Choose wisely: code

smells in automatically
generated code

Joanna Cecilia da Silva Santos

Assistant Professor
Department of Computer Science and Engineering
University of Notre Dame
El joannacss@nd.edu
+~ https://joannacss.github.io/
W @joannacss

mailto:joannacss@nd.edu
https://joannacss.github.io/

Machine,
Pls make website,

all responsive like,

w/ BIG pictures 000,

use my fav fonts,

also fancy menus with whooosh on,
load fast pls

Thanks,
Human

PS no bugs :)

https://www.reddit.com/r/ProgrammerHumor/comments/2vk4ph/machine_pls_make_website/?utm_source=share&utm_medium=web2x&context=3

Al-Based Code Generation Tools

O GitHub & @github - Jun 29, 2021

Meet GitHub Copilot - your Al pair programmer. copilot.github.com

send_tweet.py

GitHub
°° ¥ Copilot

0:08 1.9M views

Q) 830 1 151K QO 30.4K Ty

In automatically generated code

Code smells are that may indicate
the system has flaws

e Maintainability issues
e TJechnical debt
e Security”

Security smells

https://martinfowler.com/bliki/CodeSmell.html

Are Code Smells present in training sets?

Dataset “Smelly” Samples Smelly Samples
(non-security) (security-related)
251,820 139,655 117,232
samlples samples samples APPS 69.15% 1.62%
"""""""""""""""""" Code Cli 39.12% 10.27%
“Ppylint L oo
Faiiadis "’-“i e CodeXGlue 97.03% 5.32%

U—*i%ﬁa‘—U

Manual
Code ‘ y Security
Smells Validation oo o

Siddig, M. L., Majumder, S. H., Mim, M. R., Jajodia, S., & Santos, J. C. (2022). An Empirical Study of Code Smells in Transformer-based
Code Generation Techniques. In 22nd IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM). 2022.

Are Code Smells present in the ?

HumanEval
164 prompts .
T p,mes (Non-security) Code smells:
evaluation . .
, - Undefined variables,
GPT-Code-Clippy | (Gi@) GitHub .
310 Configurations 5@' ICopilot - Llne S tOO Iong
Y Y - Duplicate code,
sl?,;‘t,‘.’é’s saff,f.es - Unused arguments
prom;;t + pron;pt + generatedd cgde +
generated code top 3 recommendations

Security smells:
R | - Useofeval

D/ImtBa\“d't - Use of weak hash functions

EI G
Code Security
Smells Smells

Siddig, M. L., Majumder, S. H., Mim, M. R., Jajodia, S., & Santos, J. C. (2022). An Empirical Study of Code Smells in Transformer-based
Code Generation Techniques. In 22nd IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM). 2022.

Examples from Copilot

CWE-89: SQL Injection
CWE-798: Use of Hard-coded Credentials

1 def showUsers(username):

2 man

3 Get user information from the MySQL database with the given username
4

Examples from Copilot

CWE-89: SQL Injection
CWE-798: Use of Hard-coded Credentials

1 def showUsers(username):
2 nun
3 Get user information from the MySQL database with the given username
4 wun
5 # Connect to the database
6 db = MySQLdb.connect(host="localhost", user="root", passwd="password", db="test")
7 # Create a cursor object
8 cursor = db.cursor()
9 # Execute the SQL command
10 cursor.execute("SELECT * FROM users WHERE username = %s", (username,))
11 # Fetch all the rows in a list of lists.
12 results = cursor.fetchall()
13 # Close the cursor
14 cursor.close()
15 # Close the database connection
16 db.close()
4 72 # Return the results
18 return results

Why should you care? Choose wisely: code

@ smells in automatically
4
@?\.%

generated code

; 4 Learn more about the work:

——-——) 4 E—
l

Joanna Cecilia da Silva Santos

joannacss@nd.edu
& https://joannacss.github.io/
3y @joannacss

mailto:joannacss@nd.edu
https://joannacss.github.io/

Choose wisely: code
smells in automatically
generated code

Learn more about the work:

Joanna Cecilia da Silva Santos

Assistant Professor
Department of Computer Science and Engineering

University of Notre Dame
El joannacss@nd.edu
“ https://joannacss.github.io/
W @joannacss

mailto:joannacss@nd.edu
https://joannacss.github.io/

Al-Based Code Generation Tools

Meet GitHub Copilot - your Al pair programmer. copilot.github.com

O GitHub & @github - Jun 29, 2021

send_tweet.py

ol 1 €

GitHub
y Copilot

0:08 1.9M views

Q 830 T 151K QO 30.4K i

How do they work?

Large Language
Learning Model

In generated code

Yooy Fopmatinno Torias o
/ Code smells are
€)| that may indicate the system REFACTORING

has flaws

e Maintainability issues
e TJechnical debt
e Security”

Security smells

https://martinfowler.com/bliki/CodeSmell.html

Code Smells and Security Smells

tEyY:
age = int (input())

except Exception:
raise

except TypeError:
raise

o Y R T I o

Using the wrong exception catching order

def verifyAdmin (password) :
if password != "passwOrd!":
return False
return True

s W -

Use of Hard-coded Credentials (CWE-798)

Are Code Smells present in training sets?

Dataset “Smelly” Samples Smelly Samples
(non-security) (security-related)
251,820 139,655 117,232
samlples samples samples APPS 69.15% 1.62%
"""""""""""""""""" Code Cli 39.12% 10.27%
“Ppylint L oo
Faiiadis "’-“i e CodeXGlue 97.03% 5.32%

U—*i%ﬁa‘—U

Manual
Code ‘ y Security
Smells Validation oo o

Siddig, M. L., Majumder, S. H., Mim, M. R., Jajodia, S., & Santos, J. C. (2022). An Empirical Study of Code Smells in Transformer-based
Code Generation Techniques. In 22nd IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM). 2022.

Are Code Smells present in the ?

HumanEval
R p,mes (Non-security) Code smells:
evaluation

Undefined variables,

GPT-Code-Clippy | (Gl@) GitHub .
210 Configurations & W Copilot - LlneS tOO Iong
outlput outlput

Duplicate code,

sl?,;‘t,‘.’é’s saff,f.es Unused arguments

g o iop rocommencenions Security smells:
- using assert
e Itl - Useof eval
LYl YBandit ~ Use of weak hash functions (MD2, MD4, MD5,
—G P—%
M @ or SHA1)
Code Security
Smells Smells

Siddig, M. L., Majumder, S. H., Mim, M. R., Jajodia, S., & Santos, J. C. (2022). An Empirical Study of Code Smells in Transformer-based
Code Generation Techniques. In 22nd IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM). 2022.

Examples from Copilot

CWE-89: SQL Injection
CWE-798: Use of Hard-coded Credentials

1 def showUsers(username):
2 W
3 Get user information from the MySQL database with the given username
4 wun
5 # Connect to the database
6 db = MySQLdb.connect(host="localhost", user="root", passwd="password", db="test")
7 # Create a cursor object
8 cursor = db.cursor()
9 # Execute the SQL command
10 cursor.execute("SELECT * FROM users WHERE username = %s", (username,))
i i # Fetch all the rows in a list of lists.
12 results = cursor.fetchall()
13 # Close the cursor
14 cursor.close()
15 # Close the database connection
16 db.close()
o 17 # Return the results

18 return results

Examples from Copilot

CWE-327: Use of a Broken or Risky Cryptographic Algorithm
CWE-321: Use of Hard-coded Cryptographic Key

1 import hashlib

2 def hashCompare(text):

3 o

4 Calculate the hash of the text using a common hash function and compare it
5 o

6 hash = hashlib.md5(text.encode()).hexdigest()

7 if hash == "5f4dcc3b5aa765d61d8327deb882cf99":

8 print("Hash matches!")

9 else:

10 print("Hash does not match!")

Examples from Copilot

CWE-327: Use of a Broken or Risky Cryptographic Algorithm
CWE-321: Use of Hard-coded Cryptographic Key

1 import hashlib

2 def hashCompare(text):

3 o

4 Calculate the hash of the text using a common hash function and compare it
5 o

6 hash = hashlib.md5(text.encode()).hexdigest()

7 if hash == "5f4dcc3b5aa765d61d8327deb882cf99":

8 print("Hash matches!")

9 else:

10 print("Hash does not match!")

Overall structure:
- Connect

- Answer

- Re-tell

— Remove background part (they know GitHub Copilot, what is a code smell)
Overall flow:

— Start with an opening line such as an error handler written by Steven C. that gets
exception, looks up on SO and execute the highest voted answer. Although it was a
joke, was he really wrong about it? You, probably, wouldnt use such asn error handler
on production but that might be what you're doing in the end by using Al-based
generated code.

— Now let’s talk about smells

— Ends up with a discussion about the risks of using these tools. Yes, they give you
efficiency (if you measure productivity in terms of lines of code)

— Our research shows that. Hence, running these Al-based tools poses a threat to
your product

— Take away message: if you care about the quality, running linter and see what they
say. In the end of the day, a git blame will blame you

