
How to Recommend Tools for
Finding and Fixing Software Errors

Chris Brown
Virginia Tech
It Will Never Work in Theory at Strange Loop

OR
Overcoming the Unwise Monkeys of

Tool Adoption

Finding and Fixing Errors

��
✍🏿

2

3

The Three Wise Monkeys

�
�Hear No Evil

��

See No Evil

��
Speak No EvilHear About

No Tools
See No Tools Speak About

No Tools

4

Unwise

5

Automated
Emails

��

1

6

Automated
Pull Requests

2

[Brown, 2017]

��

7

Peer Interactions

Peer interactions
are effective!

3

8

[Murphy-Hill, 2011]

⭐

[Brown, 2019]

50%

BUT…

9

Opportunities for peer interactions are in decline:

��

They are also the most infrequent mode of
tool discovery!
[Murphy-Hill, 2011]

● Remote Work 😷
● Global Software Engineering 🌎
● Physical Isolation🧍
● Lack of scalability 📈
● Mandated tools 🏢
● Learning curve ⏰
● Too many tools 🤯
● …

What Did We Learn?

🙉 🙈 🙊
Hear About
No Tools

See No Tools Speak About
No Tools 10

Solution: Nudge Theory

[Thaler and Sunstein, 2009]
11

Nudge Theory (cont.)
Choice Architecture: The framing and presentation of
choices to decision-makers

[Thaler, 2009]
12

Developer Recommendation
Choice Architectures

 Actionability
 Feedback
 Locality

13

🔬 This can nudge developers to adopt tools and
behaviors useful for improving code quality and
productivity!

Does this actually
work in practice?
#neverworkintheory

Actionable Recommendations

100%! ⭐
14

[Brown, 2020]

15

https://docs.google.com/file/d/1AHXG4hH4deUhFRIUTFBQWkDHNhD06TLR/preview

Researchers and Tool Builders:

Developers:

🙉🙈
🙊

16

Thanks

Chris Brown
 dcbrown@vt.edu
 https://chbrown13.github.io
 chbrown13
 @d_chrisbrown2

Developer Recommendation
Choice Architectures

 Actionability
 Feedback
 Locality

🙉🙈
🙈▸ Would you like to get involved?

Check out:
https://se-participants.github.io!

mailto:dcbrow10@ncsu.edu
https://chbrown13.github.io
https://github.com/chbrown13
https://twitter.com/d_chrisbrown2

Backup
Slides

18

Current/Future Work

Automated suggestions for other types of tools
● i.e. security, usability, etc. bugs
Other interdisciplinary concepts for
recommendations
Dark Patterns
Deceptive user interface designs to deceive users into adopting
behaviors, usually beneficial to the designers.

Ex) hidden ads 19

Developer Recommendation Choice
Architectures

20

Actionability
The ease with which users can act on
recommendations

21

Default Rule
Automatic Enrollment
[Madrian, 2001]

Static Analysis
Splint (Secure Programming Lint)
[Evans, 2002]

Feedback
Information provided to users in
recommendations to encourage adoption

22

Compiler Error Messages
Argument structure
[Barik, 2018]

Customized Information
Daily caloric intake
[Wisdom, 2010]

Locality: Spatial
The setting of recommendations to improve
user behavior

23

Flower
In situ navigation
[Smith, 2017]

Decision Staging
Healthy Convenience Lines
[Hanks, 2012]

Locality: Temporal
The setting of recommendations to improve
user behavior

24

Scaling Static Analyses at Facebook
“diff time”
[Distefano, 2019]

Time-limited windows
Present-biased farmers
[Duflo, 2011]

Back-Up

Average Median

Suggestions* 4 4

Pull Requests 3.71 4

Issues 2.86 3

Email 2.36 2

25

Mhoye feedback
Strong opener has better opening

Break up decision-making into different slides (3)

- reading slides :/

- delivery

Not just what tools to recommend, how to get recommendations to land and stick

Get programmers to change code is hard, changing tools is harder

Tool finds to many errors

Get to email/PR sooner

* Can't see, can't hear, we have to talk about it!

 * Problem with talking hackernews vs colleagues

Need to break this cycle (find people at this vulnerable moment)

People will understand data but connect with stories

decisions about how we make decisions and improve processes (nod towards nudge theory, debate about

whether it will work [suspect])

amount of data hasn't proved itself (made it look like it would be an easy thing to fix, but it's

not...)

Give a tool/something to take back to their development process

Changing practices are hard, but if it was easy we wouldn't have software errors

difficult to use and underused may not be bad/ineffective, they don't fit***

Teams: treat this like a science, have a place in your process where GitHub actions/process can call

to a tool and get results. Build a system and culture for this.

Tools: are they accessible to existing CI processes

Everyone says they want to improve their processes and tools (our results, most people don't)

We know you don't want to change! We do want to get you on a path to a place where tools do

work/support, helping find errors in code.

Gloss over references to papers...

Stories to re-tell

Start with story!

Help people solve their problems

26

Feedback 2

How to find and fix errors before they find us
common set of failure modes (common theme)
of tooling advocacy
All of these things work, people don't like them
and don't want to engage with (do things that
work but don't engage, work doesnt matter)
Nudge theory makes tool visible (show data to
make it immediately something to react to)
100%!!!!!!!!!!!!!!
When you show a suggestion, broaden tool
maker acceptance is to make sure it is as
actionable as possible
Valuable and useful
- wants stuff to be fast
 - see error
 - act on it
 - solve
 - move on
 - obvious in hindsight, great punchline (13)

27

