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Value Waste

Engineers

?



What is waste?
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2-year 5-month participant observation, interviews at software consultancy [Sedano et al.]

Activities that consume resources but create no “value”

! Understanding waste + 
causes empowers us to 

address it explicitly



Waste – bad code reviews
What are bad code review practices and resulting waste?

Links to studies: shorturl.at/lyHNR 5

Literature review, survey, interviews, ~226k code reviews from 8 OSS [Doğan &Tüzün]

Lack of review

Review buddies

Ping-pong
Looks good to me

Sleeping

Missing context
Large change sets

! Plan and communicate 
expectations for review



Waste – technical debt
What to fix? Who should fix it?
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44k commits from 20 Python and 16 Java projects [Tan et al.]

Code debt, defect debt: if urgent, ask those who introduced it 
! Design debt: ask others (not self-fixed, survive longer)

Focus dedicated TD removal on types less likely to be fixed, e.g., design debt 
! Other types, e.g., code debt, defect debt, are self-fixed



Value – human values?
How can we integrate human values in software?
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Dignity

1,097 issue discussions of Firefox, K-9 Mail, Signal Private Messenger [Nurwidyantoro et al.]

Human values

Inclusiveness

“Maintain honour + respect for users”  
(e.g., what user information is kept, how is it shared; how can users unsubscribe)

“Facilitate different origins, languages, cultures, knowledge” 
(e.g., what languages are supported in a multi-cultural usage environment)

Etc.

Engineers

?

Contextualized description

Etc.



Summary: create value + reduce waste
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We know how to conceptualize human values for software engineering. 
Use them to identify product requirements and build responsible software. 

We know what kinds of TD get self-fixed, e.g., code debt.  
Focus dedicated activities on those that don’t, e.g., design debt.

We know what review smells, how they cause waste and why. 
Use review smells to plan + communicate expectations for reviews (and training).
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