Finding Bugs in Deep Learning Programs

Foutse Khomh, PhD, Ing. <u>foutse.khomh@polymtl.ca</u> <u>©</u>@SWATLab Canada CIFAR AI Chair on Trustworthy Machine Learning Systems

SoftWare Analytics and Technologies Lab

Deep Learning is being rapidly adopted in industry

DL development phases produce a lot of code!

DL programs can be faulty!

Multi-dimensional space of DL bugs

Deep Learning Model Verification Using Graph Transformations

AMIN NIKANJAM^{*}, K. N. Toosi University of Technology, Iran and SWAT Lab., Polytechnique Montreal, Canada

HOUSSEM BEN BRAIEK^{*}, SWAT Lab., Polytechnique Montreal, Canada MOHAMMADMEHDI MOROVATI, SWAT Lab., Polytechnique Montreal, Canada FOUTSE KHOMH, SWAT Lab., Polytechnique Montreal, Canada

NeuraLint : A linter for DL programs

- Capture defects early, so saves rework cost.
- Less expensive, because it doesn't require execution.
- ✓ Find defects in seconds.

✓ …

Try it out!

NeuraLint is fast and effective!

- ✓ It achieves an accuracy of 91.7 %.
- It correctly reported 18 additional bugs that were not found by developers.
- The average execution time of NeuraLint for the studied TensorFlow and Keras based programs are 2.892 and 3.197 seconds respectively.

NeuraLint has two pillars...

A meta-model of DL programs

Gunel Jahangirova, Nargiz Humbatova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and Paolo Tonella. 2019. Taxonomy of Real Faults in Deep Learning Systems. arXiv preprint arXiv:1910.11015

NeuraLint: Execution Flow

Testing Neural Networks Training Programs

HOUSSEM BEN BRAIEK, SWAT Lab., Polytechnique Montreal, Canada FOUTSE KHOMH, SWAT Lab., Polytechnique Montréal, Canada

TheDeepChecker : Dynamic testing of DL programs

- ✓ Capture defects during the training process.
- ✓ Less expensive than testing the resulting model.
- ✓ Some overhead on the training process.

TheDeepChecker outperforms AWS SMD

TOSEM'22

- DL coding bugs and misconfigurations are detected with (precision, recall), respectively, equal to (90%, 96.4%) and (77%, 83.3%).
- ✓ Finds 30% more defects than AWS SageMaker.

Try it out!

TheDeepChecker verification rules...

Parameters-related Issues	Untrained Parameters
	Poor Weight Initialization
	Parameters' Values Divergence
	Parameters Unstable Learning
Activation-related Issues	Activations out of Range
	Neuron Saturation
	Dead ReLU
Optimization-related Issues	Unable to fit a small sample
	Zero Loss
	Diverging Loss
	Slow or Non decreasing Loss
	Loss Fluctuations
	Unstable Gradient: Exploding
	Unstable Gradient: Vanishing

TheDeepChecker verification rules...

Parameters-related Issues	Untrained Parameters Poor Weight Initialization Parameters' Values Divergence	Given a layer <i>i</i> and <i>N</i> iterations $W_i^0 = W_i^1, b_i^0 = b_i^1$ $W_i^1 = W_i^2, b_i^1 = b_i^2$ $W_i^{N-1} = W_i^N, b_i^{N-1} = b_i^N$	lssue
	Parameters Unstable Learning	Given a layer <i>i</i> and an iteration <i>j</i> $W_i^j \neq W_i^{j+1} b_i^j \neq b_i^{j+1}$ $\forall j \in [0, N-1]$	Verification Routine

Specification of verification rules

Activation-related Issues	Activations out of Range	Given a layer <i>i</i>	ue
	Neuron Saturation	A _i ∉ [min, max]	lss
		Civen a laver i	outine
	Dead ReLU	$min \le A_i \le max$	Verification Ro

TheDeepChecker verification rules...

Optimization-related Issues	Unable to fit a small sample		
	Zero Loss		Je
	Diverging Loss	The DNN could not properly	Issi
	Slow or Non decreasing Loss minimize the		
	Loss Fluctuations		ine
	Unstable Gradient: Exploding	The DNN (with regularization off)	Sout
	Unstable Gradient: Vanishing	should over it a tiny sumple of data.	on F
		Given N iterations	cati
		$loss_N = 0$	erifi
			>

TheDeepChecker: Execution Flow

Original program

Monitored Program

Sanity Check of Program

Testing Neural Networks Training Programs

HOUSSEM BEN BRAIEK, SWAT Lab., Polytechnique Montreal, Canada FOUTSE KHOMH, SWAT Lab., Polytechnique Montréal, Canada

TheDeepChecker : Dynamic testing of DL programs

- ✓ Capture defects during the training process.
- ✓ Less expensive than testing the resulting model.
- ✓ Some overhead on the training process.

TheDeepChecker outperforms AWS SMD

TOSEM'22

- DL coding bugs and misconfigurations are detected with (precision, recall), respectively, equal to (90%, 96.4%) and (77%, 83.3%).
- ✓ Finds 30% more defects than AWS SageMaker.

Try it out!

Emmanuel Thepie Fapi

ML programs can be faulty!

Deep Learning Model Verification Using Graph Transformations

AMIN NIKANJAM', K. N. Toosi University of Technology, Iran and SWAT Lab., Polytechnique Montreal, Canada HOUSSEM BEN BRAIEK', SWAT Lab., Polytechnique Montreal, Canada

HOUSSEM BEN BRAIEK, SWAT Lab, Polytechnique Montreal, Canada MOHAMMADMEHDI MOROVATI, SWAT Lab, Polytechnique Montreal, Canada FOUTSE KHOMH, SWAT Lab, Polytechnique Montreal, Canada

NeuraLint : A linter for DL programs

- ✓ Capture defects early, so saves rework cost
- ✓ Less expensive, because it doesn't require execution
- ✓ Find defects in seconds

Testing Neural Networks Training Programs

HOUSSEM BEN BRAIEK, SWAT Lab., Polytechnique Montreal, Canada FOUTSE KHOMH, SWAT Lab., Polytechnique Montréal, Canada

TheDeepChecker : Dynamic testing of DL programs

- ✓ Capture defects during the training process
- \checkmark Less expensive than testing the resulting model
- ✓ Finds 30% more defects than AWS SageMaker
 ✓ ...

Multi-dimensional space of DL bugs

Foutse Khomh, PhD, Ing. foutse.khomh@polymtl.ca @SWATLab Canada CIFAR AI Chair

Deep Learning Model Verification Using Graph Transformations

AMIN NIKANJAM*, K. N. Toosi University of Technology, Iran and SWAT Lab., Polytechnique Montreal, Canada HOUSSEM BEN BRAIEK*, SWAT Lab., Polytechnique Montreal, Canada MOHAMMADMEHDI MOROVATI, SWAT Lab., Polytechnique Montreal, Canada FOUTSE KHOMH, SWAT Lab., Polytechnique Montreal, Canada

Testing Neural Networks Training Progra

HOUSSEM BEN BRAIEK, SWAT Lab., Polytechnique Montreal, Can FOUTSE KHOMH, SWAT Lab., Polytechnique Montréal, Canada

NeuraLint: A linter for DL programs

- ✓ Capture defects early, so saves rework cost
- Less expensive, because it doesn't require execution
- ✓ Find defects in seconds

 \checkmark

...

Try it out!

TheDeepChecker : Dynamic testing of DL progr

Capture defects during the training process
 Less expensive than testing the resulting model
 Finds 30% more defects than AWS <u>SageMaker</u>
 ...

