
It's not you; it's the API!

Automatically avoiding API misuses

sarahnadi.org
@sarahnadi

Sarah Nadi

It will Never Work in Theory — StrangeLoop 2022

@sarahnadi 2

Wants to define OpenAPI definitions

@OpenAPIDefinition(

 info = @Info(

 title = "Custom API title",

 version = "3.14"

)

)

@Path("/hello")

public class ExampleResource {

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 public String hello() {

 return "hello";

 }

}

@sarahnadi 3

Wants to define OpenAPI definitions

@OpenAPIDefinition(

 info = @Info(

 title = "Custom API title",

 version = "3.14"

)

)

@Path("/hello")

public class ExampleResource {

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 public String hello() {

 return "hello";

 }

}

No change reflected
in the open API

spec!

@sarahnadi 4

@OpenAPIDefinition(

 info = @Info(

 title = "Custom API title",

 version = "3.14"

)

)

@Path("/hello")

public class ExampleResource {

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 public String hello() {

 return "hello";

 }

}

@sarahnadi 5

@OpenAPIDefinition(

 info = @Info(

 title = "Custom API title",

 version = "3.14"

)

)

@Path("/hello")

public class ExampleResource

 extends Application{

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 public String hello() {

 return "hello";

 }

}

“Try putting the
annotation on the

JAX-RS Application
class”

@sarahnadi 6

@sarahnadi 7

API Designer

Intentions

API
Documentation

API User

Expectations/

Understanding

@sarahnadi 8

API Designer

Intentions

API
Documentation

API User

Expectations/

Understanding

@sarahnadi 9

API Designer

Intentions API

Documentation

API User

Expectations/

Understanding

@sarahnadi 10

API Designer

Intentions API

Documentation

API User

Expectations/

Understanding

@sarahnadi 11

API Misuses

Incorrect or unexpected behavior because of not properly
using the API

@sarahnadi 12

@sarahnadi 13

Common mistakes/bug patterns

@sarahnadi 14

API
Usage Rules

API Designer/Expert

Common mistakes/bug patterns

@sarahnadi

Can we discover these
API usage rules
automatically?

15

@sarahnadi 16

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

Client

Code

[S. Amann, H. Nguyen, S. Nadi, T. Nguyen, and M. Mezini, MSR ’19]

@sarahnadi 17

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

connectToDB(…)

doSomethingElse(…)

executeQuery(…)

closeDBConnection(…)

connectToDB(…)

executeQuery(…)

doSomethingElse(…)

closeDBConnection(…)

connectToDB(…)

executeQuery(…)

doSomethingElse(…)

connectToDB(…)

executeQuery(…)

doSomethingElse(…)

doSomethingElse(…)

closeDBConnection(…)

API Usages

[S. Amann, H. Nguyen, S. Nadi, T. Nguyen, and M. Mezini, MSR ’19]

Client

Code

@sarahnadi 18

connectToDB(…)

doSomethingElse(…)

executeQuery(…)

closeDBConnection(…)

connectToDB(…)

executeQuery(…)

doSomethingElse(…)

closeDBConnection(…)

connectToDB(…)

executeQuery(…)

doSomethingElse(…)

connectToDB(…)

executeQuery(…)

doSomethingElse(…)

doSomethingElse(…)

closeDBConnection(…)

API Usages

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

connectToDB(…)

executeQuery(…)

closeDBConnection(…)

API Usage
Pattern

[S. Amann, H. Nguyen, S. Nadi, T. Nguyen, and M. Mezini, MSR ’19]

Client

Code

@sarahnadi 19

connectToDB(…)

doSomethingElse(…)

executeQuery(…)

closeDBConnection(…)

connectToDB(…)

executeQuery(…)

doSomethingElse(…)

closeDBConnection(…)

connectToDB(…)

executeQuery(…)

doSomethingElse(…)

connectToDB(…)

executeQuery(…)

doSomethingElse(…)

doSomethingElse(…)

closeDBConnection(…)

API Usages

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

1: if (file != null) {
2: try {
3: FileInputStream fis =
4: new FileInputStream(file);
5: return fis.read();
6: } catch (FileNotFoundException e) {
7: handle(“missing file”);
8: }
9: }

connectToDB(…)

executeQuery(…)

closeDBConnection(…)

API Usage
Pattern

[S. Amann, H. Nguyen, S. Nadi, T. Nguyen, and M. Mezini, MSR ’19]

Client

Code

@sarahnadi 20

Recall

(% we can detect)

Known API Misuses

Precision

(% of what we report is

correct)

[S. Amann, H. Nguyen, S. Nadi, T. Nguyen, and M. Mezini, MSR ’19]

@sarahnadi 21

Recall

(% we can detect)

Known API Misuses

42%

Precision

(% of what we report is

correct)

34%

[S. Amann, H. Nguyen, S. Nadi, T. Nguyen, and M. Mezini, MSR ’19]

@sarahnadi 22

Writing API Usage Rules

@sarahnadi 23

+

Make it easier for the API designer to make expectations
explicit/checkable

Make it easier for API users to know when they have

made mistakes

[B. Nuryyev., A. K. Jha, S. Nadi, Y.K Chang, E. Jiang, & V. Sundaresan, ICSME ’22]

[M. Gulami, A. K. Jha, S. Nadi, K. Ali, Y.K Chang, & E. Jiang, CASCON ’22]

Writing API Usage Rules

@sarahnadi 24

Client

code

Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
cipher.doFinal(inputMsg);Cipher cipher = Cipher.getInstance("AES");

cipher.init(Cipher.ENCRYPT_MODE, secretKey);
cipher.doFinal(inputMsg);Cipher cipher = Cipher.getInstance("AES");

cipher.init(Cipher.ENCRYPT_MODE, secretKey);
cipher.doFinal(inputMsg);

API Usage Patterns

(Candidate rules)

Pattern Miner

@sarahnadi 25

Client

code

Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
cipher.doFinal(inputMsg);Cipher cipher = Cipher.getInstance("AES");

cipher.init(Cipher.ENCRYPT_MODE, secretKey);
cipher.doFinal(inputMsg);Cipher cipher = Cipher.getInstance("AES");

cipher.init(Cipher.ENCRYPT_MODE, secretKey);
cipher.doFinal(inputMsg);

API Usage Patterns

(Candidate rules)

Pattern Miner

Rule Validation ToolAPI Designer

Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
cipher.doFinal(inputMsg);Cipher cipher = Cipher.getInstance("AES");

cipher.init(Cipher.ENCRYPT_MODE, secretKey);
cipher.doFinal(inputMsg);Cipher cipher = Cipher.getInstance("AES");

cipher.init(Cipher.ENCRYPT_MODE, secretKey);
cipher.doFinal(inputMsg);

API Usage rules

@sarahnadi 26

Rule Validation ToolAPI Designer

Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
cipher.doFinal(inputMsg);Cipher cipher = Cipher.getInstance("AES");

cipher.init(Cipher.ENCRYPT_MODE, secretKey);
cipher.doFinal(inputMsg);Cipher cipher = Cipher.getInstance("AES");

cipher.init(Cipher.ENCRYPT_MODE, secretKey);
cipher.doFinal(inputMsg);

API Usage rules

Code Checker

Dev code

API User

@sarahnadi 27

API Designer

@sarahnadi 27

API Designer

@sarahnadi 28

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

1 $ mvn violation-detector: scan
2 [WARN] For rule: QueryGraphQLAPIRule
3 [WARN] class with function with annotation �Query� \
4 [WARN] must have annotation �GraphQLApi�
5 [WARN] Class FooBar is missing the following element(s):
6 [WARN] [@org.eclipse.microprofile.graphql.GraphQLApi]
7 [WARN] Location: (line 22, col 1) - (line 77, col 1)

Figure 7: A sample report generated by our misuse detector.

RQ1. Is the rule speci�cation DSL in RVT expressive enough for
specifying rules? We adopt RulePad with some extensions as our
DSL of choice for encoding rules. There is a possibility that an API
expert might want to specify a constraint that cannot be expressed
using RulePad. Thus, wewant to know how expressive our extended
RulePad DSL is for authoring annotation-based API usage rules.

RQ2. Is RVT useful for the modi�cation and validation of mined
rules? The key concept in our proposed pipeline is having a human
in the loop. Thus, we want to know if RVT makes it easy for experts
to author and validate the mined rules.

RQ3. Are candidate rules e�ective in alleviating the di�culties of
writing API usage rules from scratch? We want to understand if the
mined candidate rules provide good starting points for API experts
when authoring rules. Overall, we want to determine if the idea of
having mined rules as a starting point is useful to API experts.

4.1 Experiment Setup
The experiment is an online, 90-minute Zoom session where ex-
perts use RVT to validate the presented candidate rules. We audio
and video record the session, with participants’ consent and after
our university’s ethics clearance, for post-analysis purposes. The
experiment is divided into three parts that we describe below.

4.1.1 Tutorial and setup. At the beginning of the experiment (up
to 30 minutes), experts go through a tutorial that we prepared to
get familiar with RVT and the DSL that we use to present rules (i.e.,
extended RulePad).

4.1.2 Live experiment. After participants get familiar with RVT,
we proceed to the main experiment task, where API experts validate
candidate rules encoded in the RulePadDSL. For each candidate rule,
we �rst ask the participants to rate it in terms of understandability
of the presented rule on a scale of 1 to 3 (1-hard to understand,
2-neither hard nor easy to understand, 3-easy to understand). This
task enables us to quantify how easy it is for API experts to under-
stand a given rule and contributes to the evaluation of RQ1. After
getting familiar with the presented rule, participants proceed to
validate it. Participants are allowed to use online resources such as
documentation and online discussion forums, if needed. To validate
a rule, participants can (1) con�rm the rule as is, (2) con�rm the rule
with changes, or (3) reject the rule. During this validation process,
we employ the think-aloud protocol [45] where we ask participants
to verbally share the reasoning behind their decisions. For example,
when a participant rejects a candidate rule, we ask them to share
the reasons that led them to this decision. This feedback can help
us improve the mining process.

4.1.3 Exit survey. At the end of the session, we ask participants
three rating-based (RB) and three open-ended (OE) questions. For

Table 1: Number of candidate rules mined for each MicroPro-
�le speci�cation [12]. One rule belongs to both GraphQL and
OpenAPI speci�cations, hence the total is 23, not 24.

MicroPro�le Speci�cation # mined rules # con�rmed rules

Con�g 1 0
GraphQL 3 N/A
Health 3 3
JWT-Auth 2 N/A
Metrics 4 3
OpenAPI 6 2
REST Client 3 N/A
Reactive Messaging 2 2

Total 23 10

the rating-based questions, participants can also provide verbal
explanations for their ratings. We ask the following questions:
RB1: For rule authoring, having an existing candidate rule as a

starting point is easier than writing a rule from scratch
(strongly disagree, disagree, neither agree nor disagree,
agree, strongly agree). This question addresses RQ3.

RB2: Having a dedicated tool for rule validation makes it easy
to validate rules (from strongly disagree to strongly agree).
This question addresses RQ2.

RB3: How do you rate the di�culty level of editing rules using
RVT? (very hard to edit, hard to edit, neutral, easy to edit,
very easy to edit). This question addresses RQ2.

OE1: Are there additional code constructs you think need to be
a part of RulePad? This addresses RQ1.

OE2: What types of additional information could have assisted
you in validating the rules? This indirectly addresses RQ2
and enables us to know what other information experts
would �nd helpful.

OE3: Are there any additional rules you can think of that were
not presented? This question does not address a speci�c RQ
but enables us to understand what rules the mining process
cannot discover and what other code relationships need to
be tracked (which may require further RulePad extensions).

Our open-ended questions allow participants to share valuable
feedback with us, which helps us further improve our approach.

4.2 Participant Recruitment
MicroPro�le API experts (i.e., direct contributors to various Micro-
Pro�le speci�cations) are the target population of our study. We
drafted a recruitment email that our industry collaborator sent to
6 MicroPro�le API developers in their company. Our goal was to
recruit at least one expert for each MicroPro�le speci�cation that
we have mined rules for. Table 1 shows how many candidate rules
we mined for each MicroPro�le speci�cation. Three API experts
(P1, P2, P3) agreed to participate in the user study. Before the experi-
ment, for each participant, we collected background information on
which MicroPro�le components they are familiar with and created
a set of candidate rules that contain APIs from these components.
P1, P2, and P3 are MicroPro�le contributors, working in their cur-
rent teams for 4, 6, and 5 years, respectively. P1 is responsible for

6

API User

@sarahnadi 29

API Designer API User

Avoid buggy software by having an
(automated) conversation between

API designers & API users

API

API

@sarahnadi 30

Ajay Kumar JhaBatyr NuryyevMansur Gulami

Sven Amann

Karim Ali

Mira Mezini Hoan Nguyen Hoan Nguyen

Yee-kang Chang Emily Jiang

sarahnadi.org@sarahnadi

Mine Java API usage patterns  
(control & data flow)

Icons used in this presentation by freepik , Flaticon, Eucalyp, and Foursquare from www.flaticon.com. Creative Commons BY 3.0

@ Mine & validate Java annotation
usage patterns +

generate static analysis checks
https://sarahnadi.org/smr/api-misuse/

Automatically avoiding API misuses
Try it yourself!

https://www.flaticon.com/authors/freepik
https://www.flaticon.com/authors/flat-icons
https://www.flaticon.com/free-icons/process
https://www.flaticon.com/free-icons/foursquare-check-in
http://www.flaticon.com
https://sarahnadi.org/smr/api-misuse/

