectiveness when holding size constant. This experiment in.
dicated that for many subject programs and coverage mea-
sures, there was a moderate to Vvery high correlation be-
tween coverage and effectiveness, usually at Joy test suite
sizes. However, the experiment unexpectedly also showed
that there were maj ces i

formed various complementary statistica] analyses. These
consistently showed that both sipe and coverage indepen-
dently influenced effectiveness. We then fit various regres-

Coverage is not always related to effectiveness.

bad if
Good for identifying under-tested parts of the system,

used as a quality target!

— Inozemtseva and Holmes (2014)

Coverage Is Not Strongly Correlated
with Test Suite Effectiveness

Laura Inozemtseva ang Reid Holmes
School of Computer Science
University of Waterloo

. Waterloo, ON, Canada
{lmmozem,rtholmes)@uwaterloo.ca

ABSTRACT

The coverage of a test suite s often used as a proxy for

L INTRODUCTION

Testing is an important part of producing high qualiy

its ability to detect faylts, However, previous studios that software, but its effectiveness depends on the quality of the
Investigated the correlation between code coverage and teqg fest suite: some suites are better at detecting faults than
suite effectiveness have failed to reach a consensus about the others, Naturally, developers want their test suites to be good
nature and strength of the relationship between these test at exposing faults, necessitating a method for measuring the
suite characteristics, Moreover, many of the studies were fault detection effectivencss of a test suite. Testing textbooks
done with small or gynthetje Programs, making it unclear often recommend coverage as one of the metrics that can
sehiether their results generaliz o e iroms, and some be used for this purpos (&8 [29,34)). "This is intuitively
of the studies did not account for the confounding influence appealing, since it is clear that o test suite cannot find bugs
of test suite size. In addition, most of the studies were done in code it never excutes; it is algg supported by studies that
with adequate suites, which are are rare in practice, so the have found a relationship between code Coverage and fault

6,14-17,24,31, 39].

large Java programs, Our study is the largest to date in the In addition, three issues with ¢|
literature: we senerated 31,000 test suites for five systems seneralize their results, First,
consisting of up to 724,000 lines of source code. We measured control for the size

the statement coverage, decision coverage, and modified con- by adding code to exist,

dition coverage of these suites and used mutation testing to €ases to the suite, the
evaluate their fault detection effectiveness. with its size, It js

We found that there js o low to moderate correlation to effectiveness
between coverage and effectiveness When the number of test the suite. Second,
cases In the suite is controlled for, [addition, we found that Synthetic programs,

stronger forms of coverage do ot provide greater insight
Into the effectiveness of the syjge
coverage, while useful for identify;

arget because it is test suites are rare in

Program, should not be used gs 5
not a good indicator of test sujte effectiveness, may not generalize to moy
This paper presents a nev study of the relationship between

Categories ang Subject Descriptors test suite size, coverage ang effectiveness. We answer the
D25 [Softuinze Engincering]: Testing anq Debugging; following research questions for large Java programs:
D.2.8 [Software Engineering]: Metrics—product metrics REseArch QUESTION 1. [s the effectiveness of a test suite
General Terms corvelated with the number of tosy cases in the suite?
Measurement. REsearcH QUESTION 2. [5 the effectiveness of a test suite

correlated with s statement coverage, decision coverage
Keywords and/or modified condition coveragy e, the number of ey
Coverage, test suite effectiveness, test suite quality cases in the suite is ignored?

Permission 0 make digial or arg 3. Is the effectiveness of q test suite
: fake digital

lassroom use i graned i Dot aids corvelated with its statemens coverage, decision coverage
Lor profitor commercial adyanyage ics bearthis noice and the 1l copeics gnd/or modified condition coverage e the number of tea
st e P, Copyrightsfor componcars o ol owned by others than A(! " A
o possononored, Abstacting with cred s peorns, To copy otherwise, or republish, cases in the suite is held constant?

R qsvers or o redistribut o s, requie ek specific permission andor

©

fee. Request permissions from Permigajae @acm.org.

Copyright s held by the 2uthorlowner(s). Publication ights licenseq (o Acm.

1CSE'14, May 31 — June 7, 2014, Hyderabad, India
1-4503-2756.5/14/05

http://dx.doi.org/10.1 145/2568225.2568271

The paper makes the following contributions;

® A comprehensive survey of previous studies that inves.
tigated the relationship between coverage and effective.
ness (Section 2 and accompanying onfi material).

You may not need fancy coverage criteria.

Statement coverage is already very good!

— Gopinath et al. (2014)

Code Coverage for Suite Evaluation by Developers

Rahul Gopinath
Oregon State University

ABSTRACT

One of the key concerns of developers testing code is how
fo determine a test suite’s quality - its ability to find faulte.
The most common approach in industry is to use gode cov-
erage as a measure for test suite quality, and diminishing
returns in coverage or high absolute coverage as a stopping
rule. In testing research, suite quality is often evaluate] by
Mmeasuring a suite’s ability to kill mutants, which are actify

ers, however, seldom compare suites — they evalugto oy
suite. Using suites (both manual and automatically gen-
erated) from a large set of real-world open-sourcs projects
shows that results for evaluation differ from those for suite-
comparison: statement coverage (not block, branch, o path)
predicts mutation kills best,

Categories and Subject Descriptors

D.2.5 [Soft E ing]: Testing and Debugging Test-
ing Tools
General Terms

Measurement, Verification

Keywords

test frameworks, evaluation of coverage criteria, statistical
analysis

1. INTRODUCTION

The purpose of software testing is to improve the quality
of software, and the primary route to this goal is o de-
tection of faults. Unfortunately, the problem of finding all

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the firgt page. To copy otherwise, to
republish, to post on servers o to redistribute to lists, requires prior specific
permission and/or a fee,

Copyright 200X ACM X-XXXXX-XX-X/XX/XX .. $10.00.

Carlos Jensen
r _Oregon State University
gopinath@eecs.orst.edu cjensen@eecs.orst.edu

Alex Groce
Oregon State University
agroce@gmail.com

faults in a program (or proving their absence), for any mean-
ingful program, is i Ivable. Testing is theref

always a trade-off between the cost of (further) testing and
the potential cost of undiscovered faults in g program. In
order to make intelligent decisions about testing, developers
need ways to evaluate their current testing efforts in terms

but the ability, given a test suite, to predict whetper it is
effective at finding faults, is basic to most, such approaches.

under test (SUT). The most popular such mothod i the
use of code coverage criteria [1]. Code coverage describes
structural aspects of the executions of an SUT, performed
by a test suite. For example, statement coverage indicates

way, to account for loops) the paths explored in a program’s
control flow graph.

In software testing research, the gold standard for suite
evaluation is generally considered to be actual faults de-
tected, but this is, again, in practice difficult o apply even
in a research setting [16]. The second most informative mea-
sure of suite quality is usually believed to be mutation test-
ing [7, 2], which measures the ability of a test suite to de-
tect small changes to the source code, Mutation testing
subsumes many other code coverage criteria, and has been
shown to predict actual fault detection better than other
criteria in some settings, but never shown to be worse than
traditi code coverage i

Unfortunately, mutation testing is both difficult to apply
and computationally expensive, which has led to the search
for “next-best” criteria for predicting suite quality by re-
searchers [16, 19]. This effort is highly relevant go real soft-
ware developers, who almost never apply mutation testing
due to its complexity, expense, and the lack of tool support
in many languages. From the point of view of actual soft-
ware developers and test engineers, rather than researchers,

High coverage may not mean much,

but low coverage means a

lot!

Mauricio Aniche
@mauricioaniche
www.effective-software-testing.com

Use “au35ani” discount for 35% off!
Subscribe to my newsletter!

Mauricio Aniche

forewords by Arie van Deursen and

Steve Freeman

http://www.effective-software-testing.com

If you hate code coverage,
that's because you are

NOt using it properly!

If you hate code coverage,
that's because you are

Not using it properly!

If you hate code coverage,
that's because you are

Not using it properly!

If you hate code coverage,
that's because you are

Not using it properly!

High coverage may not
mean much, but low

coverage means a
lot!

License

® The slides are licensed under CC-BY-NC-SA 2.0

O https://creativecommons.ore/licenses/by-nc-sa/4.0/

® |f you use this deck of slides in any way (as is or derived), please add a reference to the book and to its website
(effective-software-testing.com)
® The photos come from various artists in Unsplash.

® The icons come from iconfinder.com.

©0Ee

https://creativecommons.org/licenses/by-nc-sa/4.0/

