How Novice Testers
Perceive and Perform Unit Testing

Gina Bai

Assistant Professor of the Practice

\"4

VANDERBILT
School of Engineering

*Images from google.com

Guess:
How much (in USD) does the poor software quality
cost the United States in 20227

$2 41 trllllon

https://www.it-cisq.org/the-cost-of-poor-quality-software-in-th a-2022-report/

“Most of our new grad hires have limited experience
with automated testing, and that's a daily activity at
Google. Every change that you are going to make to
the codebase is going to come with unit tests. That

is the rule”

Titus Winters. “The Gap between Industry and CS Edu.” ITiCSE 2022

Purpose of Testing

“* Level 0 There is no difference between testing and debugging

“+» Level 1 The purpose of testing is to show correctness

[Ammann & Offutt, Introduction to Software Testing (Edition 2)]
[Bai, Smith, Stolee. ITICSE '21]

Purpose of Testing

“* Level 0 There is no difference between testing and debugging

“* Level 1 The purpose of testing is to show correctness

“+ Level 2 The purpose of testing is to show that the software does
not work.

“ Level 3 The purpose of testing is not to prove anything specific,
but to reduce the risk of using the software.

“ Level 4 Testing is a mental discipline that helps all IT professionals
develop higher-quality software.

[Ammann & Offutt, Introduction to Software Testing (Edition 2)]

4

Representative Questions

N
One of my tests failed, is it okay? Should | fix the test to make

it pass? Does the failure indicate a bug in the source code?
Or in my testing code?

J

Amy

| was wondering how many test cases do | need to write? ‘

Do | need to test everything? I've already found one bug -
in the code. When can | stop testing?

[Bai, Smith, Stolee. ITICSE '21] 5

Representative Questions

| found some code examples on StackOverflow, but
it's giving me a compile error, and | don't know how

to fix it. Can | just delete it? Charl
arlie

| found the bug, but | dont know how to show that
in unit tests... Can | just describe it in comments?

Daniel

[Bai, Smith, Stolee. ITICSE '21]

Challenges

» Novices find it challenging to determine what and how to test.

» Novices have no consensus on good unit tests, and hence
» Novices find it challenging to determine when to stop testing,
» Novices tend to only test happy paths.

» Novices often create test cases that mismatch the program
specifications.

» Novices face implementation barriers

[Bai, Smith, Stolee. ITICSE '21]

README.md

Test Case Checklist

Each test case should:

be executable (i.e., it has an @Test annotation and can be run via “Run as JUnit Test")

have at least one assert statement or assert an exception is thrown. Example assert statements include: assertTrue, asse
assertEquals (click for tutorials). For asserting an exception is thrown, there are different approaches: try{...; fail();} catc
e){assertThat...;}, @Test(expected = exception.class) in JUnit 4, or assertThrows in JUnit 5 (click for tutorials).
evaluate/test only one method

Each test case could:

be descriptively named and commented
If there is redundant setup code in multiple test cases, extract it into a common method (e.g., using @Before)

If there are too many assert statements in a single test case (e.g., more than 5), you might split it up so each test evaluate
behavior.

Test Suite Checklist

The test suite should:

have at least one test for each requirement
appropriately use the setup and teardown code (e.g., @Before, which runs before each @Test)
contain a fault-revealing test for each bug in the code (i.e., a test that fails)
For each requirement, contain test cases for:
Valid inputs
Boundary cases
Invalid inputs
Expected exceptions

To improve the test suite, you could:

measure code coverage using an appropriate tool, such as EclEmma (installation, tutorial). Inspect uncovered code and w
appropriate.

[Bai, Presler-Marshall, Price, Stolee.
ITICSE '22]

Testing
Checklist

v' Static
v Lightweight
v" Transferable

README.md

Test Case Checklist

Each test case should:

be executable (i.e., it has an @Test annotation and can be run via “Run as JUnit Test")

have at least one assert statement or assert an exception is thrown. Example assert statements include: assertTrue, asse
assertEquals (click for tutorials). For asserting an exception is thrown, there are different approaches: try{...; fail();} catc
e){assertThat...;}, @Test(expected = exception.class) in JUnit 4, or assertThrows in JUnit 5 (click for tutorials).

Syntax and tutorials

evaluate/test only one method

Each test case could:

be descriptively named and commented
If there is redundant setup code in multiple test cases, extract it into a common method (e.g., using @Before)

If there are too many assert statements in a single test case (e.g., more than 5), you might split it up so each test evaluate
behavior.

Test Suite Checklist

The test suite should:
have at least one test for each requirement TeSt Class Com Ponents

appropriately use the setup and teardown code (e.g., @Before, which runs before each @Test)
contain a fault-revealing test for each bug in the code (i.e., a test that fails)
For each requirement, contain test cases for:

Valid inputs
Boundary cases Equivalence Class Partitioning
invalid inputs Boundary Value Analysis

Expected exceptions

To improve the test suite, you could:

measure code coverage using an appropriate tool, such as EclEmma (installation, tutorial). Inspect uncovered code and w
appropriate.

[Bai, Presler-Marshall, Price, Stolee.
ITICSE '22]

Testing
Checklist

Contains
v Testing strategies
v Tutorial information

‘= README.md

Test Case Checklist
Each test case should: Syntax Errors [Bai, Presler-Marshall, Price, Stolee.
be executable (i.e., it has an @Test annotation and can be run via “Run as JUnit Test") ITi CS E '2 2]

have at least one assert statement or assert an exception is thrown. Example assert statements include: assertTrue, asse
assertEquals (click for tutorials). For asserting an exception is thrown, there are different approaches: try{...; fail();} catc
e){assertThat...;}, @Test(expected = exception.class) in JUnit 4, or assertThrows in JUnit 5 (click for tutorials).

evaluate/test only one method No Assertions

Each test case could:

Bad Naming

be descriptively named and commented

If there is redundant setup code in multiple test cases, extract it into a common method (e.g., using @Before)

o
If there are too many assert statements in a single test case (e.g., more than 5), you might split it up so each test evaluate e st I n
behavior. Assertion Roulette I g
Test Suite Checklist CI CI I ist

The test suite should: .
Poor Requirement Coverage

have at least one test for each requirement

appropriately use the setup and teardown code (e.g., @Before, which runs before each @Test)

contain a fault-revealing test for each bug in the code (i.e., a test that fails)

For each requirement, contain test cases for: MiSinte rp I"etation Of Failing TeStS Ad d resses

Valid inputs

Boundary cases Testing Happy Path Only v Common mistakes

Invalid inputs

Expected exceptions \/ Co mms O n teSt s m e I IS

To improve the test suite, you could:

measure code coverage using an appropriate tool, such as EclEmma (installation, tutorial). Inspect uncovered code and w
appropriate.

Effectiveness

% Our study shows that...

“ The lightweight testing checklist is at least as effective as a
coverage tool, e.g., EclEmma, for writing quality tests.

“* Novices who have lower prior knowledge of unit testing may
benefit more from the checklist

[Bai, Presler-Marshall, Price, Stolee. ITiCSE '22]

Takeaways

“* Most novices see no difference between testing and debugging,
and many of them believe the goal of testing is to show correctness.

“* Novices face various challenges when performing testing.

“* The tool support does not need to be sophisticated to be effective.

