
Joanna Cecilia da Silva Santos
Assistant Professor

Department of Computer Science and Engineering
University of Notre Dame
📧 joannacss@nd.edu

🔗 https://joannacss.github.io/ 
   @joannacss

Choose wisely: code 
smells in automatically 

generated code

mailto:joannacss@nd.edu
https://joannacss.github.io/


https://www.reddit.com/r/ProgrammerHumor/comments/2vk4ph/machine_pls_make_website/

https://www.reddit.com/r/ProgrammerHumor/comments/2vk4ph/machine_pls_make_website/?utm_source=share&utm_medium=web2x&context=3


AI-Based Code Generation Tools

Functionality

Quality



Code smells in automatically generated code

Code smells are symptoms that may indicate 
the system has flaws

https://martinfowler.com/bliki/CodeSmell.html 

● Maintainability issues
● Technical debt
● Security*

Security smells 

https://martinfowler.com/bliki/CodeSmell.html


Are Code Smells present in training sets?

Siddiq, M. L., Majumder, S. H., Mim, M. R., Jajodia, S., & Santos, J. C. (2022). An Empirical Study of Code Smells in Transformer-based 
Code Generation Techniques. In 22nd IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM). 2022.

Dataset “Smelly” Samples 
(non-security)

Smelly Samples 
(security-related)

APPS 69.15% 1.62%

Code Clippy 39.12% 10.27%

CodeXGlue 97.03% 5.32%



Are Code Smells present in the generated code?

Siddiq, M. L., Majumder, S. H., Mim, M. R., Jajodia, S., & Santos, J. C. (2022). An Empirical Study of Code Smells in Transformer-based 
Code Generation Techniques. In 22nd IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM). 2022.

(Non-security) Code smells:
- Undefined variables,
- Lines too long
- Duplicate code,
- Unused arguments 

Security smells: 
- Use of eval
- Use of weak hash functions



Examples from Copilot
CWE-89: SQL Injection
CWE-798: Use of Hard-coded Credentials



Examples from Copilot
CWE-89: SQL Injection
CWE-798: Use of Hard-coded Credentials



What can you do about it?



Why should you care?

Joanna Cecilia da Silva Santos
📧 joannacss@nd.edu

🔗 https://joannacss.github.io/ 
   @joannacss

Choose wisely: code 
smells in automatically 

generated code

Learn more about the work:

mailto:joannacss@nd.edu
https://joannacss.github.io/


Joanna Cecilia da Silva Santos
Assistant Professor

Department of Computer Science and Engineering
University of Notre Dame
📧 joannacss@nd.edu

🔗 https://joannacss.github.io/ 
   @joannacss

Choose wisely: code 
smells in automatically 

generated code
Learn more about the work:

mailto:joannacss@nd.edu
https://joannacss.github.io/


AI-Based Code Generation Tools



How do they work?

Large Language 
Learning Model

 

Functionality

Quality



Code smells in generated code

Code smells are symptoms 
that may indicate the system 

has flaws

https://martinfowler.com/bliki/CodeSmell.html 

● Maintainability issues
● Technical debt
● Security*

Security smells 

https://martinfowler.com/bliki/CodeSmell.html


Code Smells and Security Smells

Using the wrong exception catching order

Use of Hard-coded Credentials (CWE-798)



Are Code Smells present in training sets?

Siddiq, M. L., Majumder, S. H., Mim, M. R., Jajodia, S., & Santos, J. C. (2022). An Empirical Study of Code Smells in Transformer-based 
Code Generation Techniques. In 22nd IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM). 2022.

Dataset “Smelly” Samples 
(non-security)

Smelly Samples 
(security-related)

APPS 69.15% 1.62%

Code Clippy 39.12% 10.27%

CodeXGlue 97.03% 5.32%



Are Code Smells present in the generated code?

Siddiq, M. L., Majumder, S. H., Mim, M. R., Jajodia, S., & Santos, J. C. (2022). An Empirical Study of Code Smells in Transformer-based 
Code Generation Techniques. In 22nd IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM). 2022.

(Non-security) Code smells:
- Undefined variables,
- Lines too long
- Duplicate code,
- Unused arguments 

Security smells: 
- using assert
- Use of eval
- Use of weak hash functions (MD2, MD4, MD5, 

or SHA1)



Examples from Copilot
CWE-89: SQL Injection
CWE-798: Use of Hard-coded Credentials



Examples from Copilot
CWE-327: Use of a Broken or Risky Cryptographic Algorithm 
CWE-321: Use of Hard-coded Cryptographic Key



Examples from Copilot
CWE-327: Use of a Broken or Risky Cryptographic Algorithm 
CWE-321: Use of Hard-coded Cryptographic Key



Overall structure:
- Connect
- Answer
- Re-tell

→ Remove background part (they know GitHub Copilot, what is a code smell)
Overall flow:
→ Start with an opening line such as an error handler written by Steven C. that gets 
exception, looks up on SO and execute the highest voted answer. Although it was a 
joke, was he really wrong about it?  You, probably, wouldnt use such asn error handler 
on production but that might be what you’re doing in the end by using AI-based 
generated code. 
→ Now let’s talk about smells
→ Ends up with a discussion about the risks of using these tools. Yes, they give you 
efficiency (if you measure productivity in terms of lines of code)
→ Our research shows that. Hence, running these AI-based tools poses a threat to 
your product
→ Take away message: if you care about the quality, running linter and see what they 
say. In the end of the day, a git blame will blame you


