It Will Never Work in Theory
April 2023 Lightning Talks

Programming Strategically

Thomas LaToza

https://cs.gmu.edu/~tlatoza/

@ThomasLaToza @ThomasLaToza@hci.social

V Developer Experience Design Laboratory

mailto:ThomasLaToza@hci.social

The way the game is supposed to work is that the snake moves up, down, left, and right
(using the keyboard). Every time the snake eats a dot, it grows in length by one. If the snake

collides with itself, the game is over.

As you'll see when you play the game, the snake does not move up, down, left, and right. It
just seems to move diagonally, and when you press the arrow keys in certain directions, the

game ends.

Find an event immediately before the incorrect behavior
Trace control forwards, observing each statement until something incorrect happens

Find the statement that generated the incorrect output
Keep following the data used backwards until you find something that's wrong

guess and check
backwards search
forwards search
read the docs
check StackOverflow
ask a coworker

draw a whiteboard diagram

guess and check
backwards search
forwards search
read the docs
check StackOverflow
ask a coworker

draw a whiteboard diagram

programming strategy a procedure for
accomplishing a programming task

Thomas D. LaToza, Maryam Arab, Dastyni Loksa, and Amy J. Ko. (2020).
Explicit programming strategies. Empirical Software Engineering (ESE),
25, 2416-2449.

By Nandhp - Generated by the attached program, which was originally written by en:User:Cyp, who attached it to the image description page for an image generated by it on en.wikipedia. The image
was licensed under CC-BY-SA-3.0/GFDL., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6916582

Herbert A. Simon. (1969). The Sciences of the Artificial. MIT Press.

10

programming strategy a procedure for
accomplishing a programming task

Thomas D. LaToza, Maryam Arab, Dastyni Loksa, and Amy J. Ko. (2020).
Explicit programming strategies. Empirical Software Engineering (ESE),
25, 2416-2449.

11

Developers work more systematically and efficiently when given effective
explicit programming strategies

“Strategies determine success more than does the programmer’s
available knowledge”

“Experts seem to acquire a collection of strategies for performing
programming tasks.”

David J. Gilmore. Expert programming knowledge: A strategic approach. In Psychology of Programming,.
Elsevier, 223-234.

Amy J. Ko, Thomas D. LaToza, Stephen Hull, Ellen A. Ko, William Kwok, Jane Quichocho, Harshitha

Akkaraju, and Rishin Pandit. 2019. Teaching Explicit Programming Strategies to Adolescents. In Technical
Symposium on Computer Science Education (SIGCSE '19),469-475.

Thomas D. LaToza, Maryam Arab, Dastyni Loksa, and Amy J. Ko. (2020). Explicit programming
strategies. Empirical Software Engineering (ESE), 25, 2416-2449.

12

A

better CSS
debugging strategy

13

Q: Was function F’s implementation the ideal design, a hack, or accidental?

Strategy for answering:

1. Begin procedure RetrieveRationaleFromCode
a. Initialize an empty set of rationales R
b. For each comment in the function:
I. If the comment provides information about the rationale for the
implementation
1. Add the rationale to R
c. If Ris non-empty
I. Synthesize the rationales in R into an answer to the question.
ii. If you successfully synthesized the rationales
1. Stop, you have an answer.
d. This strategy failed. Begin procedure RetrieveRationaleFromDevelopers
2. Begin procedure RetrieveRationaleFromDevelopers

a. Initialize an empty set of developers D

b. Use version control (e.g., git blame) to identify the developers in the entire
history of the function who wrote or modified code, adding each developer to D

c. Use your organization’s default communication channels (e.g., email, IRC,
Slack), writing a message to everyone in D asking Q

d. Wait until:

i. Someone in D responds with the answer, then stop, or
ii. Allin D respond without the answer, or
iii. You cannot wait any longer.
e. This strategy failed. Begin procedure InferRationaleFromCode.
3. Begin procedure InferRationaleFromCode

a. Fully comprehend the behavior of F at the level of computation

b. Infer the intraprocedural intent of F, understanding how F interacts with all of
the functions that call it and all of the functions that it calls.

c. Using the intraprocedural intent of F, infer the possible architectural intents of
F.

d. Estimate the likelihood of each possible architectural intents of F. Which intent
is most likely given the intents of the intraprocedural intent of F and the
architectural intent of the software?

e. Select the intent with the highest likelihood, and stop.

f. If you were unable to infer intents, this strategy failed.

14

(O Not Secure | programmingstrategies.org/StrategyTracker/Stra... » @ (4

Elms payment ¢ LeetCode [B] Lexerand Parser [ESEC/FSE2018 @ &M MIT Algorithms

W 1: Project

ure

.

.

7: Struc

E] npm

¥ 2: Favorites

g G (— WWW W G It: @ }’
student-platform Src Components Strategy StrategyHandler . StrategyHandler.js
StrategyHandler.js csy Layou.module.css s Layout,s wo index.htm
this.setStatel 1

strategyld: response.data,
status: “saved"”
})
localStorage.clear();
}).catch(error => {
console. (error);

});

updateKnowledge = (array) => {
let uniqueltems = new Set(
array. fort ((item) => {
uniqueltems.add(item.toLowerCase())

1),

this.setState({
requiredKnowledge: Array.from(uniqueltems)
)
localStorage.setltem("new_requiredKnowledge", JSON.s

updateTools = async (array) => {
let uniqueltems = new Set();
let yrmattedA [ools = {}

Object.values(this.state.allTools).forEach((item) => {
‘ ttedAllTools [item. toLowerCase()] = item;
})

for (let i = 0; < array.length; i++) {
let item = array(i]
let key = item.tolLowerCase()

if (formattedAllTools[key]) {
iniqueltems.add(formattedAl1lTools [key])
} else {
let success = true
try {

Match Case

fy(Array. from(un

await avine nnctl "/dataMananamant /tarhnnl nniac”

StrategyHandier retrieveFromLocalstorage() updates requiredKnowledge

WebStorm 2019.3.5 available: // Update... (yesterday 10:07 PM)

6: TODO ' 9: Version Control W& TypeScript 3.7.2 A Terminal

Event Log

UTF-8 4 spaces Git: branchi

STRATEGY :: strategy IDENTIFIER (IDENTIFIER+) STATEMENTS
STATEMENTS :: STATEMENT+

STATEMENT :: * (ACTION | CALL | CONDITIONAL | FOREACH | ASSIGNMENT | RETURN)+
ACTION :: (word | IDENTIFIER)+ .

CALL :: do identifier (IDENTIFIER™)

CONDITIONAL :: if QUERY STATEMENTS

FOREACH :: for each IDENTIFIER in identifier STATEMENTS
UNTIL :: until QUERY STATEMENTS

ASSIGNMENT :: set IDENTIFIER to QUERY

RETURN :: return QUERY

QUERY :: (word | IDENTIFIER | CALL)+

IDENTIFIER :: ' identifier '

16

ASSIGNMENT :: set IDENTIFIER to QUERY

SET 'conflictedFiles' TO the project files that

have a conflict
Variables

Please separate multiple inputs with a comma

_ _ Layout.js
conflictedFiles

FOREACH :: for each IDENTIFIER in
identifier STATEMENTS

FOR EACH 'file' IN 'conflictedFiles'

17

CoJoaoaudswWwbh K

=
B W= o

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

HHHFHHFHFRHFTHRHFHRHFHRHRR

If you've spent a lot of time debugging unfamiliar code, the way that you probably debug is
to first look at the failure, then look at the code to understand how it's architected, and
then look for possible reasons for why the program failed. Once you have a guess, you
probably then check it with things like breakpoints and logging. This strategy often works
if you can have a lot of prior experience with debugging and inspecting program state. But
if you don't have that experience, or you happen to guess wrong, this approach can lead to
a lot of dead ends.

The strategy you're about to use is different. Instead of guessing and checking, this
strategy involves systematically working backwards from the code that directly caused the
failed output to all of the code that caused that failed output to occur. As you work
backwards, you'll check each statement for defects. If you work backwards like this,
following the chain of causality from failure to cause, you will almost certainly find the
bug.

STRATEGY debug()

This first step will give you enough familiarity to find lines in the program that create
the program's output. Read the names of all of the functions and variables in the program
Some programs produce command line output with print statements.
Is the faulty output you're investigating printed to a command line?
IF the faulty output is logged to a command line
To find print statements, try searching for keywords related to 'log' or 'print'
SET outputLines TO the line numbers of calls to console logging functions
Graphical output includes things like colored lines and rectangles
IF the faulty output is graphical output
To find these lines, try searching for keywords related to graphical output, like
draw' or 'fill'. Focus on lines that directly render something, not on higher-level
functions that indirectly call rendering functions.
SET outputLines TO the line numbers of function calls that directly render graphics to
the screen
Now that you have some lines that could have directly produced the faulty output, you're
going to check each line, see if it executed, and then find the cause of it executing. If
you're lucky, you only have one output line to check.
FOR EACH 'line' IN 'outputLines'
First, let's make sure the line executed. You want to be sure that this is actually the

18

Strategy: Design task
Self-guided Guided

Found and used example code as a template for 4/14 (29%) 0/14 (0%)
Template implementation.
Decompose Analyzed. functlonallreqwrem.ents for sub-problems, 9/14 (64%) 0/14 (0%)
implementing each independently
DD Translated functional requirements into test cases, identifying 214 (14%) 11/14 (79%)

sub-problems from test case requirements.

Strategy: Debugging task
Self-guided Guided

Participants found suspicious lines of code, modifying them 4/14 (29%) 0/14 (0%)
Guess & check and checking the effects of their modification.

Participants identified where the program began processing

Forward search input, following its execution forward 9/14 (64%) 0/14 (0%)
Participants identified faulty output and worked backwards

0] o)
through control and data flow dependencies 2/14 (14%) 11714 (719%)

Backward search

Thomas D. LaToza, Maryam Arab, Dastyni Loksa, and Amy J. Ko. (2020). Explicit programming
strateqgies. Empirical Software Engineering (ESE), 25, 2416-2449. 19

Design task

1.30 times more likely to make more progress

p < 0.023%

Debugging task

1.96 times more likely to make more progress

p < 0.004*

Thomas D. LaToza, Maryam Arab, Dastyni Loksa, and Amy J. Ko. (2020). Explicit programming
strateqgies. Empirical Software Engineering (ESE), 25, 2416-2449.

20

are programming strategies tacit?

21

STRATEGY FixCss(buggedElement)
You can use filter input to search for it
Or you can scroll through the styles manually
Search through the stylings to find where it gets its
undesired value
SET 'undesiredStyling' TO the line number and css file found
in the search
IF 'undesiredStyling' is not found
You will find all stylings applied to the element here
Once you found the stylings you were looking for
You can click small arrow to jump to the place it gets its
value
Click on Computed tab and use filter to search
SET 'undesiredStyling' TO line number found here
SET 'perfectStyleList' TO an empty list of css properties
UNTIL buggedElement has desired styling

you can add or change different css styles to the element

it then applies instantly to element stylings
Use element.Style to apply css to buggedElement
add the style proptery to 'perfectStylelList'
DO ApplyCssToElement(buggedElement, 'perfectStylelList')

STRATEGY ApplyCssToElement(element, style)
Css rules are cascading. The one with most priority applies
This is how priority gets evaluated
limportant | style="" | id selector | class attribute, psudo
class selector | type selector and psudo element
For easy explanation: use this url: http://gnimate.com/dive-
into-css-specificity/
Also if there are two css files having the same selector, the
file placed last in order is evaluated
IF style has to be applied to only this element
e.g. choose last css file in order, use id selector and so on
Use strongest selector, apply style to element
RETURN nothing
IF style has to be applied on many elements

use class selector, apply style to element
RETURN nothing

Maryam Arab, Thomas D. LaToza, Jenny Liang, Amy J. Ko. (2022). An exploratory study of sharing
strategic programming knowledge. Conference on Human Factors in Computing Systems (CHI), 1-15.

22

* Strategy-related
* Generality
* Ambiguity
* Imprecise steps
* Required tool use

* Mismatch between the level of knowledge assumed by the strategy
and possessed by the user

Maryam Arab, Thomas D. LaToza, Jenny Liang, Amy J. Ko. (2022). An exploratory study of sharing
strategic programming knowledge. Conference on Human Factors in Computing Systems (CHI), 1-15.

23

24

code interacting with framework

search online forum create diagrams
likelihood
(odds ratio) 3 - 84 O . 5 1
(3.84x more likely) (0.51x less likely)

Cassandra Bailey. The Impact of Affect, Scenario and Task Characteristics on
Developer Decision-Making. (2020). Masters Thesis, George Mason University.

25

feeling stressed / nervous (LVHA)

add print statements read surrounding code
likelihood
(odds ratio) 2 . 42 O . 1 7
(2.42x more likely) (0.17x less likely)

Cassandra Bailey. The Impact of Affect, Scenario and Task Characteristics on
Developer Decision-Making. (2020). Masters Thesis, George Mason University.

20

feeling sad / depressed (LVLA)

experiment with edits

(0 ratc 0.09

(0.09x less likely)

Cassandra Bailey. The Impact of Affect, Scenario and Task Characteristics on
Developer Decision-Making. (2020). Masters Thesis, George Mason University.

27

feeling excited / enthusiastic (HVHA)

ask for help from a colleague

s 2.13

(2.13x more likely)

Cassandra Bailey. The Impact of Affect, Scenario and Task Characteristics on
Developer Decision-Making. (2020). Masters Thesis, George Mason University.

28

Takeaways

be more effective with

metacognition be aware of your problem solving process

30

be more effective with

self-regulation monitor progress and use of time

(Robillard et al. 2004; Falkner et al. 2014)

31

e more effective wi

better strategies

table of contents

BlJed!ive SOFTWARBDIEVIELDIPMENT SERIES Wy

MANITESTO. ..o, 6-F A e o P et P
@ first steps A ® simplify (@

preserve the crime scen€..... 9 write a tiny program.........c..ccoueeeee. 38 e

read the error message.............. 10 one thing at & time.......ccoccivrne. 39

reread the error message............ 11 fidy up Your code.......ooiii 40 e C Z ve

reproduce the bug.....oovivii 12 delete the buaay code.. ... Y1

inspect unreproducible bugs..........13 redvuce randomness.......covvveeeeeeievecir e 42

identify one small question...........14

DEBUGGING

retrace the code's steps................. 15
write a failing test ... 16 ® get unstuck ®-©
. aKE G DreaK mmmmnmomemsereenesserss s WM 66 Specific Ways to Debug Software and Systems
@961’ organized @ : : : :

investigate the bug fogether. ... 45

brainstorm some suspects............. 18) L
timebox your investigation............... 46

rule things out.....cooiciiicciicnn. 19 ‘)
write o message asking for help... 47

keep a log book.......co.covriiriiiis 20
explain the bug out lovd. ... 48

L LAV TV, -1 T—— 21

make sure your code is running......49

do the annoying thing .o 50O

(3 investigate '©

add lots of print statements....23 W10101001010101
use a debugger 24 @improve your toolkit % 11100101010010101¢
jump info & REPL.........o... 25 try out @ new 100l 52 Rt
find o version that works.. ... 26 types of debugging tools................... 53 018;5"&0'3
look at recent changes. 27 shorten your feedback loop........... sy UOOIO 06'0’ :
................... o 010101001010
add assertions everywhere........... 28 add pretty prinfing.....cccovveeriricinnnns 55 00
comment out code......cccoocervirnnnnn. 29 colours, graphs, and sounds............ 56
analyze the logs. ..o, 30
St l' t t ® after it's fixed ‘a?
e ar s ra eg 'es @ research do & VIictOry 1P 58
f - k - B read the docS...iecnriiceciiees 32 fell o £ d what \earned 54 . e« |- . “.
ell a friend whal you learned.........
or sticky situations fnd et of by 5 s Diomidis Spinellis
find related . T RRR——— 60
learn one small thing........cocee. 3y a ; ¢
add o comment ...,
read the library’s code....nnnace 35 " 1
document your ques+ 62

find a new source of info....... 36

be more effective with

sharing strategies

WHOW WHOW
==.T°2" Home Search Request Strategy New Strategy Roboto Tutorial About Us Report a problem ‘ ==m, Home Search Request Strategy =~ New Strategy =~ Roboto Tutorial ~ About Us Report a problem
EEEn EEEn

Debugging HTML in Chrome
Strategies for How do | debug frontend web Ul code? By Amy J. Ko

The main approach to this strategy is to use the Chrome inspector to try to understand how the browser interpreted your HTML, then use that
to infer the problem in your HTML.

ARequest for your desired strategy at any point if you have difficulties performing some actions described in the steps.

Debugging HTML in Chrome Technologies Our team is ready to help you with your desired problem solutions in the form of strategies.

Strategy Category: debug

Technology: HTML Chrome Inspector

| would like to debug code bugs that occur on web browser Uls.

written by Amy J. Ko HTML Chrome Inspector

' _ . Experiences
The main approach to this strategy is to use the Chrome inspector to try to understand how the browser

interpreted your HTML, then use that to infer the problem in your HTML. @ Click ‘Start Strategy' button to try using the strategy.
HOW to debug CSS to fix a Visual defect Technologies @ Read the strategy, and click on lines to keep track of where you're at. Use Keyboard 4 or < to move up and down each line.
@ Add comments or questions for the statements that you don't understand, have questions about, need more description, and any other
written by Maryam Arab Css kinds of comments by # on each line.
Experiences

This strategy helps developers fix the issue of an element with an undesired visual/position style.

fast Clear Strategy DebugHTMLWithChrome <[> Take Notes:

Please use this area to take note.

(Unfortunately, this note will not be

SET expectation TO what you expected to see D sorsd)

Debug HTML Technologies 1 Write down what you expected
2 SET reality TO what you see in the browser

written by Rob Thompson Web browser Code editor

))) Experiences 3 Right click on the element on the web page you did not expect
Isolate where and why there might be an issue in your HTML code.

4 Choose the inspect menu item

S Inspect the structure of the selected element
Debug CSS Technologies © Inspect the tag that contains the selected element

written by Rob Thompson Code editor Web browser 7 Inspect the tags before and after the selected element

Experiences
8 IF the structure you see don't match the structure you wrote

Look for an HTML syntax error such as a missing or malformed angle

. . : 9 bracket
Debugging JavaScript Technologies
JavaScriot Web b RETURN Ask a peer or TA or instructor to see if they notice a problem /%
: avascri eD browser
written by Rob Thompson g 10 that explains thep problem

Code editor

r | r |
Brows'e SesovsIicos Add General Comment
Experiences

Identify the problem and isolate it using print commands and debugging tools.

be aware of impact of how you feel

feeling stressed / nervous (LVHA)
feeling sad / depressed (LVLA)

feeling excited / enthusiastic (HVHA)

34

participate in a programming strategies mentoring session

email tlatoza@gmu.edu

35

mailto:tlatoza@gmu.edu

Thomas LaToza

tlatoza@gmu.edu
https://cs.gmu.edu/~tlatoza/

Programming Strategically

@ThomasLaToza @ThomasLaToza@hci.social

metacognition be aware of your problem solving process

self-regulation monitor progress and use of time

BBffeE:ive SOoFTWAREBYDIEVIELOPMENT SERIES v

Scott Meyers, Consulting Editor

_ A Stuck on a programming . .

| t problem? e —

A ec Z/l}e We'll help you get unstuck. p——
When peogramming, you use a strategy. Maybe It's not the best one.

d better st

DEBUGGING

66 Specific Ways to Debug Software and Systems

HowToo helps you find better]
strategies. 9

52
https://howtoo.herokuapp.com/

better strategies

Stellar strategies ”
for sticky situations

1)
o R Rot b
Lo
Strategies for How do | debug frontend web Ul code?
1 Would ke to debug code bugs that occur on web browser s e
a inthe steps.
Debugging HTML in Chrome o our dsired problem sou i s
u [S
o this sirategy s to use the Ch clor o try to understand how the browser
inter n use that to infer the probler TML. N N
How to debug CSS to fix a visual defect " Kebourd or 5 moveup snddown
written by Maryam Arab css s of o
This strategy helps developers fx the issue of an element with an undesired visualjpostion syle. ;, m:s Strategy DebuGHTMLWIthChrome [e
sex -
Debug HTML R
B
veb page you aia not. expect
B
s

Debug CSS

wiitten by Rob Thompson

Debugging Javascript
ton by Rob Thompson
Identif the problem and isolte it using print commands and debugging tools

affect be aware of impact of how you feel

mailto:ThomasLaToza@hci.social

