- i |

1 dist = |3, 3. 5, 7, 7, 9, 11, 11}
2 new_list = list(dict.fromkeys(list))

3 print(new_list)
4

Automatically Enhancing Error Messages

Christoph Treude, The University of Melbourne

main.py m Shell Clear

Traceback (most recent call last):
File "<string>", line 2, in <module>
TypeError: 'list' object is not callable

1 Jast = |3, 3, 5, 7, 7, 9, 11, 11]
2 new_list = list(dict.fromkeys(list))
3 print(new_list)

4 >

MAAIMS FOR MALFEASANT DESIGNERS,

or

HOW TO DESIGN LANGUAGES TO MAKE

PROGRAMMING AS DIFFICULT AS POSSIBLE

Richard L.

Wexelblat

Bell Laboratories

Holmdel,

NJ 07733

If men could learn from history, what lessons it might teach us!
But passion and party blind our eyes and the light which experience
gives is a lantern on the stern which shines only on the waves behind us.

KEYWORDS: Programming Language Design
Programming Langquage Structure
Programming Languages

ABSTRACT

Communication with the computer is by artifi-
cial languages: programming languages and
command lanquages, as well as ad hoc languages
of messages. While many such 1languages are
sufficiently rich to permit proper expression
of what must be said, some are so 1limited or
inconsistent that a user must go to needless
effort in learning the language and using it
to communicate successfully with the computer.

As part of the final exam of a course on the
design of computer languages for human use,
students were asked to suggest what ",.. the
language designer can do to make the
programming process as difficult as possible."

~Coleridge

process and increase the chances of making
errors and writing poor programs. The answers

tended to stress the particular +topics and
areas covered in the course, but they
represent a reasonable cross-section of the
things which the 1language designer would do
well to avoid. Many student responses were
duplicates or slight wvariations on a common
theme. After merginging similar or closely

related responses, there were 29 items, maxims
for malfeasant designers. For convenience, I
have grouped them into five categories:

eProgram writing and formatting
eProgram and control structures

Maxims for malfeasant designers, or how to design
languages to make programming as difficult as possible

Richard L. Wexelblat

If men could learn from history, what lessons it might teach us!
But passion and party blind our eyes and the light which experience
gives is a lantern on the stern which shines only on the waves behind us.

KEYWORDS: Programming Language Design
Programming Language Structure
Programming Languages

ABSTRACT

Communication with the computer is by artifi-
cial languages: programming languages and
command languages, as well as ad hoc languages
of messages. While many such 1languages are
sufficiently rich to permit proper expression
of what must be said, some are so 1limited or
inconsistent that a user must go to needless
effort in learning the language and using it
to communicate successfully with the computer.

As part of the final exam of a course on the
design of computer languages for human use,
students were asked to suggest what ",.. the
language designer can do to make the
programming process as difficult as possible.®

—~Coleridge

process and increase the chances of making
errors and writing poor programs. The answers
tended to stress the particular +topics and
areas covered in the course, but they
represent a reasonable cross-section of the
things which the 1language designer would do
well to avoid. Many student responses were
duplicates or slight wvariations on a common
theme. After merginging similar or closely
related responses, there were 29 items, maxims
for malfeasant designers. For convenience, I
have grouped them into five categories:

eProgram writing and formatting
eProgram and control structures

Maxims for malfeasant designers, or how to design
languages to make programming as difficult as possible

Richard L. Wexelblat

Use cryptic diagnostics
To maximize difficulty for the user, it is important that

the diagnostic messages reflect what the program did,
rather than what the user did.

main.py m Shell Clear

Traceback (most recent call last):
File "<string>", line 2, in <module>
TypeError: 'list' object is not callable

1 Jast = |3, 3, 5, 7, 7, 9, 11, 11]
2 new_list = list(dict.fromkeys(list))
3 print(new_list)

4 >

main.py Lol & m Shell Clear

1 Jast = |3, 3, 5, Z. 7, 9, 11, 11} Traceback (most recent call last):

2 new_list = list(dict.fromkeys(list)) File "<string>", line 2, in <module>
3 print(new_list) TypeError: 'list' object is not callable
4 >

Prentice - Holl Seres in Automotic Computation

ﬂlSﬂl?lllle
III‘II!IIHIIIHIIII!I

qu.ﬂl‘

dijkstra

For a Ion; nmc I have wanted to write a
book somewhat along the lines of this one: on
the one hand | knew that programs could have
a compelling and deep logical beauty, on the
other hand | was forced to admit that most
programs are presented in a way fit for mechan-
ical execution but, even if of any beauty at all,
totally unfit for human apprccialion.,,

main.py o m Shell Clear

1 Jast = |3, 3, 5, Z. 7, 9, 11, 11} Traceback (most recent call last):

2 new_list = list(dict.fromkeys(list)) File "<string>", line 2, in <module>

3 print(new_list) TypeError: 'list' object is not callable
4 >

€ pUth()n TM msnl?hne

) GitHub e

dijkstra

‘ For a long umc I have wanted to write a
book somewhat along the lines of this one: on
the one hand | knew that programs could have
a compelling and deep logical beauty, on the

\ other hand | was forced to admit that most
\ programs are presented in a way fit for mechan-
1 ical execution but, even if of any beauty at all,

totally unfit for human apprcchtion.,’

main.py = m Shell Clear

1 Jast = |3, 3, 5, Z. 7, 9, 11, 11} Traceback (most recent call last):

2 new_list = list(dict.fromkeys(list)) File "<string>", line 2, in <module>

3 print(new_list) TypeError: 'list' object is not callable
4 >

It should work fine. Don't use tuple, list or other special names as a variable name. It's
probably what's causing your problem.

939

>>> 1 = [4,5,6]
>>> tuple(l)

\f’ (4. 5. 6)

>>> tuple = 'whoops' # Don't do this
>>> tuple(l)
TypeError: 'tuple' object is not callable

A
=" stack overflow

main.py Lol & m Shell Clear

1 Jast = |3, 3, 5, Z. 7, 9, 11, 11} Traceback (most recent call last):
2 new_list = list(dict.fromkeys(list)) File "<string>", line 2, in <module>
3 print(new_list) TypeError: 'list' object is not callable

4

>

lyy

main.py B m Shell Clear

1 Jast = |3, 3, 5, Z. 7, 9, 11, 11} Traceback (most recent call last):

2 new_list = list(dict.fromkeys(list)) File "<string>", line 2, in <module>
3 print(new_list) TypeError: 'list' object is not callable

4

>

Error Message Parsing

lyy

main.py HHEES m Shell Clear

1 list = |2, 3, 5, 7, Z, 9, 11, 11] Traceback (most recent call last):

2 new_list = list(dict.fromkeys(list)) File "<string>", line 2, in <module>
3 print(new_list) TypeError: 'list' object is not callable

|

>

Error Message Parsing

Query Construction

main.py HHEES m Shell Clear

1 dist = |3, 3, 5, Z, 7, 9, 11, 11] Traceback (most recent call last):
File "<string>", line 2, in <module>

2 new_list = list(dict.fromkeys(list))
TypeError: 'list' object is not callable

3 print(new_list)
4

>

Error Message Parsing

Query Construction

main.py HHEES m Shell Clear

list = [3, 3, 5, 7, 7, 9; 11, 11] Traceback (most recent call last):
File "<string>", line 2, in <module>

TypeError: 'list' object is not callable

1
2 new_list = list(dict.fromkeys(list))

3 print(new_list)
4 |

>

Error Message Parsing

Query Construction

Customisation

main.py HHEES m Shell Clear

1 dist = |3, 3, 5, 7, 7, 9, 11, 11] Traceback (most recent call last):

2 new_list = list(dict.fromkeys(list)) File "<string>", line 2, in <module>

3 print(new_list) TypeError: 'list' object is not callable
4 >

Error Message Parsing

Query Construction

Customisation

s
S

SCN <

list = 3, 3, 5, 7., 7, 9, 11, 11]
new_list = list(dict.fromkeys(list))

main.py

1

2

3 print(new_list)
4|

Error Message Parsing

Query Construction

Customisation

S

Don't use tuple, list or other
special names as a variable name.
It's probably what's causing your
problem.

Clear

SCN <

list = 3, 3, 5, 7., 7, 9, 11, 11]
new_list = list(dict.fromkeys(list))

main.py

1

2

3 print(new_list)
4|

Error Message Parsing

Query Construction

Customisation

S

Pycee:

Don't use tuple, list or other
special names as a variable name.
It's probably what's causing your
problem.

Clear

How do programmers perceive Pycee?

PRACTICE PYTHON

Beginner Python exercises

Home Why Practice Python? Why Chilis? Resources

All Exercises

: Character Input 2
:0dd Or Even 2

: List Less Than Ten 2 2
: Divisors B 2

: List Overlap 22

: String Lists 22

°
O I N R

: List Comprehensions 22

: Rock Paper Scissors 222

: Guessing Game One 222

e 10: List Overlap Comprehensions 2 2
* 11: Check Primality Functions 222
e 12: List Ends 2

e 13: Fibonacci 2 2

e 14: List Remove Duplicates 22

e 15: Reverse Word Order 2 2 2

e 16: Password Generator 2 2 2 2

e 17: Decode A Web Page 2222

e 18: Cows AndBulls 2 2 2

¢ 19: Decode A Web Page Two 2 2 2 2
e 20: Element Search 2

e 21: Write To A File 2

e 22: Read From File 2

.
O 0 N1 SN G

PRACTICE PYTHON

Beginner Python exercises

Home Why Practice Python? Why Chilis? Resources

All Exercises

: Character Input 2
:0dd Or Even 2

: List Less Than Ten 2 2
: Divisors B 2

: List Overlap 22

: String Lists 22

°
O I N R

: List Comprehensions 22

: Rock Paper Scissors 222

: Guessing Game One 222

e 10: List Overlap Comprehensions 2 2

.
O 0 N1 SN G

@ Python » |English

v| [3.10.2 v] 3.10.2 Documentation » The Python Standard Library » Built-in Exceptions

Table of Contents

Built-in Exceptions
= Exception context

= |nheriting from built-in
exceptions

= Base classes

= Concrete exceptions
= OS exceptions

= \Warnings
= Exception hierarchy

Previous topic

Built-in Exceptions

In Python, all exceptions must be instances of a class that derives from BaseException. In a try statement with
an except clause that mentions a particular class, that clause also handles any exception classes derived from
that class (but not exception classes from which it is derived). Two exception classes that are not related via
subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where
mentioned, they have an “associated value” indicating the detailed cause of the error. This may be a string or a
tuple of several items of information (e.g., an error code and a string explaining the code). The associated value
is usually passed as arguments to the exception class’s constructor.

PRACTICE PYTHON

Beginner Python exercises

Home Why Practice Python? Why Chilis? Resources

All Exercises

: Character Input 2
:0dd Or Even 2
: List Less Than Ten 2 2
 Divisors 2 2
ARTRT e ew N
.y Lists 22
1 1 5 co m p i I e r List Comprehensions 22
~. xock Paper Scissors 222
e rro rS ™ Guessing Game One 222

¢ u. _ tOverlap Comprehensions 22

°
@@ o =

@ Python » |English v] (3.4 10n Standau .. Library » Built-in Exceptions

Table of Contents Built-in L:XCGptiOﬂS

Built-in Exceptions
= Exception context

« Inheriting from built-in In Python, all exceptions must be instances of a class that derives from BaseException. In a try statement with

exceptions an except clause that mentions a particular class, that clause also handles any exception classes derived from
= Base classes that class (but not exception classes from which it is derived). Two exception classes that are not related via
= Concrete exceptions subclassing are never equivalent, even if they have the same name.
= OS exceptions
= Warnings The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where
= Exception hierarchy mentioned, they have an “associated value” indicating the detailed cause of the error. This may be a string or a

tuple of several items of information (e.g., an error code and a string explaining the code). The associated value
Previous topic is usually passed as arguments to the exception class’s constructor.

Agree

Disagree o

Perceived
Helpfulness

Agree —_—

Disagree o ©

Perceived Perceived
Helpfulness Time Savings

main.py £ C m

1
2
3
4

list = 13, 3, 5, 7, 7, 9, 11, 11]
new_list = list(dict.fromkeys(list))
print(new_list)

Shell

Don't use tuple, list or other
special names as a variable name.
It's probably what's causing your
problem.

Clear

main.py HHEES m Shell Clear

list = 13, 3, 5, 7, 7, 9, 11, 11]
new_list = list(dict.fromkeys(list))

1 Don't use tuple, list or other
2

3 print(new_list)

4

special names as a variable name.
It's probably what's causing your
problem.

Crowdsource your error messages
and we'll develop tools to automate the integration

