

Icarus

Icarus
Over-
confidence

Icarus
Over-
confidence

“Don’t fly too close to the sun”

DaedalusIcarus
Over-
confidence

“Don’t fly too close to the sun”

Daedalus
Master

craftsman

Icarus
Over-
confidence

“Don’t fly too close to the sun”

Daedalus
Master

craftsman

Inventions often haveunintendedconsequences

Icarus
Over-
confidence

“Don’t fly too close to the sun”

The of
mining software build systems

unintended consequences

RESoftware
sELB

 Shane

 McIntosh

 Lead Rebel

@SoftwareREBELs rebels.cs.uwaterloo.ca

5

Artist: Markus Stadlober

@SoftwareREBELs rebels.cs.uwaterloo.ca

I’ve a
wax

got
string

Some fea birdsstole

plan
And some and some

theIthers from

5

Artist: Markus Stadlober

@SoftwareREBELs rebels.cs.uwaterloo.ca

6@SoftwareREBELs rebels.cs.uwaterloo.ca

6

package rebels;

import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;

public class App {

 public static void main (String[] args) {

 final Logger logger = LogManager.getLogger("HelloWorld");

 logger.info("Hello World!");

 }

}

@SoftwareREBELs rebels.cs.uwaterloo.ca

6

package rebels;

import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;

public class App {

 public static void main (String[] args) {

 final Logger logger = LogManager.getLogger("HelloWorld");

 logger.info("Hello World!");

 }

}

<project …>

 <groupId>rebels</groupId>

 <artifactId>helloworld</artifactId>

 <version>1.0-SNAPSHOT</version>

 <packaging>jar</packaging>

 <dependencies>

<dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 <version>1.2.17</version>

 </dependency>

 </dependencies>

</project>

@SoftwareREBELs rebels.cs.uwaterloo.ca

$ mvn compile

7@SoftwareREBELs rebels.cs.uwaterloo.ca

$ mvn compile
[INFO] ---

[INFO] BUILD FAILURE

[INFO] ---

7@SoftwareREBELs rebels.cs.uwaterloo.ca

$ mvn compile
[INFO] ---

[INFO] BUILD FAILURE

[INFO] ---

7@SoftwareREBELs rebels.cs.uwaterloo.ca

$ mvn compile
[INFO] ---

[INFO] BUILD FAILURE

[INFO] ---

8@SoftwareREBELs rebels.cs.uwaterloo.ca

$ mvn compile
[INFO] ---

[INFO] BUILD FAILURE

[INFO] ---

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.1:compile
(default-compile) on project helloworld: Compilation failure: Compilation failure:

8@SoftwareREBELs rebels.cs.uwaterloo.ca

English ^%@#$!

Do you speak it?

9@SoftwareREBELs rebels.cs.uwaterloo.ca

$ mvn compile
[INFO] ---

[INFO] BUILD FAILURE

[INFO] ---

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.1:compile
(default-compile) on project helloworld: Compilation failure: Compilation failure:

10@SoftwareREBELs rebels.cs.uwaterloo.ca

$ mvn compile
[INFO] ---

[INFO] BUILD FAILURE

[INFO] ---

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.1:compile
(default-compile) on project helloworld: Compilation failure: Compilation failure:

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[3,32] package
org.apache.logging.log4j does not exist

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[4,32] package
org.apache.logging.log4j does not exist

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[9,11] cannot find
symbol

[ERROR] symbol: class Logger

[ERROR] location: class rebels.App

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[9,27] cannot find
symbol

[ERROR] symbol: variable LogManager

[ERROR] location: class rebels.App

[ERROR] -> [Help 1]

10@SoftwareREBELs rebels.cs.uwaterloo.ca

$ mvn compile
[INFO] ---

[INFO] BUILD FAILURE

[INFO] ---

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.1:compile
(default-compile) on project helloworld: Compilation failure: Compilation failure:

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[3,32] package
org.apache.logging.log4j does not exist

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[4,32] package
org.apache.logging.log4j does not exist

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[9,11] cannot find
symbol

[ERROR] symbol: class Logger

[ERROR] location: class rebels.App

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[9,27] cannot find
symbol

[ERROR] symbol: variable LogManager

[ERROR] location: class rebels.App

[ERROR] -> [Help 1]

11@SoftwareREBELs rebels.cs.uwaterloo.ca

package rebels;

import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;

public class App {

 public static void main (String[] args) {

 final Logger logger = LogManager.getLogger("HelloWorld");

 logger.info("Hello World!");

 }

}

<project …>

 <groupId>rebels</groupId>

 <artifactId>helloworld</artifactId>

 <version>1.0-SNAPSHOT</version>

 <packaging>jar</packaging>

 <dependencies>

<dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 <version>1.2.17</version>

 </dependency>

 </dependencies>

</project>

12@SoftwareREBELs rebels.cs.uwaterloo.ca

package rebels;

import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;

public class App {

 public static void main (String[] args) {

 final Logger logger = LogManager.getLogger("HelloWorld");

 logger.info("Hello World!");

 }

}

<project …>

 <groupId>rebels</groupId>

 <artifactId>helloworld</artifactId>

 <version>1.0-SNAPSHOT</version>

 <packaging>jar</packaging>

 <dependencies>

<dependency>

 <groupId>log4j</groupId>

 <artifactId>log4j</artifactId>

 <version>1.2.17</version>

 </dependency>

 </dependencies>

</project>

13@SoftwareREBELs rebels.cs.uwaterloo.ca

package rebels;

import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;

public class App {

 public static void main (String[] args) {

 final Logger logger = LogManager.getLogger("HelloWorld");

 logger.info("Hello World!");

 }

}

<project …>

 <groupId>rebels</groupId>

 <artifactId>helloworld</artifactId>

 <version>1.0-SNAPSHOT</version>

 <packaging>jar</packaging>

 <dependencies>

<dependency>

 <groupId>org.apache.logging.log4j</groupId>

 <artifactId>log4j-api</artifactId>

 <version>2.10.0</version>

 </dependency>

 </dependencies>

</project>

14@SoftwareREBELs rebels.cs.uwaterloo.ca

@SoftwareREBELs rebels.cs.uwaterloo.ca

$ mvn compile

15

@SoftwareREBELs rebels.cs.uwaterloo.ca

$ mvn compile
[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

15

@SoftwareREBELs rebels.cs.uwaterloo.ca

$ mvn compile
[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

15

Why can’t the build tool fix this

mistake automatically?

Why can’t build systems
sustain themselves?

16 rebels.cs.uwaterloo.ca@SoftwareREBELs

Why can’t build systems
sustain themselves?

16

Un(der)specified
dependency

detection

rebels.cs.uwaterloo.ca@SoftwareREBELs

Why can’t build systems
sustain themselves?

16

Build change
anticipation

Un(der)specified
dependency

detection

+

rebels.cs.uwaterloo.ca@SoftwareREBELs

Why can’t build systems
sustain themselves?

16

Build change
anticipation

Un(der)specified
dependency

detection

Automated repair
of build scripts

+
+

rebels.cs.uwaterloo.ca@SoftwareREBELs

Why can’t build systems
sustain themselves?

16

Build change
anticipation

Un(der)specified
dependency

detection

+
+

rebels.cs.uwaterloo.ca@SoftwareREBELs

Automated repair
of build scripts

17

Automatically Repairing
Dependency-Related Build

Breakage

C. Macho, S. McIntosh, M. Pinzger

[SANER 2018]

Build
Medic

@SoftwareREBELs rebels.cs.uwaterloo.ca

[INFO] -------------

[INFO] BUILD FAILURE

[INFO] -------------

…

17

Automatically Repairing
Dependency-Related Build

Breakage

C. Macho, S. McIntosh, M. Pinzger

[SANER 2018]

Build
Medic

@SoftwareREBELs rebels.cs.uwaterloo.ca

[INFO] -------------

[INFO] BUILD FAILURE

[INFO] -------------

…

Detect Build Failure Type

17

Automatically Repairing
Dependency-Related Build

Breakage

C. Macho, S. McIntosh, M. Pinzger

[SANER 2018]

Build
Medic

@SoftwareREBELs rebels.cs.uwaterloo.ca

[INFO] -------------

[INFO] BUILD FAILURE

[INFO] -------------

…

Apply Repair Strategy

Detect Build Failure Type

17

Automatically Repairing
Dependency-Related Build

Breakage

C. Macho, S. McIntosh, M. Pinzger

[SANER 2018]

Build
Medic

@SoftwareREBELs rebels.cs.uwaterloo.ca

[INFO] -------------

[INFO] BUILD FAILURE

[INFO] -------------

…

Apply Repair Strategy

Evaluate Revision

Detect Build Failure Type

17

Automatically Repairing
Dependency-Related Build

Breakage

C. Macho, S. McIntosh, M. Pinzger

[SANER 2018]

Build
Medic

@SoftwareREBELs rebels.cs.uwaterloo.ca

[INFO] -------------

[INFO] BUILD FAILURE

[INFO] -------------

…

Apply Repair Strategy

Evaluate Revision

Detect Build Failure Type

[INFO] -------------

[INFO] BUILD SUCCESS

[INFO] -------------

…

17

Automatically Repairing
Dependency-Related Build

Breakage

C. Macho, S. McIntosh, M. Pinzger

[SANER 2018]

Build
Medic

@SoftwareREBELs rebels.cs.uwaterloo.ca

[INFO] -------------

[INFO] BUILD FAILURE

[INFO] -------------

…

Apply Repair Strategy

Evaluate Revision

Detect Build Failure Type

Artist: Charles Paul Landon

18@SoftwareREBELs rebels.cs.uwaterloo.ca

Artist: Charles Paul Landon

And
leap

we
We

wind
A song wordsper

from the cliff
hear the

fortoothat’s fect
sing

18@SoftwareREBELs rebels.cs.uwaterloo.ca

BuildMedic achieves promising
results on 84 unseen breakage pairs

19@SoftwareREBELs rebels.cs.uwaterloo.ca

BuildMedic achieves promising
results on 84 unseen breakage pairs

19

54%
of repair attempts are
eventually successful

@SoftwareREBELs rebels.cs.uwaterloo.ca

BuildMedic achieves promising
results on 84 unseen breakage pairs

19

54%
of repair attempts are
eventually successful

76%
of successful repairs are
identified in one iteration

@SoftwareREBELs rebels.cs.uwaterloo.ca

The 45 BuildMedic repairs are often
identical or very similar to developer repairs

20@SoftwareREBELs rebels.cs.uwaterloo.ca

The 45 BuildMedic repairs are often
identical or very similar to developer repairs

20

36%
of successful repairs are

identical to the corresponding
developer repairs

@SoftwareREBELs rebels.cs.uwaterloo.ca

The 45 BuildMedic repairs are often
identical or very similar to developer repairs

20

36%
of successful repairs are

identical to the corresponding
developer repairs

44%
of successful repairs edit the

same elements as the
corresponding developer

repairs

Another

@SoftwareREBELs rebels.cs.uwaterloo.ca

Artist: Amy Adkins

21@SoftwareREBELs rebels.cs.uwaterloo.ca

Steer of
you’ll

clear
self

In the

the sun
Or find your

sea

Artist: Amy Adkins

21@SoftwareREBELs rebels.cs.uwaterloo.ca

22

Operating
Assumption:

Historical
breakages are

important

Developer

Breakage

@SoftwareREBELs rebels.cs.uwaterloo.ca

Can we rely on historical build records?

23@SoftwareREBELs rebels.cs.uwaterloo.ca

Noise and Heterogeneity in Historical Build Data:

An Empirical Study of Travis CI

K. Gallaba, C. Macho, M. Pinzger, S. McIntosh

[ASE 2018]

Actively ignored

failures:

Can we rely on historical build records?

23@SoftwareREBELs rebels.cs.uwaterloo.ca

Noise and Heterogeneity in Historical Build Data:

An Empirical Study of Travis CI

K. Gallaba, C. Macho, M. Pinzger, S. McIntosh

[ASE 2018]

Actively ignored

failures:

Can we rely on historical build records?

23

12%
of passing builds have at least
one actively ignored failure

@SoftwareREBELs rebels.cs.uwaterloo.ca

Noise and Heterogeneity in Historical Build Data:

An Empirical Study of Travis CI

K. Gallaba, C. Macho, M. Pinzger, S. McIntosh

[ASE 2018]

In those passing builds with actively
ignored failures…

2424@SoftwareREBELs rebels.ece.mcgill.ca

In those passing builds with actively
ignored failures…

2424@SoftwareREBELs rebels.ece.mcgill.ca

25%
of jobs failed

A median of

In those passing builds with actively
ignored failures…

2424@SoftwareREBELs rebels.ece.mcgill.ca

87%
of jobs are

actively ignored

Up to

25%
of jobs failed

A median of

Actively ignored

failures:

Can we rely on historical build records?

25

12%
of passing builds have at least
one actively ignored failure

@SoftwareREBELs rebels.cs.uwaterloo.ca

Noise and Heterogeneity in Historical Build Data:

An Empirical Study of Travis CI

K. Gallaba, C. Macho, M. Pinzger, S. McIntosh

[ASE 2018]

Passively ignored
failures:

Actively ignored

failures:

Can we rely on historical build records?

25

12%
of passing builds have at least
one actively ignored failure

@SoftwareREBELs rebels.cs.uwaterloo.ca

Noise and Heterogeneity in Historical Build Data:

An Empirical Study of Travis CI

K. Gallaba, C. Macho, M. Pinzger, S. McIntosh

[ASE 2018]

Passively ignored
failures:

Actively ignored

failures:

Can we rely on historical build records?

25

12%
of passing builds have at least
one actively ignored failure

67%
of failing builds are stale

@SoftwareREBELs rebels.cs.uwaterloo.ca

Noise and Heterogeneity in Historical Build Data:

An Empirical Study of Travis CI

K. Gallaba, C. Macho, M. Pinzger, S. McIntosh

[ASE 2018]

In some cases, builds remain broken for 423 days

2626@SoftwareREBELs rebels.cs.uwaterloo.ca

27

Artist: Paul Lee

@SoftwareREBELs rebels.cs.uwaterloo.ca

27

I

willI nev a

O gods!

will hang up my

er gain!

Artist: Paul Lee

@SoftwareREBELs rebels.cs.uwaterloo.ca

Why can’t build systems
sustain themselves?

28

Build change
anticipation

Un(der)specified
dependency

detection

Automated repair
of build scripts

+
+

rebels.cs.uwaterloo.ca@SoftwareREBELs

Why can’t build systems
sustain themselves?

28

Build change
anticipation

Un(der)specified
dependency

detection

Automated repair
of build scripts

+
+

rebels.cs.uwaterloo.ca@SoftwareREBELs

29@SoftwareREBELs rebels.cs.uwaterloo.ca

29@SoftwareREBELs rebels.cs.uwaterloo.ca

29@SoftwareREBELs rebels.cs.uwaterloo.ca

29@SoftwareREBELs rebels.cs.uwaterloo.ca

Conclusion 1:

Our evaluation
is correct! The
data is broken!

29

ASE ’18, September 3–7, 2018, Montpellier, France Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh

0%

25%

50%

75%

100%

Project

S
ta

le
 B

re
a

ka
g

e
s

P
e

rc
e

n
ta

g
e

Figure 5: Percentage of stale breakages in each project can
range from 7% to 96%.

Approach. In this section, we investigate how many times devel-
opers come across the same breakage repeatedly in the history of
a project with respect to the length of build breakage sequences.
These stale breakages can occur either consecutively or intermit-
tently. Hence, we extend the Maven Log Analyzer developed by
Macho et al. [15]. We use it to compare two Travis CI build jobs
and check the similarity of the breakages. To make the comparison
e!cient, this is done in two steps. First, the logs of build jobs are
parsed and checked if they are breaking due to the same reason
(e.g., compilation failure, test execution failure, dependency reso-
lution failure). If the reason for failures are equal then the details
of the failure are also checked (e.g., if both breakages are due to
compilation failure, check if the compilation error is the same).

Results. Figure 5 shows the percentage of stale build breakages in
each project in descending order.

Observation 4: 67% of the breakages (6,889 out of 10,816) that
we analyze are stale breakages. On the project level, staleness of
breakages ranges from 7% to 96% with a median of 50%. In the
eirslett/frontend-maven-plugin15 project, where we observe the max-
imum percentage of stale breakages (96%), it was due to the same
dependency resolution failure recurring in 23 builds.

Two of every three build breakages (67%) that we analyze
are stale.

3.4 Signal-To-Noise Ratio

Motivation. In previous analyses, we "nd that build breakages that
are ignored by developers and build successes that include ignored
breakages can introduce noise in build outcome data. However, the
overall rate of noise in build outcome data is not yet clear. Such an
overview is useful for researchers who use build outcome data in
their work, to better understand the degree to which noise may be
impacting their analyses.

Approach. To quantify the proportion of noise in build outcome
data caused by passively and actively ignored build breakage, we

15https://github.com/eirslett/frontend-maven-plugin

5

6

7

8

9

10

0 100 200 300 400 500

Build Failure Sequence Length Threshold (tc)

S
ig

n
a

l−
to

−
N

o
is

e
 R

a
tio

Parameter

Overall

Branches−only

Figure 6: For every 11 builds there is at least one build
with an incorrect status. The Signal-To-Noise ratio increases
when a higher build breakage sequence length is chosen.

adopt the Signal-To-Noise ratio (SNR) as follows:

SNR =
#TrueBuildBreakages + #TrueBuildSuccesses
#FalseBuildBreakages + #FalseBuildSuccesses (1)

where #TrueBuildBreakages (i.e., signal) is the number of broken
builds that are not ignored by developers, #TrueBuildSuccesses (i.e.,
signal) is the number of passing builds without ignored breakages,
#FalseBuildBreakages (i.e., noise) is the number of broken builds
that are ignored by developers, and #FalseBuildSuccesses (i.e., noise)
is the number of passing builds with ignored breakages.

To compute #FalseBuildBreakages, a threshold tc must be selected
such that if the number of consecutive broken builds is above tc ,
all builds in such sequences are considered false build breakages.
Instead of picking any particular tc value, we plot an SNR curve as
the threshold (tc) is changed.

Results. Figure 6 shows the SNR curve for the subject systems.

Observation 5: As tc decreases from 485 to 1, the SNR decreases
from 10.62 to 6.39. Since #FalseBuildSuccesses is not impacted by tc ,
the maximum SNR is observed when #FalseBuildBreakages is zero
(i.e., when tc is set to the maximum value). The minimum of SNR
is observed when tc is one and therefore all broken builds that are
not immediately "xed are considered false build breakages. If false
breakages are de"ned to be only in consecutive breakages with
branches in them, the Signal-to-Noise ratio ranges from 10.19 to
10.62.

One in every 7 to 11 builds (9%–14%) is incorrectly labelled.
This noise may in!uence analyses based on build outcome
data.

4 HETEROGENEITY IN BUILD BREAKAGE
DATA

The way in which builds are con"gured and triggered vary from
project to project. This heterogeneity should be taken into con-
sideration when designing studies of build breakage. Below, we
demonstrate build heterogeneity using three criteria.

@SoftwareREBELs rebels.cs.uwaterloo.ca

Conclusion 1:

Our evaluation
is correct! The
data is broken!

29

ASE ’18, September 3–7, 2018, Montpellier, France Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh

0%

25%

50%

75%

100%

Project

S
ta

le
 B

re
a

ka
g

e
s

P
e

rc
e

n
ta

g
e

Figure 5: Percentage of stale breakages in each project can
range from 7% to 96%.

Approach. In this section, we investigate how many times devel-
opers come across the same breakage repeatedly in the history of
a project with respect to the length of build breakage sequences.
These stale breakages can occur either consecutively or intermit-
tently. Hence, we extend the Maven Log Analyzer developed by
Macho et al. [15]. We use it to compare two Travis CI build jobs
and check the similarity of the breakages. To make the comparison
e!cient, this is done in two steps. First, the logs of build jobs are
parsed and checked if they are breaking due to the same reason
(e.g., compilation failure, test execution failure, dependency reso-
lution failure). If the reason for failures are equal then the details
of the failure are also checked (e.g., if both breakages are due to
compilation failure, check if the compilation error is the same).

Results. Figure 5 shows the percentage of stale build breakages in
each project in descending order.

Observation 4: 67% of the breakages (6,889 out of 10,816) that
we analyze are stale breakages. On the project level, staleness of
breakages ranges from 7% to 96% with a median of 50%. In the
eirslett/frontend-maven-plugin15 project, where we observe the max-
imum percentage of stale breakages (96%), it was due to the same
dependency resolution failure recurring in 23 builds.

Two of every three build breakages (67%) that we analyze
are stale.

3.4 Signal-To-Noise Ratio

Motivation. In previous analyses, we "nd that build breakages that
are ignored by developers and build successes that include ignored
breakages can introduce noise in build outcome data. However, the
overall rate of noise in build outcome data is not yet clear. Such an
overview is useful for researchers who use build outcome data in
their work, to better understand the degree to which noise may be
impacting their analyses.

Approach. To quantify the proportion of noise in build outcome
data caused by passively and actively ignored build breakage, we

15https://github.com/eirslett/frontend-maven-plugin

5

6

7

8

9

10

0 100 200 300 400 500

Build Failure Sequence Length Threshold (tc)

S
ig

n
a

l−
to

−
N

o
is

e
 R

a
tio

Parameter

Overall

Branches−only

Figure 6: For every 11 builds there is at least one build
with an incorrect status. The Signal-To-Noise ratio increases
when a higher build breakage sequence length is chosen.

adopt the Signal-To-Noise ratio (SNR) as follows:

SNR =
#TrueBuildBreakages + #TrueBuildSuccesses
#FalseBuildBreakages + #FalseBuildSuccesses (1)

where #TrueBuildBreakages (i.e., signal) is the number of broken
builds that are not ignored by developers, #TrueBuildSuccesses (i.e.,
signal) is the number of passing builds without ignored breakages,
#FalseBuildBreakages (i.e., noise) is the number of broken builds
that are ignored by developers, and #FalseBuildSuccesses (i.e., noise)
is the number of passing builds with ignored breakages.

To compute #FalseBuildBreakages, a threshold tc must be selected
such that if the number of consecutive broken builds is above tc ,
all builds in such sequences are considered false build breakages.
Instead of picking any particular tc value, we plot an SNR curve as
the threshold (tc) is changed.

Results. Figure 6 shows the SNR curve for the subject systems.

Observation 5: As tc decreases from 485 to 1, the SNR decreases
from 10.62 to 6.39. Since #FalseBuildSuccesses is not impacted by tc ,
the maximum SNR is observed when #FalseBuildBreakages is zero
(i.e., when tc is set to the maximum value). The minimum of SNR
is observed when tc is one and therefore all broken builds that are
not immediately "xed are considered false build breakages. If false
breakages are de"ned to be only in consecutive breakages with
branches in them, the Signal-to-Noise ratio ranges from 10.19 to
10.62.

One in every 7 to 11 builds (9%–14%) is incorrectly labelled.
This noise may in!uence analyses based on build outcome
data.

4 HETEROGENEITY IN BUILD BREAKAGE
DATA

The way in which builds are con"gured and triggered vary from
project to project. This heterogeneity should be taken into con-
sideration when designing studies of build breakage. Below, we
demonstrate build heterogeneity using three criteria.

@SoftwareREBELs rebels.cs.uwaterloo.ca

Conclusion 1:

Our evaluation
is correct! The
data is broken!

Conclusion 2:

Our evaluation is
incorrect! Please
help us to fix it!

29

ASE ’18, September 3–7, 2018, Montpellier, France Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh

0%

25%

50%

75%

100%

Project

S
ta

le
 B

re
a

ka
g

e
s

P
e

rc
e

n
ta

g
e

Figure 5: Percentage of stale breakages in each project can
range from 7% to 96%.

Approach. In this section, we investigate how many times devel-
opers come across the same breakage repeatedly in the history of
a project with respect to the length of build breakage sequences.
These stale breakages can occur either consecutively or intermit-
tently. Hence, we extend the Maven Log Analyzer developed by
Macho et al. [15]. We use it to compare two Travis CI build jobs
and check the similarity of the breakages. To make the comparison
e!cient, this is done in two steps. First, the logs of build jobs are
parsed and checked if they are breaking due to the same reason
(e.g., compilation failure, test execution failure, dependency reso-
lution failure). If the reason for failures are equal then the details
of the failure are also checked (e.g., if both breakages are due to
compilation failure, check if the compilation error is the same).

Results. Figure 5 shows the percentage of stale build breakages in
each project in descending order.

Observation 4: 67% of the breakages (6,889 out of 10,816) that
we analyze are stale breakages. On the project level, staleness of
breakages ranges from 7% to 96% with a median of 50%. In the
eirslett/frontend-maven-plugin15 project, where we observe the max-
imum percentage of stale breakages (96%), it was due to the same
dependency resolution failure recurring in 23 builds.

Two of every three build breakages (67%) that we analyze
are stale.

3.4 Signal-To-Noise Ratio

Motivation. In previous analyses, we "nd that build breakages that
are ignored by developers and build successes that include ignored
breakages can introduce noise in build outcome data. However, the
overall rate of noise in build outcome data is not yet clear. Such an
overview is useful for researchers who use build outcome data in
their work, to better understand the degree to which noise may be
impacting their analyses.

Approach. To quantify the proportion of noise in build outcome
data caused by passively and actively ignored build breakage, we

15https://github.com/eirslett/frontend-maven-plugin

5

6

7

8

9

10

0 100 200 300 400 500

Build Failure Sequence Length Threshold (tc)

S
ig

n
a

l−
to

−
N

o
is

e
 R

a
tio

Parameter

Overall

Branches−only

Figure 6: For every 11 builds there is at least one build
with an incorrect status. The Signal-To-Noise ratio increases
when a higher build breakage sequence length is chosen.

adopt the Signal-To-Noise ratio (SNR) as follows:

SNR =
#TrueBuildBreakages + #TrueBuildSuccesses
#FalseBuildBreakages + #FalseBuildSuccesses (1)

where #TrueBuildBreakages (i.e., signal) is the number of broken
builds that are not ignored by developers, #TrueBuildSuccesses (i.e.,
signal) is the number of passing builds without ignored breakages,
#FalseBuildBreakages (i.e., noise) is the number of broken builds
that are ignored by developers, and #FalseBuildSuccesses (i.e., noise)
is the number of passing builds with ignored breakages.

To compute #FalseBuildBreakages, a threshold tc must be selected
such that if the number of consecutive broken builds is above tc ,
all builds in such sequences are considered false build breakages.
Instead of picking any particular tc value, we plot an SNR curve as
the threshold (tc) is changed.

Results. Figure 6 shows the SNR curve for the subject systems.

Observation 5: As tc decreases from 485 to 1, the SNR decreases
from 10.62 to 6.39. Since #FalseBuildSuccesses is not impacted by tc ,
the maximum SNR is observed when #FalseBuildBreakages is zero
(i.e., when tc is set to the maximum value). The minimum of SNR
is observed when tc is one and therefore all broken builds that are
not immediately "xed are considered false build breakages. If false
breakages are de"ned to be only in consecutive breakages with
branches in them, the Signal-to-Noise ratio ranges from 10.19 to
10.62.

One in every 7 to 11 builds (9%–14%) is incorrectly labelled.
This noise may in!uence analyses based on build outcome
data.

4 HETEROGENEITY IN BUILD BREAKAGE
DATA

The way in which builds are con"gured and triggered vary from
project to project. This heterogeneity should be taken into con-
sideration when designing studies of build breakage. Below, we
demonstrate build heterogeneity using three criteria.

@SoftwareREBELs rebels.cs.uwaterloo.ca

Conclusion 1:

Our evaluation
is correct! The
data is broken!

Conclusion 2:

Our evaluation is
incorrect! Please
help us to fix it!

@shane_mcintosh

shane.mcintosh@uwaterloo.ca
/in/shane-mcintosh

Thrice, “Daedalus,”

https://open.spotify.com/track/42lZpbV1P8KbzDl1duWT25

