
Value and waste
in software engineering

Matthias Galster

University of Canterbury

Christchurch, New Zealand

mgalster@ieee.org

Links to studies: shorturl.at/lyHNR 2

Links to studies mentioned in talk: shorturl.at/lyHNR

Links to studies: shorturl.at/lyHNR 3

Value Waste

Engineers

?

What is waste?

Links to studies: shorturl.at/lyHNR 4

2-year 5-month participant observation, interviews at software consultancy [Sedano et al.]

Activities that consume resources but create no “value”

! Understanding waste +
causes empowers us to

address it explicitly

Waste – bad code reviews
What are bad code review practices and resulting waste?

Links to studies: shorturl.at/lyHNR 5

Literature review, survey, interviews, ~226k code reviews from 8 OSS [Doğan &Tüzün]

Lack of review

Review buddies

Ping-pong
Looks good to me

Sleeping

Missing context
Large change sets

! Plan and communicate
expectations for review

Waste – technical debt
What to fix? Who should fix it?

Links to studies: shorturl.at/lyHNR 6

44k commits from 20 Python and 16 Java projects [Tan et al.]

Code debt, defect debt: if urgent, ask those who introduced it
! Design debt: ask others (not self-fixed, survive longer)

Focus dedicated TD removal on types less likely to be fixed, e.g., design debt
! Other types, e.g., code debt, defect debt, are self-fixed

Value – human values?
How can we integrate human values in software?

Links to studies: shorturl.at/lyHNR 7

Dignity

1,097 issue discussions of Firefox, K-9 Mail, Signal Private Messenger [Nurwidyantoro et al.]

Human values

Inclusiveness

“Maintain honour + respect for users”
(e.g., what user information is kept, how is it shared; how can users unsubscribe)

“Facilitate different origins, languages, cultures, knowledge”
(e.g., what languages are supported in a multi-cultural usage environment)

Etc.

Engineers

?

Contextualized description

Etc.

Summary: create value + reduce waste

Links to studies: shorturl.at/lyHNR 8

We know how to conceptualize human values for software engineering.
Use them to identify product requirements and build responsible software.

We know what kinds of TD get self-fixed, e.g., code debt.
Focus dedicated activities on those that don’t, e.g., design debt.

We know what review smells, how they cause waste and why.
Use review smells to plan + communicate expectations for reviews (and training).

Acknowledgments: Contributors to Special Issue, co-guest editors; Greg Wilson, Michael Hoye

Want to know more? Want to collaborate? Email mgalster@ieee.org!
!

