R I T \ Rochester Institute of Technology

One thousand and one stories:
a large-scale survey of software Refactoring

-

Mohamed Wiem Mkaouer
Department of Software Engineering
Rochester Institute of Technology
mwmvse@rit.edu

mailto:mwm@se.rit.edu
mailto:%7D@rit.edu

R I T Rochester Institute of Technology | 2

Origin of the Study

g “I noticed that the review of my A

refactoring changes takes longer
than usual to be approved”

_ /

Software Engineer at Xerox

R I T Rochester Institute of Technology | 3

Refactoring

= The process of improving a code after it has been written by changing its internal
structure without changing the external behavior.

@ BLOB
Library Main Control Person

Library Main Control Person + Current_Catalog
+ Current_ltem
+ Current_Catalog Catalog +User_ID / -
+ Current_ltem | +Fine_amount -

I”Calalug ;:f::__al?noum /7 REfaCto ring

S + Do_lInventony()
+ Check_Out_Item()
+ Check_In_ltem()
- + Do_Inventory() + Add_ltem() Item
+ Check_Out_Item() + Delete_Item()
+ Check_In_item() + Print_Catalog()
Item

+ Add_ltem() + Sort_Catalog()
+ Delete_Item()] + Search_Catalog()

+ Print_Catalog()
+Son_Catalog() Extract class

+ Search_Catalog()
Move method
- + (Eunent. Catalog
Move field oo) - Curent e
+ Fine r /

Add association o

+ Do_lInventory()

+ Check_Out_ltem()

+ Check_In_ltem()

+ Add_ltem() 9(- item
+ Delate_Itemi()

+ Print_Catalog()

+ Sort_Catalog()
+ Search_Catalog()

Library Main Control Person

!

Eliminate coupling
by moving relation
o Catalog

M. Fowler, K. Beck, J. Brant, W. Opdyke, and d. Roberts. Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

RIT

Rochester Institute of Technology | 4

Pilot Study at Xerox (Design)

171 Refactoring
Pull Requests

Review Duration
VS

r- # exchanged messages

171 non-Refactoring
Pull Requests

Review Duration

r- # exchanged messages

RIT Rochester Institute of Technology | 5
Challenge 1:
g .
40000 - ° 15 7
g
30000 E
i = 10
: 5
z i 3
£ 20000 - ’ 2
= 5 g
‘ | RN) 5 _
10000 ’J
e —— —— —_— {
r_; T H-] | —= s —
0 ! — 0-
I
Refactoring. Review Non.refactoring. Review Refactoring.Review Mon.refactoring. Review

(a) Review duration

Refactoring code reviews take longer
to be completed than the non-
refactoring code reviews.

(b) Number of exchanged responses

Refactoring code reviews trigger longer

discussions between code authors and
reviewers before reaching a consensus.

R I T Rochester Institute of Technology

| 6

Recommendation 1:

Instruction

Intent

Understanding the purpose of the
intended refactoring

Reporting refactoring operations
developers have performed

“Removed some dead code”
“‘Refactored duplicate methods”

‘Renamed [...]”
“Moved [...]”

‘//’ “Extracted [...]”

Impact

Understanding the impact of the applied
refactoring

“[...] to improve readability”
“[...] to reduce complexity”

| 7

Rochester Institute of Technology

RIT

in may
de another

(©
—
e
O
-
@)

h

RIT

Recent Refactoring Studies

Rochester Institute of Technology

Breaking the Barriers to Successful Refactoring:
Observations and Tools for Extract Method

ABSTRACT

Refactoring is the process of chal
without changing its behavior. Refa]
with tools, which should make it}
refactor quickly and correctly. How)
many tools do a poor job of comm
the refactoring process and tha
sometimes refactor slowly, conserva
paper we characterize problems w
demonstrate three new tools to a;
a user study that compares these ne
The results of the study show th

satisfaction can be significantly incr
induce a set of usability recommend]
inspire a new generation of programl

Categories and Subject D
D.2.3 [Software Enginee:
D.2.6 [Software Enginees

General Terms
Design, Reliability, Human Factors

Keywords
Refactoring, tools, usability, environ|

1. INTRODUCTION
Refactoring is the process of changi|
without changing the way it behav
refactoring, Fowler reports that Extr
common refactorings that he perfor|
says that Extract Method is “a ke
Extract Method, it probably means
refactorings” [7]. However, as we
performing an Extract Method refd
more than the mere existence of the

Permission to make digital or hard copi
personal or elassroom use is granted witl
not made or distributed for profit or

copies bear this notice and the full cit)
otherwise, or republish, to post on se|

requires prior specific permission and/or
JCSE'08, May 10-18, 2008, Leipzig, G
Copyright 2008 ACM 978-1-60558-07

Emerson Murphy-Hill and Andrew P. Black
sk jmanns i

Why We Refactor? Confessions of GitHub Contributors

Danilo Silva

Universidade Federg
Minas Gerais, Braj
danilofs@dcc.ufm|
Are Refactorings to Blame? An Empirical Study of

ABSTRACT Refactorings in Merge Conflicts
Refactoring is a widespread practi Mehran Mahmoudi Sarsh Nadi Nikolaos Tsantalis
to improve the maintainability and University of Alberta University of Alberta o i Unniversity
However, there is a limited numbq Edmonton, AB, Canada Edmonton, AB, Canad: Montreal, QC, Canada
investigating the actual motivatio @ ca . w santalis@cse concordia.ca

toring operations applied by devel
we monitored Java projects hosted
cently applied refactorings, and as
plain the reasons behind their decis
By applying thematic analysis on
we compiled a catalogue of 44 dis
well-known refactoring types. We f
tivity is mainly driven by ch
much less by code smells.

branches is dealing with me

can be a combersome task as it requires prior

versatile refactoring operation servi
ly, we found evidence that the
opers affects the adoption of autom

CCS Concepts wvariable decla

sSoftware and its engineering |
Maintaining software; Software mal

inccred
the relation between merge conflicts and 15 popular refactoring

in 22% of merge conflicts, which is remarkable taking inio 1inc.
Keywords account that we investigated a relatively small sul

such ax EXTRACT METHOD, lend fo be more problematic for
merge conflicts. Our results also suggest that conflicts that fvolve
refactored code are wsually more complex, compared to conflicts
with no refactoring changes.

Refactoring, software evolution, cod Foo.

1. INTRODUCTION

Refactoring is the process of imy]
isting cod wut changin,
the beginning, the adoption of refac I INTRODUCTION
tered by the ability of refactori;
proposed by Fowler [10]
and describe the mechanics of eacl

50, W

hese of

software development history, have become an essential com- s pol aware

demonstrate its application throu distributed software 11}, additional
They also provide a motivation for
usually associated to the resolution|

mbers who may be working on differe

ample, EXTRACT METHOD is recom

e and complex method or to eli

brunch, or another stable brunch (2).

completed the intended work in 4 given branch

978-1-7281-0591-8/19/$31.00 © 2019 IEEE

Aulhorieed ansed use [ried

types. Our results shorw that refactoring operations are imvalyed <108 decidi which variable declaratio

Whike: branching (or forking where the developer may make For cxample, Dig el al
a tracked copy of the work in a separate repository [3[) refactorings cut across module boundaries and affect many
has several advantages such as allowing betier scparation of parts of the system, they make it harder for VOSs to merge
concems and cnabling parallel development [4], it still comes — the changed code. They proposed refactoring-aware merging,
at the cost of integration challenges [5]. Once a developer has with the argument that if o merging ool understands the
they need refactorings that took place, it may be able to astomatically

to merge their changes with the rest of the tean’s work. At resolve the conflict and save the developer’s time. In the

Abstracs—With the rise of distributed software development, this poinl, merge conflicis may arise, becawse of inconsistent
branching, has become o popular approach that facilitates eol elanges 1o the code, Previous stud
laboration betwee 16% of merge seonarios lead 1 conflicts [6]. Developers have

e 1o resolve such conflicss before proceeding. which wastes their
nges lnconsisteat changes happen 1o the code. Resolving these conflicts time and distracts them from their main tasks 7],

knowledge There are several types of conflicts and various reasons why
about the changes in each of the development branches. A type 5 conffict can occur [7]. Texual conflicts are those that occur
‘when simultaneous changes occur o the same lines in a file,
and are the type of conflicts that popular VC8s such as Gim
detect, For example, one developer may have added a new
Te at line 10 of a given file, while the
wther developer has added another variable declaration bar
at the same line. When GIT tries w merge both changes, it
ould appear at that

of all pos- Another example of why a conflict can occur is shown
sible refactoring types. Furthermare, cortain refactoring types, in Figure 1. lere, Alice moves function foo() from
wva fo FosHelper., java, w
% 4= 2; 0 loo’s implementation in s or
in Foo.java. The figure shows the resulting conflict in
Index Terms—refactoring, git, merge conflict, software evolu- Foo. java, when Bob trics (o merge his code with Al
tion As shown, the resuliing conflict §
the whole function is deleted in one branch, but modified
in the other; the number of conflicting lines reported is also
Version control systems (VCSs), which keep track of the Jarge {the size of the whole lunction foo). Given that Bob
e needs 10 look al Foole lper.,
ponent of modern software development. With the increase ﬂi understand what happencd, he would mistakenly think that
this is a complex conflict that would take him lots of time
wols and processes (o facilitate collaboration between team (o understand and resolve. In reality, the conflict is .ulually
tasks have been simple: Alice moved the funct
introduced. For cxample, large software systems commonly while Bob added an exira picce of code o it. A simple
make use of branching in distributed version control sys- resolution would be to add the extra picce of code to the new
tems. Developers typically follow a branch-based development location of the funclion.
approuch, where new features or bug fixes are developed The above example demonstrates how refactorings may
in separaic branches before being infeprated into the masicr complicate the merging process. There have been a fow siudies
that investigated how to deal with refactorings during merging.
[8] previously argued that since

on (a refacto

151 SANER 2019, Hangzhou, China
. Research Papers

Alternate Refactoring Paths Reveal Usability Problems

Mohsen Vakilian and Ralph E. Johnson

Use, Disuse, and Misuse of Automated Refactorings

Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P Bailey, Ralph E. Johnson

University of Miinois at Urbana-Champaign

have shown that up 1w

Bob adds the line
nal place

n Foo. java shows (hat

java o

The Usability (or Not) of Refactoring Tools

Anna Maria Eilertsen
Department of Informatics
University of Bergen
Bergen, Norway
anna cilertsen@uib.no

Abstract—Although software developers typically have access
to numervus refactoring tools, most developers avoid using these
tools despite their benefits. Researchers have identified many
reasons for the disuse of refactoring tools, including a lack of
awareness by the developers, a lack of predictability of the tools,
and a lack of need for the tools. In this paper, we build on
this earlier work and employ the 1SO 9241-11 definition of
usability to develop a theory of usability for refactoring tools.
We investigate existing refactoring tools using this theory by
ing how 17 developers experience refactoring tools in three
software change tasks we asked them io perform. We analyze
qualitatively the resulting interview transcripts based on our
theory and report on a number of observations that can inform
tool designers interested in improving the usability of refactoring
tools. For instance, we found a desire for developers (o guide how
@ refactoring tool changes the code and a need for refactoring
tools to describe changes made to developers. Refactoring tools
are currently expected to preserve program behavior. These
observations indicate thai it may be necessary to give developers
more conirol over this property, including the ability to relax it,
for the tools to be usable; that is, for the tools to be effective,
efficient and satisfying for the developer to employ

Keywords-automation, tool usability, software evolution

L. INTRODUCTION

During software evolution and maintenance, developers
frequently apply refactaring operations to source code [1], [2]
for the purpose of improving its quality [3] or preparing and
completing functional code changes [4], [5]. Refactoring tools
automate the application of refactoring operations and reduce
development costs by automatically performing code changes
s and error-prone for developers to

As a simple example, a developer may change the name of
a method in order to better represent its functionality. If the
program should behave as before, all references to the method
throughout the program must be updated to use the new
name. This rename refactoring operation, and many others,
such as extracting, moving and inlining program elemes
occur during software change activities [11-[4], [6] and enjoy
utomated support in most mainstream development
ipse [7] and IntelliJ [8].

Developers’ refactoring activities have been studied for over
three decades and much effort has been made 1o automate
refactoring support [9]. While some automated operations, like

exten:

environments, such as E

This work is supported by the Research Council of Norway under grant
number 250683 (Co-Eva).

Gail C. Murphy
Deparmment of Computer Science
University of British Columbia
Vancouver, Canada
murphy@cs.ube.ca

the aforementioned rename, have been readily embraced by
software developers, most refactoring operations are applied
manually (1], [4], [10], [11] and refactoring tools are, in fact,
disused [2)

Empirical studies indicate that developers disuse refactoring
tools that are present in their programming environments—
even when they are aware of them—due 1o usability issues [1],
[2]. [4], [10], [12]. Researchers have proposed various ap-
proaches 1o the reported usability problems [13)-[20]). most
of which are aimed at improving singular usability aspects
such as speed [21], selecting code [12] or choosing the right
refactoring operation [18]-20]. There is no comprehensive
approach to refactoring tool usability nor do we understand
what causes a developer to find a refactoring tool trustworthy
or predictable [22], [23).

In this paper, we seek to provide a framework to help guide
ol designers in creating refactoring tools that
developers choose to use. We derive a theory of the usability
tion II) based on the ISO 9241-
y [24]. This new theory differs fro
ion II) in two ways. First, it conside:
more common context of use of the tools, namely to prepare or
complete functional changes (o a system. Second, it considers
what developers seck as an experience in using the tools,

We then use the newly posited theory to study the use of
refactoring tools by 17 software developers attempting three
functional software change tasks on a non-trivial software
system. As the participating software developers performed
the tasks, we captured their think-aloud [25] descriptions. We
also conducted semi-structured interviews with the participants
after each task and at the end of a study session.

We analyze the transcripts captured from the 32 hours
of study sessions by employing the introduced theory (S
tion IM) and findings from previous studies of
refactoring tools (Section 11). We use a coding approach
to investigate the participants’ comments according to five
usability factors—effectiveness, efficiency, satisfaction, pre-

corings and the perceived
ite of the growing interest
lomated refactorings [17]-
has not received enough
Ir mLerhcex of refactoring

We need 1o understand the

today’s refactoring tools to
tools that fit programmers”

sting of both quantitative
(We studied 26 developers
on their code for a total of
ree months, and collected
th automated refactorings.
on in our guantitative data
rticipants to take a more
behavioral data. Then, we
i human-automation inter-
isuse, and misuse of au-
omated refactorings refers
ted refactorings to perform
lise do manually. Disuse of
nmers’ neglect or underuse
e of automated refactorings

these tools in ways not

ght on how users interact
st, we have found that a
eight method of invoking
cant number of refactoring
cond, we have found sev-
lerutilization of automated
g, trust, pre-
. Third, we
ally continue an automa
ne error or waming. This
in property of automated
feservation. In addition, we

ses of the refactoring tool
proposed alternative ways
sed on the findings of our
G, and V-C).

ut altering its observ-
egrated Development
se, Intelli, NetBeans
ool support
reliable. Nonetheless,
d r

make

torings, mostly
SO [17] defines usabil
b be used by specified
ss, efficiency
thing that
& usability problem.

ng tools with usability

slems, e.g., those that
udy or the ones that
an interview. This is
uate the tool only for
of tasks, and a small

akes. Certain ev
and injuries. Heflect-
b our future strategi
how would they have

r) [23,39] is a general
by analyzing critical
akdown s in-
isly affects the w
ion (HCI) community

a use

stood or

ot well-un
jormation (IPT) to

adaptir
refactoring paths are
lternate (refactoring)
with the ref
h. The primary

ath,

dictability and trust, finding that the participants’ exp
with refactoring tools is dominated by their perceptions of the
predictability of the tools. Next, we perform card sorts [26]
ed with each of these factors:
we organize the comments into groups until meaningful
emerge. A synthesis of the results indicates a need
toring tools 1o better communicate their capabilities

of the comments associ

R I T Rochester Institute of Technology | 9

Recent Refactoring Studies

o8t Ny the Barmers 'l-"'\g Ane st Rete Viw vy Petrs Reves Ivaleet, Podupes
Otbservatons and T oo

= ReFéYoQﬁ f}s are underused -
*-Developer pre @Gd'mtimanual refactoring

-+ -Automated refactoring: la f@v}v’
» No formal refactoring documentatlonll’ e?

RIT

Rochester Institute of Technology | 10

JetBrains IDEA

Lack of trust (10 instances) was the most frequent rea-
son. Some developers do not trust refactoring tools for com-
plex operations that involve code manipulation and only

them for renaming or moving:

“I don’t trust the IDE for things like this, and usually lose
other comments, notation, spacing from adjacent areas.”

“I'd say developers are reluctant to let a tool perform any-
thing but trivial refactorings, such as the ones you picked up

on my commit.”

On the other hand, some developers also think that tool
support is unnecessary in
times the operation may

“Automated refactoring is overkill for moving some private

fields.”

Additionally, developers also mentioned: lack of tool sup-
port for the specific refactoring they were doing (6
not being familiar with refactoring features of the IDE (3 in-
stances), and not realizing they could use refactoring tools
at the moment of the refactoring (2 instances).

5.3 What IDEs developers use for refactoring?
When answering to our emails, 83 developers spontane-
¢ mentioned which IDE they us

ousl;

to

4] T

these answ

s

automatically in these cases.

explicitly

mple cases (8 instances). Some-
wvolve only local changes and is
calling a special operation to do
it is considered unnecessary, as illustrated by this

ent:

ances),

Therefore, we decided
swers, specially because our sty
not dependent on any IDE, and thus differs from previous
studies which are usually based only on Eclipse data [23,
‘able 8 shows the most common IDEs mentioned in
1 the percentage of refactorings performed
39 developers (63%) did not
mention an IDE when answering this question.

= to code smell resolution.
are due to the nature of the examined projects.
examined only three libraries and frameworks, wi

we did not find any instances of the themes encapsulate field
and hide message chain, reported in [36], which are related
We assume these different themes

n this

study we examined 124 projects from various domains in-

smells.

Table 8: IDE popularity

toring opporf
can support other refactoring motivations as well.

We also observe that developers are seriously
ication, when working on a given
refactorings—especially
to achieve this goal, as illustrated by

about avoiding code du
maintenance task. They often us
EXTRACT METHOD
the following comments:
“I need to add a check to both the then- and the else-part of
an if-statement. This resulted in more duplicated code than

IDE Occurrences

Automated %

Editor not mentioned
IntelliJ IDEA 51

139

12%
71%

Eclipse 18
NetBeans 8
Android Studio 4
Text Editor 2

44%
50%
25%

0%

LRAU T MIELIUL 15 LIe

owiss

Y RALIE UL TELICIUL

Sl (ec

It is the refactoring with the most motivations (11 in total).

In comparison to [36], there is an overlap in the reported mo-
:s for EXTRACT METHOD. We found some new
h as improve testability and enable recursion, but

tiv
themes, s

auto
due tc

cluding standalone applications. By comparing to the code
symptoms that initiate refactoring reported in the study by
Kim et al. [17], we found the readability, reuse, testability,
duplication, and dependency motivati

Most of the refactoring motivations we found have the
intention to facilitate or even enable the completion of the
maintenance task that the developer is working on. For in-
stance, extract reusable method, introduce alternative method
signature, and facilitate ertension are among the most fre-
quent motivations, and all of them involve enhancing the
functionality of the system. Therefore
is a key operation to complete other maintenance tasks, such
as adding a feature or fixing a bug. In contrast, only two out
of the 11 motivations we found (decompose method to im-
prove readability and remove duplication) are targeting code
This finding could motivate researchers and tool
builders to design refactoring recommendation systems [35
| that do not focus solely on detecting refac-
es for the sake of code smell resolution, but

n themes in common.

TRACT METHOD

concerned

+ bug fix required
viplication. That
up the replicated

sically performed
, the most com-
ATTRIBUTE, and
nts, so that they
evance.

In a field study
that most refac-
1 our study, in-
IDEs, we found
wmed. However,
nd to use more
IE users. More-
METHOD refac-
3% in our study
mtages of manu-
. we should keep
-efactorings, like
th tool support.
al. [23], where
ned manually

idering also renamings), we detected significantly more
wated refactorings. We
» two reasons. First, automated refactoring tools may
have become more popular and reliable over the last yea

s difference may be

Why We Refactor? Confessions of GitHub Contributors

Danilo Silva
Universidade Federal de
Minas Gerais, Brazil

i Montre
danilofs@dcc.ufmg.br tsantalis@c

ABSTRACT

Refactoring is a wid

spread practice that helps developers
to improve the m v and readability of their code.
However, there is a limited number of sty empirically
investigating the actual motivations behind specific refac-
toring operations applied by developers. To fill this gap,
we monitored Java projects hosted on GitHub to detect re-
centl plied refactorings, and asked the developers to ex-
plain the reasons behind their decision to refactor the code.
By applying thematic analysis on the collected responses,
we compiled a catalogue of 44 distinct motivations for 12
well-known refactoring types. We found that refactoring ac-
tivity is mainly driven by changes in the requ
much less by code smells. EXTRACT METHOD is the most
versatile refactoring operation serving 11 different purposes.
Finally, we found evidence that the IDE used by the devel-
opers affects the adoption of automated refactoring tools

its and

CCS Concepts

eSoftware and its engineering — Software evolution;
Maintaining software; Software maintenance tools;

Keywords

Refactoring, soff’

e evolution, code smells,

1. INTRODUCTION
Refactoring is the process of improving the design of an
existing code base, without changing its behavior [27]. Sinee
the b ing, the adoption of refactoring practices was fos-
tered by the availability of refactoring catalogues, as the one
proposed by Fowler [10]. These catalogues define a name
and describe the mechanics of each refactoring, as well as
demonstrate its application through some code examples.
They also provide a motivation for the refactoring, which is
usually associated to the resolution of a code smell. For
ample, E: AC HOD i8 recommended to decompose
large and complex method or to el ate code duplicat

Nikolaos Tsantalis
Concordia University
Canada
se.concordia.ca mtov@dcc.ufmg.br

Marco Tulio Valente
Universidade Federal de
Minas Gerais, Brazil

As a second example, MOVE METHOD is associated to smells
lik v and Shotgun Surgery [

There is a limited number of studies investigating the real
motivations driving the refactoring practice based on inter-
views and feedback from actual developers. et al. [17
explicitly asked developers “in which situations do you per-
form refactorings?” and recorded 10 code symptoms that
motivate developers to initiate refactoring. Wang [40] inter-
viewed professional software developers about the major fac-
tors that motivate their refactoring act s and recorded
human and social factors affecting the refactoring practice.
However, both studies were based on general-purpose sur-
veys or interviews that were not focusing the discussion on
specific refactoring operations applied by the developers, but
rather on general opinions about the practice of refactoring.
Contribution: To the best of our knowledge, this is the
first study investigating the motivations behind refactoring
based on the actual explanations of developers on specific
refactorings they have recently applied. To fill this gap on
the empirical research in this area, we report a large scale
study centered on 463 refactorings identified in commits
from 124 popular, -based projects hosted on GitHub. In
this study, we asked the developers who actually performed
these refactorings to explain the reasons behind their deci-

on to refactor the code. Next, by applying thematic anal-
categorized t s into different themes
n of this stud, that
we make publicly available' the data collected and the tools
used to enable the replication of our findings and facilitate
future research on refactoring.
Relevance to existing research: The
pirical study are impor

Feature

results of this em-

of refactorings can help researchers and practitioners to
fer rules for the automatic detection of these motivations
when lyzing the commit history of a project. Recent
rescarch cchniques to help in understanding
better the practice of code evolution by identifying frequent
code change patterns from a fine-grained sequence of code

6], isolatin essential changes in commits [13],
and untangling co h bundled changes (e.g.. bug
fix and refactoring) [7]. In addition, we have empirical ev-
idence that developers tend to interleave refactoring with
other types of programming activity [24], i.e., developers
tend to floss refactor. Therefore, knowing the maotivation
behind a refactoring can help us to understand better other
related changes in a commit. In fact, in this study we found

Uhttp:/ faserg-ufmg.git hub.io/why-we-refactor

Silva, Danilo, Nikolaos Tsantalis, and Marco Tulio Valente. "Why we refactor? confessions of GitHub contributors." Proceedings of the 2016 24th acm sigsoft international symposium on

foundations of software engineering. 2016.

RIT

Rochester Institute of Technology | 11

Research Goal

-~

_

How do developers use Intellid to refactor
code?

~

/

R I T Rochester Institute of Technology | 12

Study Design

Participants professional development
experience

>=16 years I 27.8
‘ 11-15 years [20.3

-‘- 6-10 years | I 30.9
- 3-5 years I 16.1
1183 Developers -2 years W 3.7
<tyear W 1

No coding experience | 0.2

0 5 10 15 20 25 30 35

% of Participants

How Code Gets Refactored in Intellid?

RIT
How Code Gets Refactored in Intellid?

Rochester Institute of Technology | 13

Didn't have
Used IDE Used Find Used Copy Edited this
refactoring and Replace and Paste manually scenario

Renaming a
class, method,
variable, or
symbol

46.2% 21.3% 29.8% 0.3%

Extracting a
method or a
variable from
existing code

20.7% 30.4% 33.2% 10.7%

54.7%

38.6% | 12.2% 57.5% 30.8% 4.4%

Moving code to
another file

Rename Extract

Movex

R I T Rochester Institute of Technology | 14

Challenge 2:

technical debt

RIT

Recommendation 2:

IntelliJ IDEA File

»-project = src = org

Project « D =
navajo-project [Navajo]

External Libraries
Scratches and Consoles

Edit

navajo

o

View

commons

Navigate
lang

FieldUtils.java

Code

StringUtils

&

Analyze

IsA

Refactor Build Run Tools VCS Window

Refactor This...

Rename File...
Change Signature...

Move Members...

Copy Class...

Extract

Find and Replace Code Duplicates...

Pull Members Up...
Push Members Down...

Use Interface Where Possible...

Replace Inheritance with Delegation...

Wrap Method Return Value...

Encapsulate Fields...

Replace Constructor with Builder...

Generify...
Migrate...

Help

Navajo

Rochester Institute of Technology

O &8 O © &

G Q-

Git:

JaMaIAISd

uaney 3

| 15

»
R] Rochester Institute of Technolom

Contact me:
mwmvse@rit.edu

Refactoring Practices in the Context of Modern Code Review:

An Industrial Case Study at Xerox
One Thousand and One Stories:

Eman Abdullah AlOmar*, Hussein AlRubaye!, Mohamed Wiem Mkaouer®, Ali Ouni!, Marouane Kessentini® .
! A Large-Scale Survey of Software Refactoring

*Rochester Institute of Technology, Rochester, NY, USA
TXerox Corporation, Rochester, NY, USA
ETS Monireal, University of Quebec, Montreal, QC, Canada
§Unj\-'v:r*s.ity of Michigan, Dearborn, MI, USA
eman.alomar @mail.rit.edu, hussein.alrubaye @ xerox.com, mwmvse@rit.edu, ali.ouni@eltsmitl.ca, marouane @umich.edu

Eman Abdullah AlOmar
Rochester Institute of Technology
Rochester, United States
eman.alomar@mail.rit.edu

Zarina Kurbatova
JetBrains Research
Saint Petersburg, Russia
zarina.kurbatova@jetbrains.com

Yaroslav Golubev
JetBrains Research
Saint Petersburg, Russia
yaroslav.golubev@jetbrains.com

o]) Timofey Bryksin Mohamed Wiem Mkaouer
Abstract—Modern code review is a common and essential definition, is not intended to alter o the system’s behavior, but JetBrains Research Rochester Institute of Technology
practice employed in both industrial and open-source projects o improve ils structure, so its review may differ from other Higher School of Ec . Rochester. United Stat
to improve software quality, share knowledge, and ensure con- 1gher achool ol Lconomics ochester, Lmied states

formance with coding standards. During code review, developers
may inspect and discuss various changes including refactoring
activities hefore merging code changes in the code base. To date,
code review has been extensively studied to explore its general
challenges, best practices and outcomes, and socio-technical
aspects. However, little is known about how refactoring activities
are being reviewed, perceived, and practiced.

This study aims to reveal insights into how reviewers develop
a decision about accepting or rejecting a submitted refactoring
request, and what makes such review challenging. We present an
industrial case study with 24 professional developers at Xerox.
Particularly, we study the motivations, decumentation practices,
challenges, verification, and implications of refactoring activities
during code review.

AlOmar, et al. "Refactorin

modern code review: An ind
In ICSE-SEIP, pp. 348-357. 202

code changes. Yet, there is not much research investigating
how developers review code refactoring. The research on
refactoring has been focused on its automation by identifying
refactoring opportunities in the source code, and recommend-
ing the adequate refactoring operations to perform [6]}-[8].
Moreover, the research on code reviews has been focused on
automating it by recommending the most appropriate reviewer
for a given code change [3]. However, despite the critical role
of refactoring and code review, the innate relationship between
them is still largely unexplored in practice.

The goal of this paper is to understand how developers
review code refactoring, i.e., what criteria developers rely on

PR U TR . D PPV |

Saint Petersburg, Russia
timofey.bryksin@jetbrains.com

ABSTRACT
Despite the availability of refactoring as a feature in popular IDEs,

recent studies revealed that developers are reluctant to use them,
and still prefer the manual refactoring of their code. At JetBrains,
our goal is to fully support refactoring features in Intelli]-based
IDEs and improve their adoption in practice. Therefore, we start by
raising the following main questions. How exactly do people refac-
tor code? What refactorings are the most popular? Why do some
developers tend not to use convenient refactoring tools provided
bv m 2

21.

mwmyse@rit.edu

Stories: A Large-Scale Survey of Software Refactoring. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 11 pages. https:
ffdoi_org/10.1145/ nnnnnnn_nnnnnnn

1 INTRODUCTION

Refactoring [12] is traditionally defined as the process of improving
the internal code structure without altering its external behavior.
Since this practice had been introduced to a wide audience of soft-
ware engineers, it has become a crucial tool to maintain high-quality
software and to reduce its technical debt. Several refactoring types,

et al. "One thousand and one stories: a large-
rvey of software refactoring." In FSE, pp. 1303-

mailto:mwm@se.rit.edu
mailto:%7D@rit.edu

