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package rebels;


import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;


public class App {

  public static void main (String[] args) {

    final Logger logger = LogManager.getLogger("HelloWorld");

    logger.info("Hello World!");

  }

}
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package rebels;


import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;


public class App {

  public static void main (String[] args) {

    final Logger logger = LogManager.getLogger("HelloWorld");

    logger.info("Hello World!");

  }

}

<project …>

  <groupId>rebels</groupId>

  <artifactId>helloworld</artifactId>

  <version>1.0-SNAPSHOT</version>

  <packaging>jar</packaging>

  <dependencies>


<dependency>

      <groupId>log4j</groupId>

      <artifactId>log4j</artifactId>

      <version>1.2.17</version>

    </dependency>

  </dependencies>

</project>
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$ mvn compile
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$ mvn compile
[INFO] -----------------------------------------------------------

[INFO] BUILD FAILURE

[INFO] -----------------------------------------------------------
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$ mvn compile
[INFO] -----------------------------------------------------------

[INFO] BUILD FAILURE

[INFO] -----------------------------------------------------------
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$ mvn compile
[INFO] -----------------------------------------------------------

[INFO] BUILD FAILURE

[INFO] -----------------------------------------------------------

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.1:compile 
(default-compile) on project helloworld: Compilation failure: Compilation failure:
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$ mvn compile
[INFO] -----------------------------------------------------------

[INFO] BUILD FAILURE

[INFO] -----------------------------------------------------------

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.1:compile 
(default-compile) on project helloworld: Compilation failure: Compilation failure:

10@SoftwareREBELs rebels.cs.uwaterloo.ca



$ mvn compile
[INFO] -----------------------------------------------------------

[INFO] BUILD FAILURE

[INFO] -----------------------------------------------------------

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.1:compile 
(default-compile) on project helloworld: Compilation failure: Compilation failure:

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[3,32] package 
org.apache.logging.log4j does not exist

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[4,32] package 
org.apache.logging.log4j does not exist

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[9,11] cannot find 
symbol

[ERROR] symbol:   class Logger

[ERROR] location: class rebels.App

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[9,27] cannot find 
symbol

[ERROR] symbol:   variable LogManager

[ERROR] location: class rebels.App

[ERROR] -> [Help 1]
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$ mvn compile
[INFO] -----------------------------------------------------------

[INFO] BUILD FAILURE

[INFO] -----------------------------------------------------------

[ERROR] Failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.1:compile 
(default-compile) on project helloworld: Compilation failure: Compilation failure:

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[3,32] package 
org.apache.logging.log4j does not exist

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[4,32] package 
org.apache.logging.log4j does not exist

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[9,11] cannot find 
symbol

[ERROR] symbol:   class Logger

[ERROR] location: class rebels.App

[ERROR] /Users/shanemcintosh/src/foo/helloworld/src/main/java/rebels/App.java:[9,27] cannot find 
symbol

[ERROR] symbol:   variable LogManager

[ERROR] location: class rebels.App

[ERROR] -> [Help 1]
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package rebels;


import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;


public class App {

  public static void main (String[] args) {

    final Logger logger = LogManager.getLogger("HelloWorld");

    logger.info("Hello World!");

  }

}

<project …>

  <groupId>rebels</groupId>

  <artifactId>helloworld</artifactId>

  <version>1.0-SNAPSHOT</version>

  <packaging>jar</packaging>

  <dependencies>


<dependency>

      <groupId>log4j</groupId>

      <artifactId>log4j</artifactId>

      <version>1.2.17</version>

    </dependency>

  </dependencies>

</project>
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package rebels;


import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;


public class App {

  public static void main (String[] args) {

    final Logger logger = LogManager.getLogger("HelloWorld");

    logger.info("Hello World!");

  }

}

<project …>

  <groupId>rebels</groupId>

  <artifactId>helloworld</artifactId>

  <version>1.0-SNAPSHOT</version>

  <packaging>jar</packaging>

  <dependencies>


<dependency>

      <groupId>log4j</groupId>

      <artifactId>log4j</artifactId>

      <version>1.2.17</version>

    </dependency>

  </dependencies>

</project>
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package rebels;


import org.apache.logging.log4j.LogManager;

import org.apache.logging.log4j.Logger;


public class App {

  public static void main (String[] args) {

    final Logger logger = LogManager.getLogger("HelloWorld");

    logger.info("Hello World!");

  }

}

<project …>

  <groupId>rebels</groupId>

  <artifactId>helloworld</artifactId>

  <version>1.0-SNAPSHOT</version>

  <packaging>jar</packaging>

  <dependencies>


<dependency>

      <groupId>org.apache.logging.log4j</groupId>

      <artifactId>log4j-api</artifactId>

      <version>2.10.0</version>

    </dependency>

  </dependencies>

</project>

14@SoftwareREBELs rebels.cs.uwaterloo.ca



@SoftwareREBELs rebels.cs.uwaterloo.ca

$ mvn compile

15



@SoftwareREBELs rebels.cs.uwaterloo.ca

$ mvn compile
[INFO] -----------------------------------------------------------

[INFO] BUILD SUCCESS

[INFO] -----------------------------------------------------------
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[INFO] BUILD SUCCESS
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Why can’t the build tool fix this

mistake automatically?
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Dependency-Related Build 
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[INFO] -------------
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BuildMedic achieves promising 
results on 84 unseen breakage pairs
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BuildMedic achieves promising 
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54%
of repair attempts are 
eventually successful
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BuildMedic achieves promising 
results on 84 unseen breakage pairs
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54%
of repair attempts are 
eventually successful

76%
of successful repairs are 
identified in one iteration
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The 45 BuildMedic repairs are often 
identical or very similar to developer repairs
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The 45 BuildMedic repairs are often 
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The 45 BuildMedic repairs are often 
identical or very similar to developer repairs
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36%
of successful repairs are 

identical to the corresponding 
developer repairs

44%
of successful repairs edit the 

same elements as the 
corresponding developer 

repairs

Another

@SoftwareREBELs rebels.cs.uwaterloo.ca



Artist: Amy Adkins
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Can we rely on historical build records?

23@SoftwareREBELs rebels.cs.uwaterloo.ca

Noise and Heterogeneity in Historical Build Data:

An Empirical Study of Travis CI


K. Gallaba, C. Macho, M. Pinzger, S. McIntosh

[ASE 2018]
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12%
of passing builds have at least 
one actively ignored failure 
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failures:

Actively ignored

failures:

Can we rely on historical build records?

25

12%
of passing builds have at least 
one actively ignored failure 

67%
of failing builds are stale 
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In some cases, builds remain broken for 423 days
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Our evaluation 
is correct! The 
data is broken!
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Figure 5: Percentage of stale breakages in each project can
range from 7% to 96%.

Approach. In this section, we investigate how many times devel-
opers come across the same breakage repeatedly in the history of
a project with respect to the length of build breakage sequences.
These stale breakages can occur either consecutively or intermit-
tently. Hence, we extend the Maven Log Analyzer developed by
Macho et al. [15]. We use it to compare two Travis CI build jobs
and check the similarity of the breakages. To make the comparison
e!cient, this is done in two steps. First, the logs of build jobs are
parsed and checked if they are breaking due to the same reason
(e.g., compilation failure, test execution failure, dependency reso-
lution failure). If the reason for failures are equal then the details
of the failure are also checked (e.g., if both breakages are due to
compilation failure, check if the compilation error is the same).

Results. Figure 5 shows the percentage of stale build breakages in
each project in descending order.

Observation 4: 67% of the breakages (6,889 out of 10,816) that
we analyze are stale breakages. On the project level, staleness of
breakages ranges from 7% to 96% with a median of 50%. In the
eirslett/frontend-maven-plugin15 project, where we observe the max-
imum percentage of stale breakages (96%), it was due to the same
dependency resolution failure recurring in 23 builds.

Two of every three build breakages (67%) that we analyze
are stale.

3.4 Signal-To-Noise Ratio

Motivation. In previous analyses, we "nd that build breakages that
are ignored by developers and build successes that include ignored
breakages can introduce noise in build outcome data. However, the
overall rate of noise in build outcome data is not yet clear. Such an
overview is useful for researchers who use build outcome data in
their work, to better understand the degree to which noise may be
impacting their analyses.

Approach. To quantify the proportion of noise in build outcome
data caused by passively and actively ignored build breakage, we

15https://github.com/eirslett/frontend-maven-plugin
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Figure 6: For every 11 builds there is at least one build
with an incorrect status. The Signal-To-Noise ratio increases
when a higher build breakage sequence length is chosen.

adopt the Signal-To-Noise ratio (SNR) as follows:

SNR =
#TrueBuildBreakages + #TrueBuildSuccesses
#FalseBuildBreakages + #FalseBuildSuccesses (1)

where #TrueBuildBreakages (i.e., signal) is the number of broken
builds that are not ignored by developers, #TrueBuildSuccesses (i.e.,
signal) is the number of passing builds without ignored breakages,
#FalseBuildBreakages (i.e., noise) is the number of broken builds
that are ignored by developers, and #FalseBuildSuccesses (i.e., noise)
is the number of passing builds with ignored breakages.

To compute #FalseBuildBreakages, a threshold tc must be selected
such that if the number of consecutive broken builds is above tc ,
all builds in such sequences are considered false build breakages.
Instead of picking any particular tc value, we plot an SNR curve as
the threshold (tc ) is changed.

Results. Figure 6 shows the SNR curve for the subject systems.

Observation 5: As tc decreases from 485 to 1, the SNR decreases
from 10.62 to 6.39. Since #FalseBuildSuccesses is not impacted by tc ,
the maximum SNR is observed when #FalseBuildBreakages is zero
(i.e., when tc is set to the maximum value). The minimum of SNR
is observed when tc is one and therefore all broken builds that are
not immediately "xed are considered false build breakages. If false
breakages are de"ned to be only in consecutive breakages with
branches in them, the Signal-to-Noise ratio ranges from 10.19 to
10.62.

One in every 7 to 11 builds (9%–14%) is incorrectly labelled.
This noise may in!uence analyses based on build outcome
data.

4 HETEROGENEITY IN BUILD BREAKAGE
DATA

The way in which builds are con"gured and triggered vary from
project to project. This heterogeneity should be taken into con-
sideration when designing studies of build breakage. Below, we
demonstrate build heterogeneity using three criteria.

@SoftwareREBELs rebels.cs.uwaterloo.ca
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range from 7% to 96%.

Approach. In this section, we investigate how many times devel-
opers come across the same breakage repeatedly in the history of
a project with respect to the length of build breakage sequences.
These stale breakages can occur either consecutively or intermit-
tently. Hence, we extend the Maven Log Analyzer developed by
Macho et al. [15]. We use it to compare two Travis CI build jobs
and check the similarity of the breakages. To make the comparison
e!cient, this is done in two steps. First, the logs of build jobs are
parsed and checked if they are breaking due to the same reason
(e.g., compilation failure, test execution failure, dependency reso-
lution failure). If the reason for failures are equal then the details
of the failure are also checked (e.g., if both breakages are due to
compilation failure, check if the compilation error is the same).

Results. Figure 5 shows the percentage of stale build breakages in
each project in descending order.

Observation 4: 67% of the breakages (6,889 out of 10,816) that
we analyze are stale breakages. On the project level, staleness of
breakages ranges from 7% to 96% with a median of 50%. In the
eirslett/frontend-maven-plugin15 project, where we observe the max-
imum percentage of stale breakages (96%), it was due to the same
dependency resolution failure recurring in 23 builds.

Two of every three build breakages (67%) that we analyze
are stale.

3.4 Signal-To-Noise Ratio

Motivation. In previous analyses, we "nd that build breakages that
are ignored by developers and build successes that include ignored
breakages can introduce noise in build outcome data. However, the
overall rate of noise in build outcome data is not yet clear. Such an
overview is useful for researchers who use build outcome data in
their work, to better understand the degree to which noise may be
impacting their analyses.

Approach. To quantify the proportion of noise in build outcome
data caused by passively and actively ignored build breakage, we

15https://github.com/eirslett/frontend-maven-plugin
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Figure 6: For every 11 builds there is at least one build
with an incorrect status. The Signal-To-Noise ratio increases
when a higher build breakage sequence length is chosen.

adopt the Signal-To-Noise ratio (SNR) as follows:

SNR =
#TrueBuildBreakages + #TrueBuildSuccesses
#FalseBuildBreakages + #FalseBuildSuccesses (1)

where #TrueBuildBreakages (i.e., signal) is the number of broken
builds that are not ignored by developers, #TrueBuildSuccesses (i.e.,
signal) is the number of passing builds without ignored breakages,
#FalseBuildBreakages (i.e., noise) is the number of broken builds
that are ignored by developers, and #FalseBuildSuccesses (i.e., noise)
is the number of passing builds with ignored breakages.

To compute #FalseBuildBreakages, a threshold tc must be selected
such that if the number of consecutive broken builds is above tc ,
all builds in such sequences are considered false build breakages.
Instead of picking any particular tc value, we plot an SNR curve as
the threshold (tc ) is changed.

Results. Figure 6 shows the SNR curve for the subject systems.

Observation 5: As tc decreases from 485 to 1, the SNR decreases
from 10.62 to 6.39. Since #FalseBuildSuccesses is not impacted by tc ,
the maximum SNR is observed when #FalseBuildBreakages is zero
(i.e., when tc is set to the maximum value). The minimum of SNR
is observed when tc is one and therefore all broken builds that are
not immediately "xed are considered false build breakages. If false
breakages are de"ned to be only in consecutive breakages with
branches in them, the Signal-to-Noise ratio ranges from 10.19 to
10.62.

One in every 7 to 11 builds (9%–14%) is incorrectly labelled.
This noise may in!uence analyses based on build outcome
data.

4 HETEROGENEITY IN BUILD BREAKAGE
DATA

The way in which builds are con"gured and triggered vary from
project to project. This heterogeneity should be taken into con-
sideration when designing studies of build breakage. Below, we
demonstrate build heterogeneity using three criteria.
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Conclusion 1:

Our evaluation 
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Conclusion 2:
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help us to fix it!
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Figure 5: Percentage of stale breakages in each project can
range from 7% to 96%.

Approach. In this section, we investigate how many times devel-
opers come across the same breakage repeatedly in the history of
a project with respect to the length of build breakage sequences.
These stale breakages can occur either consecutively or intermit-
tently. Hence, we extend the Maven Log Analyzer developed by
Macho et al. [15]. We use it to compare two Travis CI build jobs
and check the similarity of the breakages. To make the comparison
e!cient, this is done in two steps. First, the logs of build jobs are
parsed and checked if they are breaking due to the same reason
(e.g., compilation failure, test execution failure, dependency reso-
lution failure). If the reason for failures are equal then the details
of the failure are also checked (e.g., if both breakages are due to
compilation failure, check if the compilation error is the same).

Results. Figure 5 shows the percentage of stale build breakages in
each project in descending order.

Observation 4: 67% of the breakages (6,889 out of 10,816) that
we analyze are stale breakages. On the project level, staleness of
breakages ranges from 7% to 96% with a median of 50%. In the
eirslett/frontend-maven-plugin15 project, where we observe the max-
imum percentage of stale breakages (96%), it was due to the same
dependency resolution failure recurring in 23 builds.

Two of every three build breakages (67%) that we analyze
are stale.

3.4 Signal-To-Noise Ratio

Motivation. In previous analyses, we "nd that build breakages that
are ignored by developers and build successes that include ignored
breakages can introduce noise in build outcome data. However, the
overall rate of noise in build outcome data is not yet clear. Such an
overview is useful for researchers who use build outcome data in
their work, to better understand the degree to which noise may be
impacting their analyses.

Approach. To quantify the proportion of noise in build outcome
data caused by passively and actively ignored build breakage, we

15https://github.com/eirslett/frontend-maven-plugin
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Figure 6: For every 11 builds there is at least one build
with an incorrect status. The Signal-To-Noise ratio increases
when a higher build breakage sequence length is chosen.

adopt the Signal-To-Noise ratio (SNR) as follows:

SNR =
#TrueBuildBreakages + #TrueBuildSuccesses
#FalseBuildBreakages + #FalseBuildSuccesses (1)

where #TrueBuildBreakages (i.e., signal) is the number of broken
builds that are not ignored by developers, #TrueBuildSuccesses (i.e.,
signal) is the number of passing builds without ignored breakages,
#FalseBuildBreakages (i.e., noise) is the number of broken builds
that are ignored by developers, and #FalseBuildSuccesses (i.e., noise)
is the number of passing builds with ignored breakages.

To compute #FalseBuildBreakages, a threshold tc must be selected
such that if the number of consecutive broken builds is above tc ,
all builds in such sequences are considered false build breakages.
Instead of picking any particular tc value, we plot an SNR curve as
the threshold (tc ) is changed.

Results. Figure 6 shows the SNR curve for the subject systems.

Observation 5: As tc decreases from 485 to 1, the SNR decreases
from 10.62 to 6.39. Since #FalseBuildSuccesses is not impacted by tc ,
the maximum SNR is observed when #FalseBuildBreakages is zero
(i.e., when tc is set to the maximum value). The minimum of SNR
is observed when tc is one and therefore all broken builds that are
not immediately "xed are considered false build breakages. If false
breakages are de"ned to be only in consecutive breakages with
branches in them, the Signal-to-Noise ratio ranges from 10.19 to
10.62.

One in every 7 to 11 builds (9%–14%) is incorrectly labelled.
This noise may in!uence analyses based on build outcome
data.

4 HETEROGENEITY IN BUILD BREAKAGE
DATA

The way in which builds are con"gured and triggered vary from
project to project. This heterogeneity should be taken into con-
sideration when designing studies of build breakage. Below, we
demonstrate build heterogeneity using three criteria.
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