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Quality Assurance of ML-enabled systems
System evolution & continuous delivery
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Deep Learning is being rapidly adopted in industry
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DL development phases produce a lot of code! 

Han et al., What do Programmers Discuss about Deep Learning Frameworks



DL programs can be faulty!
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NeuraLint : A linter for DL programs

 Capture defects early, so saves rework cost.

 Less expensive, because it doesn’t require 
execution.

 Find defects in seconds.

 …

NeuraLint is fast and effective!

 It achieves an accuracy of 91.7 % .

 It correctly reported 18 additional bugs that were 
not found by developers.

 The average execution time of NeuraLint for the 
studied TensorFlow and Keras based programs are 
2.892 and 3.197 seconds respectively.

Try it out!



NeuraLint has two pillars…
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A meta-model of DL programs Taxonomy of common DL faults

Gunel Jahangirova, Nargiz Humbatova, Gabriele Bavota, Vincenzo Riccio, Andrea Stocco, and Paolo Tonella. 2019. Taxonomy of Real Faults in Deep 
Learning Systems. arXiv preprint arXiv:1910.11015



NeuraLint: Execution Flow
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TheDeepChecker outperforms AWS SMD

 DL coding bugs and misconfigurations are detected 
with (precision, recall), respectively, equal to (90%, 
96.4%) and (77%, 83.3%).

 Finds 30% more defects than AWS SageMaker.
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TheDeepChecker : Dynamic testing of DL programs

 Capture defects during the training process.

 Less expensive than testing the resulting model.

 Some overhead on the training process.

…

Try it out!
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TheDeepChecker verification rules…
Parameters-related Issues Untrained Parameters

Poor Weight Initialization 

Parameters’ Values Divergence

Parameters Unstable Learning

Activation-related Issues Activations out of Range

Neuron Saturation

Dead ReLU

Optimization-related Issues Unable to fit a small sample 

Zero Loss

Diverging Loss

Slow or Non decreasing Loss

Loss Fluctuations

Unstable Gradient: Exploding

Unstable Gradient: Vanishing



Parameters-related Issues Untrained Parameters
Given a layer 𝑖𝑖 and 𝑁𝑁 iterations 

𝑊𝑊𝑖𝑖
0 = 𝑊𝑊𝑖𝑖

1 ,𝑏𝑏𝑖𝑖0 = 𝑏𝑏𝑖𝑖1

𝑊𝑊𝑖𝑖
1 = 𝑊𝑊𝑖𝑖

2 ,𝑏𝑏𝑖𝑖1 = 𝑏𝑏𝑖𝑖2
…

𝑊𝑊𝑖𝑖
𝑁𝑁−1 = 𝑊𝑊𝑖𝑖

𝑁𝑁 ,𝑏𝑏𝑖𝑖𝑁𝑁−1 = 𝑏𝑏𝑖𝑖𝑁𝑁 Is
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Poor Weight Initialization 

Parameters’ Values Divergence

Given a layer 𝑖𝑖 and an iteration 𝑗𝑗

𝑊𝑊𝑖𝑖
𝑗𝑗 ≠ 𝑊𝑊𝑖𝑖

𝑗𝑗+1𝑏𝑏𝑖𝑖
𝑗𝑗 ≠ 𝑏𝑏𝑖𝑖

𝑗𝑗+1

∀ 𝑗𝑗 ∈ [0,𝑁𝑁 − 1]
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TheDeepChecker verification rules…
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Activation-related Issues Activations out of Range

Given a layer 𝑖𝑖

𝐴𝐴𝑖𝑖 ∉ [𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚] Is
su

e

Neuron Saturation

Given a layer 𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐴𝐴𝑖𝑖 ≤ 𝑚𝑚𝑚𝑚𝑚𝑚
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Specification of verification rules
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Optimization-related Issues Unable to fit a small sample 

The DNN could not properly 
minimize the loss. 

Is
su

eZero Loss

Diverging Loss

Slow or Non decreasing Loss

The DNN (with regularization off) 
should overfit a tiny sample of data.

Given N iterations

𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑁𝑁 = 0
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Unstable Gradient: Exploding

Unstable Gradient: Vanishing

TheDeepChecker verification rules…
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TheDeepChecker: Execution Flow



TheDeepChecker outperforms AWS SMD

 DL coding bugs and misconfigurations are detected 
with (precision, recall), respectively, equal to (90%, 
96.4%) and (77%, 83.3%).

 Finds 30% more defects than AWS SageMaker.
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TheDeepChecker : Dynamic testing of DL programs

 Capture defects during the training process.

 Less expensive than testing the resulting model.

 Some overhead on the training process.

…

Try it out!
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Try it out!
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