CauSal TESHNS:
UNdErstanding deFeCts root Causes

DI’ BriHdNY JORNSON-MdHAhEWS

Assistant Professor in Computer Science
George Mason University
CAHMP Core Faculty

htPS.//blittjay ME

INSPIRED Lab

(INterdisciplinary Software Practice Improvement REsearch and Developme

https://brittjay.me/
https://cahmp.gmu.edu/

T0ddY'S Tdlk

How did we get here (and by we, | mean me)?
Improving what you already do with what already exists
Where else can this apply?

s it really usetul?

What'S +he baCk SHOrY ON +he research
I $0day’s presentation s

Prior work

[+ dll Star+€d With d Study. ..

Study of why developer do and don't use tools

Findings suggest the major issues include:
tool output
result understandability
tool design
workflow integration

S0 | went on a mission to provide useful, usable, and validated interventions
for improving software pracice.

Prior work

FaSt £Orward +0 POSt-PhD. . .

Opportunity to work in the testing space - cool!

We already know testing is powerful (and commonly used).

Butas I made progress, | realized:
1. There are a lot of techniques available for use.
2. Traditional testing alone does not answer the question “why is this happening?”

Can We +ake What deveLopers already do
aNd HhE WOrk +hats aready been done,
0 PrOvide INSIShHS #hat EXiSHNG 400LS dom+ e

Causal Testing

1 Failing: New York, NY, USA to
° 900 René Lévesque Blvd. W Montreal, QC, Canada
Automated causal experiments 5> Bxilimy Bosion: Wik, DSk o
900 René Lévesque Blvd. W Montreal, QC, Canada
3 Failing: New York, NY, USA to
Start \/\/|J[h existing teSt cases 1 Harbour Square, Toronto, ON, Canada
e Passing: New York, NY, USA to
39 Dalton St, Boston, MA, USA
e a0 ° ° Passing: Toronto, ON, Canada to
US@S eXIStlng debugglng teChnlques 900 René Lévesque Blvd. W Montreal, QC, Canada
6 Passing: Vancouver, BC, Canada to
900 René Lévesque Blvd. W Montreal, QC, Canada
[] (] [] (]
Goa‘ — m"“ma"y dlfferent executlons Minimally different execution traces:
7 Failing: Passing:
8 C...] C...]
9 findSubEndPoints(sor6, tar7); findSubEndPoints(sor6, tar7);
10 findSubEndPoints(sor7, tar8); findSubEndPoints(sor7, tar8);
11 metricConvert(pathSoFar);
12 findSubEndPoints(sor8, tar9); findSubEndPoints(sor8, tar9);
13 C...] B sll

Prior worl Causal Testing \ere's more! Evaluatior

. (/A Bug report
CdUSal TESHNI e,

to

~

900 René Lévesque Blvd.
Fa“ed test: W. Montreal, QC, Canada
are wrong.

Xasser‘tTr'ue(pathFr‘omTo(“New York, NY, USA”, “900 René Lévesque Blvd. W. Montreal, QC, Canada”));
Perturb input(s) & execute tests: Pass Fail
pathFromTo(“New York, NY, USA”, “W. Montreal, QC, Canada™))(
pathFromTo(“New York, NY, USA”, “René Lévesque Blvd. W. Montreal, QC, Canada™) X

pathFromTo(“New York, NY, USA”, “1 Harbor Point Blvd. Boston, MA, USA”) v
pathFromTo(“Boston, MA, USA”, “900 René Lévesque Blvd. W. Montreal, QC, Canada”) X

pathFromTo(“Vancouver, BC, Canada”, “900 René Lévesque Blvd. W. Montreal, QC, Canada”)\/

Find most similar input + execution 1

Similar passing:

pathFromTo(“New York, NYC_USA”) “1 Harbor Point Blvd. Boston, MA,

pathFromTo(“Vancouver, BC, Canada”, “900 René Lévesque Blvd. W. Montreal, QC, Canada™)

Similar failing:

pathFromTo(“New York, NY,“René Lévesque Blvd. W. Montreal, QC,)

pathFromTo(“Boston, MA, USA”, “900 René Lévesque Blvd. W. Montreal, QC, Canada”) 8

What €LSE Can We d0 With
causal Testng @

There's more!

CauSal FAIMESS TESHN

LOAN oo N
LOAN software [APFREE]
software

LOAN

software
o nc?me LOAN

savings software

age

race

How often is the outcome different because of race alone?

. 10
http://fairness.cs.umass.edu

http://fairness.cs.umass.edu/

There's more!

ML-B4S€d CauSdL TESHNI

trained ML model

/ April John

X red green
m— assertEqual (| 4345 01020 |’
race ft PhD PhD
zip code Software
degree X

April

S it UseruL ¥

HOLMES

proof-of-concept Causal Testing implementation

Evaluation

25 Project Explorer [gu Junit 52 = 8
O CefolbE QB 0 E-

NumberUtilsTest

Runs: 75/75 B Errors: 1 B Failures: 0

v fi-] org.apache.commons.lang3.math.NumberUtilsTe
] testMaximumDouble (0.001 s)
til testToFloatStringF (0.000 s)
E_ltestMinDoubIe_emptyArray (0.000 s)
¢EltestMinimumFloat (0.000 s)
tEltestMinimumShort (0.000 s)
EtestMinLong,nullArray (0.000 s)
fEtestCreateNumber (0.067 s)
il testToLongString (0.000 s)
EtestMaxByte_emptyArray (0.000 s)
el testTolntStringl (0.000 s)
EtestMaxShort_nullArray (0.000 s)
il testToIntString (0.001 s)
EtestMinShort_emptyArray (0.000 s)
¢EltestCreateFloat (0.000 s)
EtestMaxShort_emptyArray (0.001 s)
tEltestMinimumint (0.000 s)
Etes\MinDouble_nullArray (0.000 s)
¢EltestMaxDouble_nullArray (0.001 s)
EtestMaxDoubIe_emptyArray (0.000s)
EtestMaxlnt_emptyArray (0.000 s)
EtestMaxLong_emp\yArray (0.000 s)
P

& eclipse

-L
-

Failure Trace

java.lang.NumberFormatException: OXfade is not a
at org.apache.commons.lang3.math.NumberUtils.c
at org.apache.commons.lang3.math.NumberUtilsT

JUnit

Jo

] NumberUtilsTest.java X . [J] StringEscapeUtilsTest.java W NumberUtilsTest.java W NumberUtilsTest.java 1 [J) NumberUtilsTest.java \} [J) NumberUtilsTest.java

o TS

*/
e @Test
public void testToShortString() {
assertTrue("toShort(String) 1 failed", NumberUtils.toShort("12345") == 12345);
assertTrue("toShort(String) 2 failed", NumberUtils.toShort("abc")
assertTrue("toShort(empty) failed", NumberUtils.toShort("") == 0);
assertTrue("toShort(null) failed", NumberUtils.toShort(null) == 0);

}

e /*%
* Test for {@link NumberUtils#toShort(String, short)}.
*/

e @Test
public void testToShortStringI() {
assertTrue("toShort(String,short) 1 failed", NumberUtils.toShort("12345", (short) 5) == 12345);
assertTrue("toShort(String,short) 2 failed", NumberUtils.toShort("1234.5", (short) 5) == 5);

e @Test
public void testCreateNumber() {

TODO: Test 01

// For the following failing test, please complete the following (assignment in browser):
// 1. Determine cause of the failure. (The problem is in the source code, not the test.)
// 2. Fix the defect.

(o
&

// Failing Test 01
assertTrue("createNumber(String) 9b failed", @xFADE == NumberUtils.createNumber("0Xfade").intValue());

}

e @Test
public void testCreateFloat() {

&) Tasks [, Holmes View 53

=

Original Failing Test

assertTrue("createNumber(String) 9b failed",@xFADE == NumberUtils.createNumber("0Xfade").intValue());

Passing Tests

assertTrue("createNumber(String) 9b failed", OXFADE == NumberUtils.createNumber("@xfade").intValue(Q));

P:assertTrue("createNumber(String) 9b failed", @xFADE == NumberUtils.createNumber("@xFADE").intValue());

Additional Failing Tests

NumberUtils.createNumber("@XFADE");

F:NumberUtils.createNumber("@Xfad");

http://holmes.cs umass.edu/

13

http://holmes.cs.umass.edu/

Evaluation

can help deVELOPErS debug™

J

Q-

N ’!
Does Causal Testing improve ability to Does Causal Testing improve ability Do developers find Causal Testing useful?
identify defect root cause? to repair defects? What's most useful”?

YES!
YES! YES! SMLAr PASSING 468K > CaUSE idenvinicasion

Causal Testing is o useful technigue that
provides more insight into laulty executions
with code you've already written

ThdNk3!

Brittany Johnson
johnsonb@gmu.edu

Causal Testing: Understanding Defects’ Root Causes

Brittany Johnson

Yuriy Brun Alexandra Meliou

University of Massachusetts Amherst University of Massachusetts Amherst University of Massachusetts Amherst

Ambherst, MA, USA
bjohnson@cs.umass.edu

ABSTRACT

Understanding the root cause of a defect is critical to isolating and
repairing buggy behavior. We present Causal Testing, a new method
of root-cause analysis that relies on the theory of counterfactual
causality to identify a set of executions that likely hold key causal
information necessary to understand and repair buggy behavior.
Using the Defects4] benchmark, we find that Causal Testing could
be applied to 71% of real-world defects, and for 77% of those, it can
help developers identify the root cause of the defect. A controlled
experiment with 37 developers shows that Causal Testing improves
participants’ ability to identify the cause of the defect from 80% of
the time with standard testing tools to 86% of the time with Causal
Testing. The participants report that Causal Testing provides useful
information they cannot get using tools such as JUnit. Holmes, our
prototype, open-source Eclipse plugin implementation of Causal
Testing, is available at http://holmes.cs.umass.edu/.

CCS CONCEPTS

« Software and its engineering — Software testing and
debugging.
KEYWORDS

Causal Testing, causality, theory of counterfactual causality, soft-
ware debugging, test fuzzing, automated test generation, Holmes

ACM Reference Format:

Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2020. Causal Testing:
Understanding Defects’ Root Causes. In 42nd International Conference on
Software Engineering (ICSE 20), May 23-29, 2020, Seoul, Republic of Ko-
rea. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3377811.
3380377

Ambherst, MA, USA
brun@cs.umass.edu

Ambherst, MA, USA
ameli@cs.umass.edu

test input [74] and a set of test-breaking changes [73], they do not
help explain why the code is faulty [40].

To address this shortcoming of modern debugging tools, this
paper presents Causal Testing, a novel technique for identifying root
causes of failing executions based on the theory of counterfactual
causality. Causal Testing takes a manipulationist approach to causal
inference [71], modifying and executing tests to observe causal
relationships and derive causal claims about the defects’ root causes.

Given one or more failing executions, Causal Testing conducts
causal experiments by modifying the existing tests to produce a
small set of executions that differ minimally from the failing ones
but do not exhibit the faulty behavior. By observing a behavior and
then purposefully changing the input to observe the behavioral
changes, Causal Testing infers causal relationships [71]: The change
in the input causes the behavioral change. Causal Testing looks for
two kinds of minimally-different executions, ones whose inputs
are similar and ones whose execution paths are similar. When
the differences between executions, either in the inputs or in the
execution paths, are small, but exhibit different test behavior, these
small, causal differences can help developers understand what is
causing the faulty behavior.

Consider a developer working on a web-based geo-mapping ser-
vice (such as Google Maps or MapQuest) receiving a bug report
that the directions between “New York, NY, USA” and “900 René
Lévesque Blvd. W Montreal, QC, Canada” are wrong. The developer
replicates the faulty behavior and hypothesizes potential causes.
Maybe the special characters in “René Lévesque” caused a problem.
Maybe the first address being a city and the second a specific build-
ing caused a mismatch in internal data types. Maybe the route is too
long and the service’s precomputing of some routes is causing the

nuckloms Moxdrononctwrction onthoe Tonwon TooReidoooloveatho

mailto:johnsonb@gmu.edu

