
It Will Never Work in Theory

http://neverworkintheory.org

June 13, 2023

References

[2101.00756] Brittany Reid, Marcelo d’Amorim, Markus Wagner, and
Christoph Treude. NCQ: Code reuse support for node.js developers, 2021.
Abstract: Code reuse is an important part of software development. The
adoption of code reuse practices is especially common among Node.js devel-
opers. The Node.js package manager, NPM, indexes over 1 Million packages
and developers often seek out packages to solve programming tasks. Due to
the vast number of packages, selecting the right package is difficult and time
consuming. With the goal of improving productivity of developers that heav-
ily reuse code through third-party packages, we present Node Code Query
(NCQ), a Read-Eval-Print-Loop environment that allows developers to 1)
search for NPM packages using natural language queries, 2) search for code
snippets related to those packages, 3) automatically correct errors in these
code snippets, 4) quickly setup new environments for testing those snippets,
and 5) transition between search and editing modes. In two user studies with
a total of 20 participants, we find that participants begin programming faster
and conclude tasks faster with NCQ than with baseline approaches, and that
they like, among other features, the search for code snippets and packages.
Our results suggest that NCQ makes Node.js developers more efficient in
reusing code.

[2303.10131] Christoph Treude and Hideaki Hata. She elicits requirements
and he tests: Software engineering gender bias in large language models,
2023.
Abstract: Implicit gender bias in software development is a well-
documented issue, such as the association of technical roles with men. To
address this bias, it is important to understand it in more detail. This study
uses data mining techniques to investigate the extent to which 56 tasks re-
lated to software development, such as assigning GitHub issues and testing,
are affected by implicit gender bias embedded in large language models. We
systematically translated each task from English into a genderless language
and back, and investigated the pronouns associated with each task. Based
on translating each task 100 times in different permutations, we identify
a significant disparity in the gendered pronoun associations with different

1

tasks. Specifically, requirements elicitation was associated with the pronoun
“he” in only 6% of cases, while testing was associated with “he” in 100%
of cases. Additionally, tasks related to helping others had a 91% association
with “he” while the same association for tasks related to asking coworkers
was only 52%. These findings reveal a clear pattern of gender bias related
to software development tasks and have important implications for address-
ing this issue both in the training of large language models and in broader
society.

[Abad2018] Zahra Shakeri Hossein Abad, Oliver Karras, Kurt Schneider, Ken
Barker, and Mike Bauer. Task interruption in software development projects.
In Proc. International Conference on Evaluation and Assessment in Software
Engineering (EASE). ACM, Jun 2018, DOI 10.1145/3210459.3210471.
Abstract: Multitasking has always been an inherent part of software de-
velopment and is known as the primary source of interruptions due to task
switching in software development teams. Developing software involves a
mix of analytical and creative work, and requires a significant load on brain
functions, such as working memory and decision making. Thus, task switch-
ing in the context of software development imposes a cognitive load that
causes software developers to lose focus and concentration while working
thereby taking a toll on productivity. To investigate the disruptiveness of
task switching and interruptions in software development projects, and to
understand the reasons for and perceptions of the disruptiveness of task
switching we used a mixed-methods approach including a longitudinal data
analysis on 4,910 recorded tasks of 17 professional software developers, and a
survey of 132 software developers. We found that, compared to task-specific
factors (e.g. priority, level, and temporal stage), contextual factors such as
interruption type (e.g. self/external), time of day, and task type and context
are a more potent determinant of task switching disruptiveness in software
development tasks. Furthermore, while most survey respondents believe ex-
ternal interruptions are more disruptive than self-interruptions, the results of
our retrospective analysis reveals otherwise. We found that self-interruptions
(i.e. voluntary task switchings) are more disruptive than external interrup-
tions and have a negative effect on the performance of the interrupted tasks.
Finally, we use the results of both studies to provide a set of comparative
vulnerability and interaction patterns which can be used as a mean to guide
decision-making and forecasting the consequences of task switching in soft-
ware development teams.

[Abdalkareem2017] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi,
Suhaib Mujahid, and Emad Shihab. Why do developers use trivial packages?
an empirical case study on NPM. In Proc. European Software Engineering
Conference/International Symposium on the Foundations of Software Engi-
neering (ESEC/FSE). ACM, Aug 2017, DOI 10.1145/3106237.3106267.
Abstract: Code reuse is traditionally seen as good practice. Recent trends
have pushed the concept of code reuse to an extreme, by using packages that
implement simple and trivial tasks, which we call ’trivial packages’. A recent

2

incident where a trivial package led to the breakdown of some of the most
popular web applications such as Facebook and Netflix made it imperative
to question the growing use of trivial packages. Therefore, in this paper, we
mine more than 230,000 npm packages and 38,000 JavaScript applications
in order to study the prevalence of trivial packages. We found that trivial
packages are common and are increasing in popularity, making up 16.8% of
the studied npm packages. We performed a survey with 88 Node.js devel-
opers who use trivial packages to understand the reasons and drawbacks of
their use. Our survey revealed that trivial packages are used because they
are perceived to be well implemented and tested pieces of code. However, de-
velopers are concerned about maintaining and the risks of breakages due to
the extra dependencies trivial packages introduce. To objectively verify the
survey results, we empirically validate the most cited reason and drawback
and find that, contrary to developers’ beliefs, only 45.2% of trivial packages
even have tests. However, trivial packages appear to be ’deployment tested’
and to have similar test, usage and community interest as non-trivial pack-
ages. On the other hand, we found that 11.5% of the studied trivial packages
have more than 20 dependencies. Hence, developers should be careful about
which trivial packages they decide to use.

[Aghajani2019] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Marquez,
Mario Linares-Vasquez, Laura Moreno, Gabriele Bavota, and Michele
Lanza. Software documentation issues unveiled. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, May 2019, DOI
10.1109/icse.2019.00122.
Abstract: (Good) Software documentation provides developers and users
with a description of what a software system does, how it operates, and how
it should be used. For example, technical documentation (e.g., an API ref-
erence guide) aids developers during evolution/maintenance activities, while
a user manual explains how users are to interact with a system. Despite
its intrinsic value, the creation and the maintenance of documentation is
often neglected, negatively impacting its quality and usefulness, ultimately
leading to a generally unfavourable take on documentation. Previous studies
investigating documentation issues have been based on surveying developers,
which naturally leads to a somewhat biased view of problems affecting doc-
umentation. We present a large scale empirical study, where we mined, an-
alyzed, and categorized 878 documentation-related artifacts stemming from
four different sources, namely mailing lists, Stack Overflow discussions, issue
repositories, and pull requests. The result is a detailed taxonomy of docu-
mentation issues from which we infer a series of actionable proposals both
for researchers and practitioners.

[Ajami2018] Shulamyt Ajami, Yonatan Woodbridge, and Dror G. Feit-
elson. Syntax, predicates, idioms—what really affects code complex-
ity? Empirical Software Engineering, 24(1):287–328, Jun 2018, DOI
10.1007/s10664-018-9628-3.
Abstract: Program comprehension concerns the ability to understand code

3

written by others. But not all code is the same. We use an experimental plat-
form fashioned as an online game-like environment to measure how quickly
and accurately 220 professional programmers can interpret code snippets
with similar functionality but different structures; snippets that take longer
to understand or produce more errors are considered harder. The results in-
dicate, inter alia, that for loops are significantly harder than ifs, that some
but not all negations make a predicate harder, and that loops counting down
are slightly harder than loops counting up. This demonstrates how the effect
of syntactic structures, different ways to express predicates, and the use of
known idioms can be measured empirically, and that syntactic structures are
not necessarily the most important factor. We also found that the metrics of
time to understanding and errors made are not necessarily equivalent. Thus
loops counting down took slightly longer, but loops with unusual bounds
caused many more errors. By amassing many more empirical results like
these it may be possible to derive better code complexity metrics than we
have today, and also to better appreciate their limitations.

[Akerblom2016] Beatrice Åkerblom and Tobias Wrigstad. Measuring poly-
morphism in Python programs. ACM SIGPLAN Notices, 51(2):114–128,
May 2016, DOI 10.1145/2936313.2816717.
Abstract: Following the increased popularity of dynamic languages and
their increased use in critical software, there have been many proposals
to retrofit static type system to these languages to improve possibilities to
catch bugs and improve performance. A key question for any type system is
whether the types should be structural, for more expressiveness, or nominal,
to carry more meaning for the programmer. For retrofitted type systems,
it seems the current trend is using structural types. This paper attempts
to answer the question to what extent this extra expressiveness is needed,
and how the possible polymorphism in dynamic code is used in practise.
We study polymorphism in 36 real-world open source Python programs and
approximate to what extent nominal and structural types could be used to
type these programs. The study is based on collecting traces from multiple
runs of the programs and analysing the polymorphic degrees of targets at
more than 7 million call-sites. Our results show that while polymorphism
is used in all programs, the programs are to a great extent monomorphic.
The polymorphism found is evenly distributed across libraries and program-
specific code and occur both during program start-up and normal execution.
Most programs contain a few ’megamorphic’ call-sites where receiver types
vary widely. The non-monomorphic parts of the programs can to some ex-
tent be typed with nominal or structural types, but none of the approaches
can type entire programs.

[AlOmar2022] Eman Abdullah AlOmar, Moataz Chouchen, Mohamed Wiem
Mkaouer, and Ali Ouni. Code review practices for refactoring changes: An
empirical study on OpenStack, 2022.
Abstract: Modern code review is a widely used technique employed in both

4

industrial and open-source projects to improve software quality, share knowl-
edge, and ensure adherence to coding standards and guidelines. During code
review, developers may discuss refactoring activities before merging code
changes in the code base. To date, code review has been extensively studied
to explore its general challenges, best practices and outcomes, and socio-
technical aspects. However, little is known about how refactoring is being
reviewed and what developers care about when they review refactored code.
Hence, in this work, we present a quantitative and qualitative study to un-
derstand what are the main criteria developers rely on to develop a decision
about accepting or rejecting a submitted refactored code, and what makes
this process challenging. Through a case study of 11,010 refactoring and non-
refactoring reviews spread across OpenStack open-source projects, we find
that refactoring-related code reviews take significantly longer to be resolved
in terms of code review efforts. Moreover, upon performing a thematic anal-
ysis on a significant sample of the refactoring code review discussions, we
built a comprehensive taxonomy consisting of 28 refactoring review criteria.
We envision our findings reaffirming the necessity of developing accurate and
efficient tools and techniques that can assist developers in the review process
in the presence of refactorings.

[AlSubaihin2021] Afnan A. Al-Subaihin, Federica Sarro, Sue Black, Licia
Capra, and Mark Harman. App store effects on software engineering prac-
tices. IEEE Transactions on Software Engineering, 47(2):300–319, Feb 2021,
DOI 10.1109/tse.2019.2891715.
Abstract: In this paper, we study the app store as a phenomenon from the
developers’ perspective to investigate the extent to which app stores affect
software engineering tasks. Through developer interviews and questionnaires,
we uncover findings that highlight and quantify the effects of three high-level
app store themes: bridging the gap between developers and users, increasing
market transparency and affecting mobile release management. Our findings
have implications for testing, requirements engineering and mining software
repositories research fields. These findings can help guide future research in
supporting mobile app developers through a deeper understanding of the
app store-developer interaction.

[AlencarDaCosta2017] Daniel Alencar da Costa, Shane McIntosh, Christoph
Treude, Uirá Kulesza, and Ahmed E. Hassan. The impact of rapid release
cycles on the integration delay of fixed issues. Empirical Software Engineer-
ing, 23(2):835–904, Nov 2017, DOI 10.1007/s10664-017-9548-7.
Abstract: The release frequency of software projects has increased in re-
cent years. Adopters of so-called rapid releases—short release cycles, often
on the order of weeks, days, or even hours—claim that they can deliver fixed
issues (i.e., implemented bug fixes and new features) to users more quickly.
However, there is little empirical evidence to support these claims. In fact,
our prior work shows that code integration phases may introduce delays for
rapidly releasing projects—98% of the fixed issues in the rapidly releasing

5

Firefox project had their integration delayed by at least one release. To bet-
ter understand the impact that rapid release cycles have on the integration
delay of fixed issues, we perform a comparative study of traditional and
rapid release cycles. Our comparative study has two parts: (i) a quantita-
tive empirical analysis of 72,114 issue reports from the Firefox project, and
a (ii) qualitative study involving 37 participants, who are contributors of the
Firefox, Eclipse, and ArgoUML projects. Our study is divided into quantita-
tive and qualitative analyses. Quantitative analyses reveal that, surprisingly,
fixed issues take a median of 54% (57 days) longer to be integrated in rapid
Firefox releases than the traditional ones. To investigate the factors that are
related to integration delay in traditional and rapid release cycles, we train
regression models that model whether a fixed issue will have its integration
delayed or not. Our explanatory models achieve good discrimination (ROC
areas of 0.80–0.84) and calibration scores (Brier scores of 0.05–0.16) for rapid
and traditional releases. Our explanatory models indicate that (i) traditional
releases prioritize the integration of backlog issues, while (ii) rapid releases
prioritize issues that were fixed in the current release cycle. Complemen-
tary qualitative analyses reveal that participants’ perception about integra-
tion delay is tightly related to activities that involve decision making, risk
management, and team collaboration. Moreover, the allure of shipping fixed
issues faster is a main motivator for adopting rapid release cycles among
participants (although this motivation is not supported by our quantita-
tive analysis). Furthermore, to explain why traditional releases deliver fixed
issues more quickly, our participants point out the rush for integration in
traditional releases and the increased time that is invested on polishing is-
sues in rapid releases. Our results suggest that rapid release cycles may not
be a silver bullet for the rapid delivery of new content to users. Instead,
our results suggest that the benefits of rapid releases are increased software
stability and user feedback.

[AlencarDaCosta2023] Daniel Alencar da Costa, Natalie Grattan, Nigel
Stanger, and Sherlock A. Licorish. Studying the characteristics of SQL-
related development tasks: An empirical study, 2023.
Abstract: A key function of a software system is its ability to facilitate
the manipulation of data, which is often implemented using a flavour of
the Structured Query Language (SQL). To develop the data operations of
software (i.e, creating, retrieving, updating, and deleting data), developers
are required to excel in writing and combining both SQL and application
code. The problem is that writing SQL code in itself is already challenging
(e.g., SQL anti-patterns are commonplace) and combining SQL with ap-
plication code (i.e., for SQL development tasks) is even more demanding.
Meanwhile, we have little empirical understanding regarding the character-
istics of SQL development tasks. Do SQL development tasks typically need
more code changes? Do they typically have a longer time-to-completion?
Answers to such questions would prepare the community for the potential
challenges associated with such tasks. Our results obtained from 20 Apache

6

projects reveal that SQL development tasks have a significantly longer time-
to-completion than SQL-unrelated tasks and require significantly more code
changes. Through our qualitative analyses, we observe that SQL develop-
ment tasks require more spread out changes, effort in reviews and docu-
mentation. Our results also corroborate previous research highlighting the
prevalence of SQL anti-patterns. The software engineering community should
make provision for the peculiarities of SQL coding, in the delivery of safe
and secure interactive software.

[Ali2020] Rao Hamza Ali, Chelsea Parlett-Pelleriti, and Erik Linstead. Cheat-
ing death: a statistical survival analysis of publicly available Python
projects. In Proc. International Conference on Mining Software Repositories
(MSR). ACM, Jun 2020, DOI 10.1145/3379597.3387511.
Abstract: We apply survival analysis methods to a dataset of publicly-
available software projects in order to examine the attributes that might lead
to their inactivity over time. We ran a Kaplan-Meier analysis and fit a Cox
Proportional-Hazards model to a subset of Software Heritage Graph Dataset,
consisting of 3052 popular Python projects hosted on GitLab/GitHub, De-
bian, and PyPI, over a period of 165 months. We show that projects with
repositories on multiple hosting services, a timeline of publishing major re-
leases, and a good network of developers, remain healthy over time and
should be worthy of the effort put in by developers and contributors.

[Alkhabaz2021] Ridha Alkhabaz, Seth Poulsen, Mei Chen, and Abdussalam
Alawini. Insights from student solutions to MongoDB homework problems.
In Proc. Conference on Innovation and Technology in Computer Science Ed-
ucation (ITiCSE). ACM, Jun 2021, DOI 10.1145/3430665.3456308.
Abstract: We analyze submissions for homework assignments of 527 stu-
dents in an upper-level database course offered at the University of Illinois
at Urbana-Champaign. The ability to query databases is becoming a crucial
skill for technology professionals and academics. Although we observe a large
demand for teaching database skills, there is little research on database edu-
cation. Also, despite the industry’s continued demand for NoSQL databases,
we have virtually no research on the matter of how students learn NoSQL
databases, such as MongoDB. In this paper, we offer an in-depth analysis
of errors committed by students working on MongoDB homework assign-
ments over the course of two semesters. We show that as students use more
advanced MongoDB operators, they make more Reference errors. Addition-
ally, when students face a new functionality of MongoDB operators, such as
$group operator, they usually take time to understand it but do not make
the same errors again in later problems. Finally, our analysis suggests that
students struggle with advanced concepts for a comparable amount of time.
Our results suggest that instructors should allocate more time and effort for
the discussed topics in our paper.

[Almeida2017] Daniel A. Almeida, Gail C. Murphy, Greg Wilson, and Mike
Hoye. do software developers understand open source licenses? In Proc.

7

International Conference on Program Comprehension (ICPC). IEEE, May
2017, DOI 10.1109/icpc.2017.7.
Abstract: Software provided under open source licenses is widely used,
from forming high-profile stand-alone applications (e.g., Mozilla Firefox) to
being embedded in commercial offerings (e.g., network routers). Despite the
high frequency of use of open source licenses, there has been little work
about whether software developers understand the open source licenses they
use. To our knowledge, only one survey has been conducted, which focused
on which licenses developers choose and when they encounter problems with
licensing open source software. To help fill the gap of whether or not devel-
opers understand the open source licenses they use, we conducted a survey
that posed development scenarios involving three popular open source li-
censes (GNU GPL 3.0, GNU LGPL 3.0 and MPL 2.0) both alone and in
combination. The 375 respondents to the survey, who were largely develop-
ers, gave answers consistent with those of a legal expert’s opinion in 62%
of 42 cases. Although developers clearly understood cases involving one li-
cense, they struggled when multiple licenses were involved. An analysis of
the quantitative and qualitative results of the study indicate a need for tool
support to help guide developers in understanding this critical information
attached to software components.

[Alsuhaibani2022] Reem S. Alsuhaibani, Christian D. Newman, Michael J.
Decker, Michael L. Collard, and Jonathan I. Maletic. An approach to auto-
matically assess method names. In Proceedings of the 30th IEEE/ACM In-
ternational Conference on Program Comprehension. ACM, May 2022, DOI
10.1145/3524610.3527780.
Abstract: An approach is presented to automatically assess the quality of
method names by providing a score and feedback. The approach implements
ten method naming standards to evaluate the names. The naming stan-
dards are taken from work that validated the standards via a large survey of
software professionals. Natural language processing techniques such as part-
of-speech tagging, identifier splitting, and dictionary lookup are required to
implement the standards. The approach is evaluated by first manually con-
structing a large golden set of method names. Each method name is rated
by several developers and labeled as conforming to each standard or not.
These ratings allow for comparing the results of the approach against expert
assessment. Additionally, the approach is applied to several systems and the
results are manually inspected for accuracy.

[Altadmri2015] Amjad Altadmri and Neil C. C. Brown. 37 million compila-
tions: investigating novice programming mistakes in large-scale student data.
In Proc. Technical Symposium on Computer Science Education (SIGCSE).
ACM, Feb 2015, DOI 10.1145/2676723.2677258.
Abstract: Previous investigations of student errors have typically focused
on samples of hundreds of students at individual institutions. This work uses
a year’s worth of compilation events from over 250,000 students all over the
world, taken from the large Blackbox data set. We analyze the frequency,

8

time-to-fix, and spread of errors among users, showing how these factors
inter-relate, in addition to their development over the course of the year.
These results can inform the design of courses, textbooks and also tools to
target the most frequent (or hardest to fix) errors.

[AltmayerPizzorno2023] Juan Altmayer Pizzorno and Emery D Berger.
Slipcover: Near zero-overhead code coverage for python, 2023.
Abstract: Coverage analysis is widely used but can suffer from high over-
head. This overhead is especially acute in the context of Python, which is
already notoriously slow (a recent study observes a roughly 30x slowdown vs.
native code). We find that the state-of-the-art coverage tool for Python, this
http URL, leads to slowdowns of 1.3x–3.6x (median: 2.8x) for the standard
Python interpreter. Slowdowns are even more extreme when using PyPy,
a JIT-compiled Python implementation, where this http URL slows execu-
tion by 2.4x–325x (median: 14x). This performance degradation reduces the
utility of coverage analysis in most use cases, including testing and fuzzing,
and precludes its use in deployment. This paper presents SlipCover, a novel,
near-zero overhead coverage analyzer for Python. SlipCover works without
modifications to either the Python interpreter or PyPy. It first processes a
program’s AST to accurately identify all branches and lines. SlipCover then
dynamically rewrites Python bytecodes to add lightweight instrumentation
to each identified branch and line. At run time, SlipCover periodically de-
instruments already-covered lines and branches. The result is extremely low
overheads – a median of just 5% – making SlipCover suitable for use in
deployment. We show its efficiency can translate to significant increases in
the speed of coverage-based clients. As a proof of concept, we integrate Slip-
Cover into TPBT, a targeted property-based testing system, and observe a
22x speedup.

[Ameller2012] David Ameller, Claudia Ayala, Jordi Cabot, and Xavier
Franch. How do software architects consider non-functional requirements:
an exploratory study. In Proc. International Requirements Engineering Con-
ference (RE). IEEE, Sep 2012, DOI 10.1109/re.2012.6345838.
Abstract: Dealing with non-functional requirements (NFRs) has posed a
challenge onto software engineers for many years. Over the years, many
methods and techniques have been proposed to improve their elicitation,
documentation, and validation. Knowing more about the state of the prac-
tice on these topics may benefit both practitioners’ and researchers’ daily
work. A few empirical studies have been conducted in the past, but none
under the perspective of software architects, in spite of the great influence
that NFRs have on daily architects’ practices. This paper presents some of
the findings of an empirical study based on 13 interviews with software archi-
tects. It addresses questions such as: who decides the NFRs, what types of
NFRs matter to architects, how are NFRs documented, and how are NFRs
validated. The results are contextualized with existing previous work.

9

[Ames2018] Morgan G. Ames. Hackers, computers, and cooperation: A
critical history of logo and constructionist learning. Proceedings of the
ACM on Human-Computer Interaction, 2(CSCW):1–19, Nov 2018, DOI
10.1145/3274287.
Abstract: This paper examines the history of the learning theory “con-
structionism” and its most well-known implementation, Logo, to examine
beliefs involving both “C’s” in CSCW: computers and cooperation. Tracing
the tumultuous history of one of the first examples of computer-supported
cooperative learning (CSCL) allows us to question some present-day assump-
tions regarding the universal appeal of learning to program computers that
undergirds popular CSCL initiatives today, including the Scratch program-
ming environment and the “FabLab” makerspace movement. Furthermore,
teasing out the individualistic and anti-authority threads in this project
and its links to present day narratives of technology development exposes
the deeply atomized and even oppositional notions of collaboration in these
projects and others under the auspices of CSCW today that draw on early
notions of ’hacker culture.’ These notions tend to favor a limited view of
work, learning, and practice-an invisible constraint that continues to inform
how we build and evaluate CSCW technologies.

[Anda2009] B.C.D. Anda, D.I.K. Sjøberg, and Audris Mockus. Variability
and reproducibility in software engineering: a study of four companies that
developed the same system. IEEE Transactions on Software Engineering,
35(3):407–429, May 2009, DOI 10.1109/tse.2008.89.
Abstract: The scientific study of a phenomenon requires it to be repro-
ducible. Mature engineering industries are recognized by projects and prod-
ucts that are, to some extent, reproducible. Yet, reproducibility in soft-
ware engineering (SE) has not been investigated thoroughly, despite the fact
that lack of reproducibility has both practical and scientific consequences.
We report a longitudinal multiple-case study of variations and reproducibil-
ity in software development, from bidding to deployment, on the basis of
the same requirement specification. In a call for tender to 81 companies,
35 responded. Four of them developed the system independently. The firm
price, planned schedule, and planned development process, had, respectively,
“low,” “low,” and “medium” reproducibilities. The contractor’s costs, actual
lead time, and schedule overrun of the projects had, respectively, “medium,”
“high,” and “low” reproducibilities. The quality dimensions of the delivered
products, reliability, usability, and maintainability had, respectively, “low,”
“high,” and “low” reproducibilities. Moreover, variability for predictable rea-
sons is also included in the notion of reproducibility. We found that the ob-
served outcome of the four development projects matched our expectations,
which were formulated partially on the basis of SE folklore. Nevertheless,
achieving more reproducibility in SE remains a great challenge for SE re-
search, education, and industry.

[Apel2011] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer,
and Christian Kästner. Semistructured merge: rethinking merge in re-

10

vision control systems. In Proc. European Software Engineering Confer-
ence/International Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM Press, 2011, DOI 10.1145/2025113.2025141.
Abstract: An ongoing problem in revision control systems is how to resolve
conflicts in a merge of independently developed revisions. Unstructured revi-
sion control systems are purely text-based and solve conflicts based on tex-
tual similarity. Structured revision control systems are tailored to specific
languages and use language-specific knowledge for conflict resolution. We
propose semistructured revision control systems that inherit the strengths of
both: the generality of unstructured systems and the expressiveness of struc-
tured systems. The idea is to provide structural information of the underly-
ing software artifacts — declaratively, in the form of annotated grammars.
This way, a wide variety of languages can be supported and the information
provided can assist in the automatic resolution of two classes of conflicts:
ordering conflicts and semantic conflicts. The former can be resolved inde-
pendently of the language and the latter using specific conflict handlers. We
have been developing a tool that supports semistructured merge and con-
ducted an empirical study on 24 software projects developed in Java, C#,
and Python comprising 180 merge scenarios. We found that semistructured
merge reduces the number of conflicts in 60% of the sample merge scenar-
ios by, on average, 34%, compared to unstructured merge. We found also
that renaming is challenging in that it can increase the number of conflicts
during semistructured merge, and that a combination of unstructured and
semistructured merge is a pragmatic way to go.

[Aranda2009] Jorge Aranda and Gina Venolia. The secret life of bugs: Go-
ing past the errors and omissions in software repositories. In Proc. In-
ternational Conference on Software Engineering (ICSE). IEEE, 2009, DOI
10.1109/icse.2009.5070530.
Abstract: Every bug has a story behind it. The people that discover and
resolve it need to coordinate, to get information from documents, tools, or
other people, and to navigate through issues of accountability, ownership,
and organizational structure. This paper reports on a field study of coordi-
nation activities around bug fixing that used a combination of case study
research and a survey of software professionals. Results show that the histo-
ries of even simple bugs are strongly dependent on social, organizational, and
technical knowledge that cannot be solely extracted through automation of
electronic repositories, and that such automation provides incomplete and
often erroneous accounts of coordination. The paper uses rich bug histories
and survey results to identify common bug fixing coordination patterns and
to provide implications for tool designers and researchers of coordination in
software development.

[Aurora2019] Valerie Aurora and Mary Gardiner. How to Respond to Code
of Conduct Reports. Frame Shift Consulting LLC, version 1.1 edition, 2019.
Abstract: A detailed, experience-based guide to handling what is often the
most difficult situation in any project.

11

[Bafatakis2019] Nikolaos Bafatakis, Niels Boecker, Wenjie Boon, Martin Ca-
bello Salazar, Jens Krinke, Gazi Oznacar, and Robert White. Python
coding style compliance on stack overflow. In Proc. International Con-
ference on Mining Software Repositories (MSR). IEEE, May 2019, DOI
10.1109/msr.2019.00042.
Abstract: Software developers all over the world use Stack Overflow (SO)
to interact and exchange code snippets. Research also uses SO to harvest
code snippets for use with recommendation systems. However, previous work
has shown that code on SO may have quality issues, such as security or li-
cense problems. We analyse Python code on SO to determine its coding
style compliance. From 1,962,535 code snippets tagged with ’python’, we
extracted 407,097 snippets of at least 6 statements of Python code. Sur-
prisingly, 93.87% of the extracted snippets contain style violations, with an
average of 0.7 violations per statement and a huge number of snippets with
a considerably higher ratio. Researchers and developers should, therefore,
be aware that code snippets on SO may not representative of good coding
style. Furthermore, while user reputation seems to be unrelated to coding
style compliance, for posts with vote scores in the range between -10 and
20, we found a strong correlation (r = −0.87, p < 10−7) between the vote
score a post received and the average number of violations per statement for
snippets in such posts.

[Balachandran2013] Vipin Balachandran. Reducing human effort and im-
proving quality in peer code reviews using automatic static analysis and
reviewer recommendation. In Proc. International Conference on Software
Engineering (ICSE). IEEE, May 2013, DOI 10.1109/icse.2013.6606642.
Abstract: Peer code review is a cost-effective software defect detection
technique. Tool assisted code review is a form of peer code review, which
can improve both quality and quantity of reviews. However, there is a signifi-
cant amount of human effort involved even in tool based code reviews. Using
static analysis tools, it is possible to reduce the human effort by automat-
ing the checks for coding standard violations and common defect patterns.
Towards this goal, we propose a tool called Review Bot for the integration
of automatic static analysis with the code review process. Review Bot uses
output of multiple static analysis tools to publish reviews automatically.
Through a user study, we show that integrating static analysis tools with
code review process can improve the quality of code review. The developer
feedback for a subset of comments from automatic reviews shows that the
developers agree to fix 93% of all the automatically generated comments.
There is only 14.71% of all the accepted comments which need improve-
ments in terms of priority, comment message, etc. Another problem with
tool assisted code review is the assignment of appropriate reviewers. Review
Bot solves this problem by generating reviewer recommendations based on
change history of source code lines. Our experimental results show that the
recommendation accuracy is in the range of 60%-92%, which is significantly
better than a comparable method based on file change history.

12

[Baltes2020] Sebastian Baltes, George Park, and Alexander Serebrenik.
Is 40 the new 60? how popular media portrays the employability of
older software developers. IEEE Software, 37(6):26–31, Nov 2020, DOI
10.1109/ms.2020.3014178.
Abstract: We studied the public discourse around age and software de-
velopment, focusing on the United States. This work was designed to build
awareness among decision makers in software projects to help them antici-
pate and mitigate challenges that their older employees may face.

[Bao2021] Lingfeng Bao, Xin Xia, David Lo, and Gail C. Murphy. A large
scale study of long-time contributor prediction for GitHub projects. IEEE
Transactions on Software Engineering, 47(6):1277–1298, Jun 2021, DOI
10.1109/tse.2019.2918536.
Abstract: The continuous contributions made by long time contributors
(LTCs) are a key factor enabling open source software (OSS) projects to
be successful and survival. We study Github as it has a large number of
OSS projects and millions of contributors, which enables the study of the
transition from newcomers to LTCs. In this paper, we investigate whether
we can effectively predict newcomers in OSS projects to be LTCs based on
their activity data that is collected from Github. We collect Github data
from GHTorrent, a mirror of Github data. We select the most popular 917
projects, which contain 75,046 contributors. We determine a developer as
a LTC of a project if the time interval between his/her first and last com-
mit in the project is larger than a certain time T . In our experiment, we
use three different settings on the time interval: 1, 2, and 3 years. There
are 9,238, 3,968, and 1,577 contributors who become LTCs of a project in
three settings of time interval, respectively. To build a prediction model, we
extract many features from the activities of developers on Github, which
group into five dimensions: developer profile, repository profile, developer
monthly activity, repository monthly activity, and collaboration network. We
apply several classifiers including naive Bayes, SVM, decision tree, kNN and
random forest. We find that random forest classifier achieves the best per-
formance with AUCs of more than 0.75 in all three settings of time interval
for LTCs. We also investigate the most important features that differentiate
newcomers who become LTCs from newcomers who stay in the projects for
a short time. We find that the number of followers is the most important
feature in all three settings of the time interval studied. We also find that
the programming language and the average number of commits contributed
by other developers when a newcomer joins a project also belong to the top
10 most important features in all three settings of time interval for LTCs. Fi-
nally, we provide several implications for action based on our analysis results
to help OSS projects retain newcomers.

[Barbosa2014] Eiji Adachi Barbosa, Alessandro Garcia, and Simone Di-
niz Junqueira Barbosa. Categorizing faults in exception handling: a study
of open source projects. In Proc. Brazilian Symposium on Software Engi-
neering (BSSE). IEEE, Sep 2014, DOI 10.1109/sbes.2014.19.

13

Abstract: Even though exception handling mechanisms have been proposed
as a means to improve software robustness, empirical evidence suggests that
exception handling code is still poorly implemented in industrial systems.
Moreover, it is often claimed that the poor quality of exception handling
code can be a source of faults in a software system. However, there is still a
gap in the literature in terms of better understanding exceptional faults, i.e.,
faults whose causes regard to exception handling. In particular, there is still
little empirical knowledge about what are the specific causes of exceptional
faults in software systems. In this paper we start to fill this gap by pre-
senting a categorization of the causes of exceptional faults observed in two
mainstream open source projects. We observed ten different categories of ex-
ceptional faults, most of which were never reported before in the literature.
Our results pinpoint that current verification and validation mechanisms for
exception handling code are still not properly addressing these categories of
exceptional faults.

[Barik2017] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing
Feng, Emerson Murphy-Hill, and Chris Parnin. Do developers read compiler
error messages? In Proc. International Conference on Software Engineering
(ICSE). IEEE, May 2017, DOI 10.1109/icse.2017.59.
Abstract: In integrated development environments, developers receive com-
piler error messages through a variety of textual and visual mechanisms, such
as popups and wavy red underlines. Although error messages are the primary
means of communicating defects to developers, researchers have a limited
understanding on how developers actually use these messages to resolve de-
fects. To understand how developers use error messages, we conducted an
eye tracking study with 56 participants from undergraduate and graduate
software engineering courses at our university. The participants attempted
to resolve common, yet problematic defects in a Java code base within the
Eclipse development environment. We found that: 1) participants read error
messages and the difficulty of reading these messages is comparable to the
difficulty of reading source code, 2) difficulty reading error messages signifi-
cantly predicts participants’ task performance, and 3) participants allocate a
substantial portion of their total task to reading error messages (13%-25%).
The results of our study offer empirical justification for the need to improve
compiler error messages for developers.

[Barik2018] Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris
Parnin. How should compilers explain problems to developers? In Proc.
European Software Engineering Conference/International Symposium on the
Foundations of Software Engineering (ESEC/FSE). ACM, Oct 2018, DOI
10.1145/3236024.3236040.
Abstract: Compilers primarily give feedback about problems to developers
through the use of error messages. Unfortunately, developers routinely find
these messages to be confusing and unhelpful. In this paper, we postulate
that because error messages present poor explanations, theories of expla-
nation—such as Toulmin’s model of argument—can be applied to improve

14

their quality. To understand how compilers should present explanations to
developers, we conducted a comparative evaluation with 68 professional soft-
ware developers and an empirical study of compiler error messages found in
Stack Overflow questions across seven different programming languages. Our
findings suggest that, given a pair of error messages, developers significantly
prefer the error message that employs proper argument structure over a de-
ficient argument structure when neither offers a resolution—but will accept
a deficient argument structure if it provides a resolution to the problem.
Human-authored explanations on Stack Overflow converge to one of the
three argument structures: those that provide a resolution to the error, sim-
ple arguments, and extended arguments that provide additional evidence
for the problem. Finally, we contribute three practical design principles to
inform the design and evaluation of compiler error messages.

[Barke2019] Helena Barke and Lutz Prechelt. Role clarity deficiencies can
wreck agile teams. PeerJ Computer Science, 5:e241, Dec 2019, DOI
10.7717/peerj-cs.241.
Abstract: Background One of the twelve agile principles is to build projects
around motivated individuals and trust them to get the job done. Such agile
teams must self-organize, but this involves conflict, making self-organization
difficult. One area of difficulty is agreeing on everybody’s role. Background
What dynamics arise in a self-organizing team from the negotiation of ev-
erybody’s role? Method We conceptualize observations from five agile teams
(work observations, interviews) by Charmazian Grounded Theory Method-
ology. Results We define role as something transient and implicit, not fixed
and named. The roles are characterized by the responsibilities and expec-
tations of each team member. Every team member must understand and
accept their own roles (Local role clarity) and everbody else’s roles (Team-
wide role clarity). Role clarity allows a team to work smoothly and effectively
and to develop its members’ skills fast. Lack of role clarity creates friction
that not only hampers the day-to-day work, but also appears to lead to high
employee turnover. Agile coaches are critical to create and maintain role
clarity. Conclusions Agile teams should pay close attention to the levels of
Local role clarity of each member and Team-wide role clarity overall, because
role clarity deficits are highly detrimental.

[Barnett2011] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter
Müller, Wolfram Schulte, and Herman Venter. Specification and verification:
the Spec# experience. Communications of the ACM, 54(6):81–91, Jun 2011,
DOI 10.1145/1953122.1953145.
Abstract: Can a programming language really help programmers write
better programs?

[Barr2012] Earl T. Barr, Christian Bird, Peter C. Rigby, Abram Hindle,
Daniel M. German, and Premkumar Devanbu. Cohesive and isolated devel-
opment with branches. In Proc. International Conference on Fundamental
Approaches to Software Engineering (FASE), page 316–331. Springer Berlin

15

Heidelberg, 2012, DOI 10.1007/978-3-642-28872-2_22.
Abstract: The adoption of distributed version control (DVC), such as Git
and Mercurial, in open-source software (OSS) projects has been explosive.
Why is this and how are projects using DVC? This new generation of version
control supports two important new features: distributed repositories and
histories that preserve branches and merges. Through interviews with lead
developers in OSS projects and a quantitative analysis of mined data from
the histories of sixty project, we find that the vast majority of the projects
now using DVC continue to use a centralized model of code sharing, while
using branching much more extensively than before their transition to DVC.
We then examine the Linux history in depth in an effort to understand and
evaluate how branches are used and what benefits they provide. We find
that they enable natural collaborative processes: DVC branching allows de-
velopers to collaborate on tasks in highly cohesive branches, while enjoying
reduced interference from developers working on other tasks, even if those
tasks are strongly coupled to theirs.

[Barzilay2011] Ohad Barzilay. Example embedding. In Proc. Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software
(ONWARD). ACM Press, 2011, DOI 10.1145/2089131.2089135.
Abstract: Using code examples in professional software development is
like teenage sex. Those who say they do it all the time are probably lying.
Although it is natural, those who do it feel guilty. Finally, once they start
doing it, they are often not too concerned with safety, they discover that it
is going to take a while to get really good at it, and they realize they will
have to come up with a bunch of new ways of doing it before they really
figure it all out.

[Basak2023] Setu Kumar Basak, Lorenzo Neil, Bradley Reaves, and Laurie
Williams. What challenges do developers face about checked-in secrets in
software artifacts?, 2023.
Abstract: Throughout 2021, GitGuardian’s monitoring of public GitHub
repositories revealed a two-fold increase in the number of secrets (database
credentials, API keys, and other credentials) exposed compared to 2020, ac-
cumulating more than six million secrets. To our knowledge, the challenges
developers face to avoid checked-in secrets are not yet characterized. The
goal of our paper is to aid researchers and tool developers in understand-
ing and prioritizing opportunities for future research and tool automation
for mitigating checked-in secrets through an empirical investigation of chal-
lenges and solutions related to checked-in secrets. We extract 779 questions
related to checked-in secrets on Stack Exchange and apply qualitative anal-
ysis to determine the challenges and the solutions posed by others for each
of the challenges. We identify 27 challenges and 13 solutions. The four most
common challenges, in ranked order, are: (i) store/version of secrets during
deployment; (ii) store/version of secrets in source code; (iii) ignore/hide of
secrets in source code; and (iv) sanitize VCS history. The three most common
solutions, in ranked order, are: (i) move secrets out of source code/version

16

control and use template config file; (ii) secret management in deployment;
and (iii) use local environment variables. Our findings indicate that the same
solution has been mentioned to mitigate multiple challenges. However, our
findings also identify an increasing trend in questions lacking accepted so-
lutions substantiating the need for future research and tool automation on
managing secrets.

[Beck2011] Fabian Beck and Stephan Diehl. On the congruence of modu-
larity and code coupling. In Proc. European Software Engineering Confer-
ence/International Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM Press, 2011, DOI 10.1145/2025113.2025162.
Abstract: Software systems are modularized to make their inherent com-
plexity manageable. While there exists a set of well-known principles that
may guide software engineers to design the modules of a software system,
we do not know which principles are followed in practice. In a study based
on 16 open source projects, we look at different kinds of coupling concepts
between source code entities, including structural dependencies, fan-out sim-
ilarity, evolutionary coupling, code ownership, code clones, and semantic
similarity. The congruence between these coupling concepts and the modu-
larization of the system hints at the modularity principles used in practice.
Furthermore, the results provide insights on how to support developers to
modularize software systems.

[Becker2019] Brett A. Becker, Paul Denny, Raymond Pettit, Durell
Bouchard, Dennis J. Bouvier, Brian Harrington, Amir Kamil, Amey
Karkare, Chris McDonald, Peter-Michael Osera, Janice L. Pearce, and James
Prather. Compiler error messages considered unhelpful. In Proc. Conference
on Innovation and Technology in Computer Science Education (ITiCSE).
ACM, Dec 2019, DOI 10.1145/3344429.3372508.
Abstract: Diagnostic messages generated by compilers and interpreters
such as syntax error messages have been researched for over half of a century.
Unfortunately, these messages which include error, warning, and run-time
messages, present substantial difficulty and could be more effective, particu-
larly for novices. Recent years have seen an increased number of papers in the
area including studies on the effectiveness of these messages, improving or
enhancing them, and their usefulness as a part of programming process data
that can be used to predict student performance, track student progress, and
tailor learning plans. Despite this increased interest, the long history of liter-
ature is quite scattered and has not been brought together in any digestible
form. In order to help the computing education community (and related
communities) to further advance work on programming error messages, we
present a comprehensive, historical and state-of-the-art report on research
in the area. In addition, we synthesise and present the existing evidence for
these messages including the difficulties they present and their effectiveness.
We finally present a set of guidelines, curated from the literature, classi-
fied on the type of evidence supporting each one (historical, anecdotal, and
empirical). This work can serve as a starting point for those who wish to

17

conduct research on compiler error messages, runtime errors, and warnings.
We also make the bibtex file of our 300+ reference corpus publicly available.
Collectively this report and the bibliography will be useful to those who wish
to design better messages or those that aim to measure their effectiveness,
more effectively.

[Begel2014] Andrew Begel and Thomas Zimmermann. Analyze this! 145
questions for data scientists in software engineering. In Proc. Interna-
tional Conference on Software Engineering (ICSE). ACM, May 2014, DOI
10.1145/2568225.2568233.
Abstract: In this paper, we present the results from two surveys related
to data science applied to software engineering. The first survey solicited
questions that software engineers would like data scientists to investigate
about software, about software processes and practices, and about software
engineers. Our analyses resulted in a list of 145 questions grouped into 12
categories. The second survey asked a different pool of software engineers
to rate these 145 questions and identify the most important ones to work
on first. Respondents favored questions that focus on how customers typi-
cally use their applications. We also saw opposition to questions that assess
the performance of individual employees or compare them with one another.
Our categorization and catalog of 145 questions can help researchers, prac-
titioners, and educators to more easily focus their efforts on topics that are
important to the software industry.

[Behroozi2019] Mahnaz Behroozi, Chris Parnin, and Titus Barik. Hiring is
broken: What do developers say about technical interviews? In Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, Oct
2019, DOI 10.1109/vlhcc.2019.8818836.
Abstract: Technical interviews—a problem-solving form of interview in
which candidates write code—are commonplace in the software industry,
and are used by several well-known companies including Facebook, Google,
and Microsoft. These interviews are intended to objectively assess candidates
and determine fit within the company. But what do developers say about
them?To understand developer perceptions about technical interviews, we
conducted a qualitative study using the online social news website, Hacker
News—a venue for software practitioners. Hacker News posters report several
concerns and negative perceptions about interviews, including their lack of
real-world relevance, bias towards younger developers, and demanding time
commitment. Posters report that these interviews cause unnecessary anxi-
ety and frustration, requiring them to learn arbitrary, implicit, and obscure
norms. The findings from our study inform inclusive hiring guidelines for
technical interviews, such as collaborative problem-solving sessions.

[Behroozi2020] Mahnaz Behroozi, Shivani Shirolkar, Titus Barik, and Chris
Parnin. Debugging hiring: What went right and what went wrong in the
technical interview process. In Proc. International Conference on Software
Engineering (ICSE). ACM, 2020, DOI 10.1145/3377815.3381372.

18

Abstract: The typical hiring pipeline for software engineering occurs over
several stages—from phone screening and technical on-site interviews, to of-
fer and negotiation. When these hiring pipelines are “leaky,” otherwise qual-
ified candidates are lost at some stage of the pipeline. These leaky pipelines
impact companies in several ways, including hindering a company’s ability
to recruit competitive candidates and build diverse software teams.To under-
stand where candidates become disengaged in the hiring pipeline—and what
companies can do to prevent it—we conducted a qualitative study on over
10,000 reviews on 19 companies from Glassdoor, a website where candidates
can leave reviews about their hiring process experiences. We identified several
poor practices which prematurely sabotage the hiring process—for example,
not adequately communicating hiring criteria, conducting interviews with in-
experienced interviewers, and ghosting candidates. Our findings provide a set
of guidelines to help companies improve their hiring pipeline practices—such
as being deliberate about phrasing and language during initial contact with
the candidate, providing candidates with constructive feedback after their
interviews, and bringing salary transparency and long-term career discus-
sions into offers and negotiations. Operationalizing these guidelines helps
make the hiring pipeline more transparent, fair, and inclusive.

[Beller2015] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy
Zaidman. When, how, and why developers (do not) test in their IDEs. In
Proc. European Software Engineering Conference/International Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM, Aug 2015,
DOI 10.1145/2786805.2786843.
Abstract: The research community in Software Engineering and Software
Testing in particular builds many of its contributions on a set of mutually
shared expectations. Despite the fact that they form the basis of many pub-
lications as well as open-source and commercial testing applications, these
common expectations and beliefs are rarely ever questioned. For example,
Frederic Brooks’ statement that testing takes half of the development time
seems to have manifested itself within the community since he first made
it in the “Mythical Man Month” in 1975. With this paper, we report on
the surprising results of a large-scale field study with 416 software engineers
whose development activity we closely monitored over the course of five
months, resulting in over 13 years of recorded work time in their integrated
development environments (IDEs). Our findings question several commonly
shared assumptions and beliefs about testing and might be contributing fac-
tors to the observed bug proneness of software in practice: the majority of
developers in our study does not test; developers rarely run their tests in
the IDE; Test-Driven Development (TDD) is not widely practiced; and, last
but not least, software developers only spend a quarter of their work time
engineering tests, whereas they think they test half of their time.

[Beller2019] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian
Proksch, Sven Amann, and Andy Zaidman. Developer testing in the IDE:
Patterns, beliefs, and behavior. IEEE Transactions on Software Engineering,

19

45(3):261–284, Mar 2019, DOI 10.1109/tse.2017.2776152.
Abstract: Software testing is one of the key activities to achieve software
quality in practice. Despite its importance, however, we have a remarkable
lack of knowledge on how developers test in real-world projects. In this paper,
we report on a large-scale field study with 2,443 software engineers whose
development activities we closely monitored over 2.5 years in four integrated
development environments (IDEs). Our findings, which largely generalized
across the studied IDEs and programming languages Java and C#, question
several commonly shared assumptions and beliefs about developer testing:
half of the developers in our study do not test; developers rarely run their
tests in the IDE; most programming sessions end without any test execution;
only once they start testing, do they do it extensively; a quarter of test cases
is responsible for three quarters of all test failures; 12 percent of tests show
flaky behavior; Test-Driven Development (TDD) is not widely practiced;
and software developers only spend a quarter of their time engineering tests,
whereas they think they test half of their time. We summarize these practices
of loosely guiding one’s development efforts with the help of testing in an
initial summary on Test-Guided Development (TGD), a behavior we argue
to be closer to the development reality of most developers than TDD.

[BenAri2011] Mordechai Ben-Ari, Roman Bednarik, Ronit Ben-Bassat Levy,
Gil Ebel, Andrés Moreno, Niko Myller, and Erkki Sutinen. A decade of
research and development on program animation: the Jeliot experience.
Journal of Visual Languages & Computing, 22(5):375–384, Oct 2011, DOI
10.1016/j.jvlc.2011.04.004.
Abstract: Jeliot is a program animation system for teaching and learn-
ing elementary programming that has been developed over the past decade,
building on the Eliot animation system developed several years before. Ex-
tensive pedagogical research has been done on various aspects of the use of
Jeliot including improvements in learning, effects on attention, and accep-
tance by teachers. This paper surveys this research and development, and
summarizes the experience and the lessons learned.

[Beniamini2017] Gal Beniamini, Sarah Gingichashvili, Alon Klein Orbach,
and Dror G. Feitelson. Meaningful identifier names: the case of single-letter
variables. In Proc. International Conference on Program Comprehension
(ICPC). IEEE, May 2017, DOI 10.1109/icpc.2017.18.
Abstract: It is widely accepted that variable names in computer programs
should be meaningful, and that this aids program comprehension. “Meaning-
ful” is commonly interpreted as favoring long descriptive names. However,
there is at least some use of short and even single-letter names: using i
in loops is very common, and we show (by extracting variable names from
1000 popular GitHub projects in 5 languages) that some other letters are
also widely used. In addition, controlled experiments with different versions
of the same functions (specifically, different variable names) failed to show
significant differences in ability to modify the code. Finally, an online survey
showed that certain letters are strongly associated with certain types and

20

meanings. This implies that a single letter can in fact convey meaning. The
conclusion from all this is that single letter variables can indeed be used
beneficially in certain cases, leading to more concise code.

[Bettenburg2008] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin
Weiss, Rahul Premraj, and Thomas Zimmermann. What makes a good bug
report? In Proc. International Symposium on Foundations of Software Engi-
neering/International Symposium on the Foundations of Software Engineer-
ing (SIGSOFT/FSE). ACM Press, 2008, DOI 10.1145/1453101.1453146.
Abstract: In software development, bug reports provide crucial informa-
tion to developers. However, these reports widely differ in their quality. We
conducted a survey among developers and users of Apache, Eclipse, and
Mozilla to find out what makes a good bug report. The analysis of the 466
responses revealed an information mismatch between what developers need
and what users supply. Most developers consider steps to reproduce, stack
traces, and test cases as helpful, which are, at the same time, most difficult
to provide for users. Such insight is helpful for designing new bug tracking
tools that guide users at collecting and providing more helpful information.
Our Cuezilla prototype is such a tool and measures the quality of new bug
reports; it also recommends which elements should be added to improve the
quality. We trained Cuezilla on a sample of 289 bug reports, rated by de-
velopers as part of the survey. The participants of our survey also provided
175 comments on hurdles in reporting and resolving bugs. Based on these
comments, we discuss several recommendations for better bug tracking sys-
tems, which should focus on engaging bug reporters, better tool support,
and improved handling of bug duplicates.

[Bird2011] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald
Gall, and Premkumar Devanbu. Don’t touch my code!: examining the ef-
fects of ownership on software quality. In Proc. International Symposium
on Foundations of Software Engineering/International Symposium on the
Foundations of Software Engineering (SIGSOFT/FSE). ACM Press, 2011,
DOI 10.1145/2025113.2025119.
Abstract: Ownership is a key aspect of large-scale software development.
We examine the relationship between different ownership measures and soft-
ware failures in two large software projects: Windows Vista and Windows
7. We find that in all cases, measures of ownership such as the number of
low-expertise developers, and the proportion of ownership for the top owner
have a relationship with both pre-release faults and post-release failures. We
also empirically identify reasons that low-expertise developers make changes
to components and show that the removal of low-expertise contributions
dramatically decreases the performance of contribution based defect predic-
tion. Finally we provide recommendations for source code change policies
and utilization of resources such as code inspections based on our results.

[Birillo2023] Anastasiia Birillo, Elizaveta Artser, Yaroslav Golubev, Maria
Tigina, Hieke Keuning, Nikolay Vyahhi, and Timofey Bryksin. Detecting

21

code quality issues in pre-written templates of programming tasks in online
courses, 2023.
Abstract: In this work, we developed an algorithm for detecting code qual-
ity issues in the templates of online programming tasks, validated it, and
conducted an empirical study on the dataset of student solutions. The algo-
rithm consists of analyzing recurring unfixed issues in solutions of different
students, matching them with the code of the template, and then filtering
the results. Our manual validation on a subset of tasks demonstrated a pre-
cision of 80.8% and a recall of 73.3%. We used the algorithm on 415 Java
tasks from the JetBrains Academy platform and discovered that as much
as 14.7% of tasks have at least one issue in their template, thus making it
harder for students to learn good code quality practices. We describe our
results in detail, provide several motivating examples and specific cases, and
share the feedback of the developers of the platform, who fixed 51 issues
based on the output of our approach.

[Bluedorn1999] Allen C. Bluedorn, Daniel B. Turban, and Mary Sue
Love. The effects of stand-up and sit-down meeting formats on meet-
ing outcomes. Journal of Applied Psychology, 84(2):277–285, 1999, DOI
10.1037/0021-9010.84.2.277.
Abstract: The effects of meeting format (standing or sitting) on meeting
length and the quality of group decision making were investigated by com-
paring meeting outcomes for 56 five-member groups that conducted meetings
in a standing format with 55 five-member groups that conducted meetings in
a seated format. Sit-down meetings were 34% longer than stand-up meetings,
but they produced no better decisions than stand-up meetings. Significant
differences were also obtained for satisfaction with the meeting and task in-
formation use during the meeting but not for synergy or commitment to
the group’s decision. The findings were generally congruent with meeting-
management recommendations in the time-management literature, although
the lack of a significant difference for decision quality was contrary to theo-
retical expectations. This contrary finding may have been due to differences
between the temporal context in which this study was conducted and those in
which other time constraint research has been conducted, thereby revealing
a potentially important contingency-temporal context.

[Bogart2021] Chris Bogart, Christian Kästner, James Herbsleb, and Fer-
dian Thung. When and how to make breaking changes. ACM Transac-
tions on Software Engineering and Methodology, 30(4):1–56, Jul 2021, DOI
10.1145/3447245.
Abstract: Open source software projects often rely on package management
systems that help projects discover, incorporate, and maintain dependencies
on other packages, maintained by other people. Such systems save a great
deal of effort over ad hoc ways of advertising, packaging, and transmitting
useful libraries, but coordination among project teams is still needed when
one package makes a breaking change affecting other packages. Ecosystems

22

differ in their approaches to breaking changes, and there is no general the-
ory to explain the relationships between features, behavioral norms, ecosys-
tem outcomes, and motivating values. We address this through two em-
pirical studies. In an interview case study, we contrast Eclipse, NPM, and
CRAN, demonstrating that these different norms for coordination of break-
ing changes shift the costs of using and maintaining the software among
stakeholders, appropriate to each ecosystem’s mission. In a second study,
we combine a survey, repository mining, and document analysis to broaden
and systematize these observations across 18 ecosystems. We find that all
ecosystems share values such as stability and compatibility, but differ in
other values. Ecosystems’ practices often support their espoused values, but
in surprisingly diverse ways. The data provides counterevidence against easy
generalizations about why ecosystem communities do what they do.

[Bogomolov2021] Egor Bogomolov, Vladimir Kovalenko, Yurii Rebryk, Al-
berto Bacchelli, and Timofey Bryksin. Authorship attribution of source code:
a language-agnostic approach and applicability in software engineering. In
Proc. European Software Engineering Conference/International Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM, Aug 2021,
DOI 10.1145/3468264.3468606.
Abstract: Authorship attribution (i.e., determining who is the author of a
piece of source code) is an established research topic. State-of-the-art results
for the authorship attribution problem look promising for the software en-
gineering field, where they could be applied to detect plagiarized code and
prevent legal issues. With this article, we first introduce a new language-
agnostic approach to authorship attribution of source code. Then, we dis-
cuss limitations of existing synthetic datasets for authorship attribution, and
propose a data collection approach that delivers datasets that better reflect
aspects important for potential practical use in software engineering. Finally,
we demonstrate that high accuracy of authorship attribution models on ex-
isting datasets drastically drops when they are evaluated on more realistic
data. We outline next steps for the design and evaluation of authorship at-
tribution models that could bring the research efforts closer to practical use
for software engineering.

[Borle2017] Neil C. Borle, Meysam Feghhi, Eleni Stroulia, Russell Greiner,
and Abram Hindle. Analyzing the effects of test driven development in
GitHub. Empirical Software Engineering, 23(4):1931–1958, Nov 2017, DOI
10.1007/s10664-017-9576-3.
Abstract: Testing is an integral part of the software development lifecycle,
approached with varying degrees of rigor by different process models. Agile
process models recommend Test Driven Development (TDD) as a key prac-
tice for reducing costs and improving code quality. The objective of this work
is to perform a cost-benefit analysis of this practice. To that end, we have
conducted a comparative analysis of GitHub repositories that adopts TDD
to a lesser or greater extent, in order to determine how TDD affects software

23

development productivity and software quality. We classified GitHub repos-
itories archived in 2015 in terms of how rigorously they practiced TDD, thus
creating a TDD spectrum. We then matched and compared various subsets
of these repositories on this TDD spectrum with control sets of equal size.
The control sets were samples from all GitHub repositories that matched cer-
tain characteristics, and that contained at least one test file. We compared
how the TDD sets differed from the control sets on the following characteris-
tics: number of test files, average commit velocity, number of bug-referencing
commits, number of issues recorded, usage of continuous integration, num-
ber of pull requests, and distribution of commits per author. We found that
Java TDD projects were relatively rare. In addition, there were very few
significant differences in any of the metrics we used to compare TDD-like
and non-TDD projects; therefore, our results do not reveal any observable
benefits from using TDD.

[Brown2018] Neil C. C. Brown, Amjad Altadmri, Sue Sentance, and Michael
Kölling. Blackbox, five years on: an evaluation of a large-scale pro-
gramming data collection project. In Proc. Conference on Interna-
tional Computing Education Research (ICER). ACM, Aug 2018, DOI
10.1145/3230977.3230991.
Abstract: The Blackbox project has been collecting programming activity
data from users of BlueJ (a novice-targeted Java development environment)
for nearly five years. The resulting dataset of more than two terabytes of
data has been made available to interested researchers from the outset. In
this paper, we assess the impact of the Blackbox project: we perform a
mapping study to assess eighteen publications which have made use of the
Blackbox data, and we report on the advantages and difficulties experienced
by researchers working with this data, collected via a survey. We find that
Blackbox has enabled pieces of research which otherwise would not have
been possible, but there remain technical challenges in the analysis. Some
of these—but not all—relate to the scale of the data. We provide sugges-
tions for the future use of Blackbox, and reflections on the role of such data
collection projects in programming research.

[Brun2011] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin.
Proactive detection of collaboration conflicts. In Proc. International Sym-
posium on Foundations of Software Engineering/International Symposium
on the Foundations of Software Engineering (SIGSOFT/FSE). ACM Press,
2011, DOI 10.1145/2025113.2025139.
Abstract: Collaborative development can be hampered when conflicts arise
because developers have inconsistent copies of a shared project. We present
an approach to help developers identify and resolve conflicts early, before
those conflicts become severe and before relevant changes fade away in the
developers’ memories. This paper presents three results. First, a study of
open-source systems establishes that conflicts are frequent, persistent, and
appear not only as overlapping textual edits but also as subsequent build and
test failures. The study spans nine open-source systems totaling 3.4 million

24

lines of code; our conflict data is derived from 550,000 development versions
of the systems. Second, using previously-unexploited information, we pre-
cisely diagnose important classes of conflicts using the novel technique of
speculative analysis over version control operations. Third, we describe the
design of Crystal, a publicly-available tool that uses speculative analysis to
make concrete advice unobtrusively available to developers, helping them
identify, manage, and prevent conflicts.

[Businge2022] John Businge, Moses Openja, Sarah Nadi, and Thorsten
Berger. Reuse and maintenance practices among divergent forks in three
software ecosystems. Empirical Software Engineering, 27(2), Mar 2022, DOI
10.1007/s10664-021-10078-2.
Abstract: With the rise of social coding platforms that rely on distributed
version control systems, software reuse is also on the rise. Many software de-
velopers leverage this reuse by creating variants through forking, to account
for different customer needs, markets, or environments. Forked variants then
form a so-called software family; they share a common code base and are
maintained in parallel by same or different developers. As such, software
families can easily arise within software ecosystems, which are large col-
lections of interdependent software components maintained by communities
of collaborating contributors. However, little is known about the existence
and characteristics of such families within ecosystems, especially about their
maintenance practices. Improving our empirical understanding of such fam-
ilies will help build better tools for maintaining and evolving such families.
We empirically explore maintenance practices in such fork-based software
families within ecosystems of open-source software. Our focus is on three
of the largest software ecosystems existence today: Android, .NET, and
JavaScript. We identify and analyze software families that are maintained
together and that exist both on the official distribution platform (Google
play, nuget, and npm) as well as on GitHub , allowing us to analyze reuse
practices in depth. We mine and identify 38 software families, 526 software
families, and 8,837 software families from the ecosystems of Android, .NET,
and JavaScript, to study their characteristics and code-propagation prac-
tices. We provide scripts for analyzing code integration within our families.
Interestingly, our results show that there is little code integration across the
studied software families from the three ecosystems. Our studied families
also show that techniques of direct integration using git outside of GitHub is
more commonly used than GitHub pull requests. Overall, we hope to raise
awareness about the existence of software families within larger ecosystems
of software, calling for further research and better tools support to effectively
maintain and evolve them.

[Butler2019] Simon Butler, Jonas Gamalielsson, Bjorn Lundell, Christoffer
Brax, Johan Sjoberg, Anders Mattsson, Tomas Gustavsson, Jonas Feist,
and Erik Lonroth. On company contributions to community open source
software projects. IEEE Transactions on Software Engineering, page 1–1,
2019, DOI 10.1109/tse.2019.2919305.

25

Abstract: The majority of contributions to community open source soft-
ware (OSS) projects are made by practitioners acting on behalf of companies
and other organisations. Previous research has addressed the motivations of
both individuals and companies to engage with OSS projects. However, lim-
ited research has been undertaken that examines and explains the practical
mechanisms or work practices used by companies and their developers to
pursue their commercial and technical objectives when engaging with OSS
projects. This research investigates the variety of work practices used in
public communication channels by company contributors to engage with
and contribute to eight community OSS projects. Through interviews with
contributors to the eight projects we draw on their experiences and insights
to explore the motivations to use particular methods of contribution. We
find that companies utilise work practices for contributing to community
projects which are congruent with the circumstances and their capabilities
that support their short- and long-term needs. We also find that compa-
nies contribute to community OSS projects in ways that may not always
be apparent from public sources, such as employing core project developers,
making donations, and joining project steering committees in order to ad-
vance strategic interests. The factors influencing contributor work practices
can be complex and are often dynamic arising from considerations such as
company and project structure, as well as technical concerns and commer-
cial strategies. The business context in which software created by the OSS
project is deployed is also found to influence contributor work practices.

[Campos2017] Eduardo Cunha Campos and Marcelo de Almeida Maia. Com-
mon bug-fix patterns: a large-scale observational study. In Proc. Inter-
national Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, Nov 2017, DOI 10.1109/esem.2017.55.
Abstract: [Background]: There are more bugs in real-world programs than
human programmers can realistically address. Several approaches have been
proposed to aid debugging. A recent research direction that has been in-
creasingly gaining interest to address the reduction of costs associated with
defect repair is automatic program repair. Recent work has shown that some
kind of bugs are more suitable for automatic repair techniques. [Aim]: The
detection and characterization of common bug-fix patterns in software repos-
itories play an important role in advancing the field of automatic program
repair. In this paper, we aim to characterize the occurrence of known bug-
fix patterns in Java repositories at an unprecedented large scale. [Method]:
The study was conducted for Java GitHub projects organized in two distinct
data sets: the first one (i.e., Boa data set) contains more than 4 million bug-
fix commits from 101,471 projects and the second one (i.e., Defects4J data
set) contains 369 real bug fixes from five open-source projects. We used a
domain-specific programming language called Boa in the first data set and
conducted a manual analysis on the second data set in order to confront the
results. [Results]: We characterized the prevalence of the five most common
bug-fix patterns (identified in the work of Pan et al.) in those bug fixes. The

26

combined results showed direct evidence that developers often forget to add
IF preconditions in the code. Moreover, 76% of bug-fix commits associated
with the IF-APC bug-fix pattern are isolated from the other four bug-fix
patterns analyzed. [Conclusion]: Targeting on bugs that miss preconditions
is a feasible alternative in automatic repair techniques that would produce
a relevant payback.

[CardosoPereira2023] Isadora Cardoso-Pereira, Geraldo Gomes,
Danilo Monteiro Ribeiro, Alberto de Souza, Danilo Lucena, and Gus-
tavo Pinto. Supporting the careers of developers with disabilities: Lessons
from Zup Innovation, 2023.
Abstract: Software developers with disabilities have a hard time to join the
software development market. Due to the lack of diversity that developers
with disabilities could hinder innovation. In this work, we explore the
Catalisa program envisioned by Zup Innovation, a Brazilian tech company,
aimed to hire and train software developers with disabilities. We found that
the program was able to accelerate the participants careers, although some
shortcomings are still present.

[Chen2016] Tse-Hsun Chen, Weiyi Shang, Jinqiu Yang, Ahmed E. Hassan,
Michael W. Godfrey, Mohamed Nasser, and Parminder Flora. An empirical
study on the practice of maintaining object-relational mapping code in Java
systems. In Proc. International Conference on Mining Software Repositories
(MSR). ACM, May 2016, DOI 10.1145/2901739.2901758.
Abstract: Databases have become one of the most important components
in modern software systems. For example, web services, cloud comput-
ing systems, and online transaction processing systems all rely heavily on
databases. To abstract the complexity of accessing a database, developers
make use of Object-Relational Mapping (ORM) frameworks. ORM frame-
works provide an abstraction layer between the application logic and the
underlying database. Such abstraction layer automatically maps objects in
Object-Oriented Languages to database records, which significantly reduces
the amount of boilerplate code that needs to be written. Despite the ad-
vantages of using ORM frameworks, we observe several difficulties in main-
taining ORM code (i.e., code that makes use of ORM frameworks) when
cooperating with our industrial partner. After conducting studies on other
open source systems, we find that such difficulties are common in other
Java systems. Our study finds that i) ORM cannot completely encapsulate
database accesses in objects or abstract the underlying database technology,
thus may cause ORM code changes more scattered; ii) ORM code changes
are more frequent than regular code, but there is a lack of tools that help
developers verify ORM code at compilation time; iii) we find that changes
to ORM code are more commonly due to performance or security reasons;
however, traditional static code analyzers need to be extended to capture
the peculiarities of ORM code in order to detect such problems. Our study
highlights the hidden maintenance costs of using ORM frameworks, and pro-
vides some initial insights about potential approaches to help maintain ORM

27

code. Future studies should carefully examine ORM code, especially given
the rising use of ORM in modern software systems.

[Cherubini2007] Mauro Cherubini, Gina Venolia, Rob DeLine, and Amy J.
Ko. Let’s go to the whiteboard: how and why software developers use draw-
ings. In Proc. Conference on Human Factors in Computing Systems (HFCS).
ACM, Apr 2007, DOI 10.1145/1240624.1240714.
Abstract: Software developers are rooted in the written form of their code,
yet they often draw diagrams representing their code. Unfortunately, we
still know little about how and why they create these diagrams, and so there
is little research to inform the design of visual tools to support develop-
ers’ work. This paper presents findings from semi-structured interviews that
have been validated with a structured survey. Results show that most of
the diagrams had a transient nature because of the high cost of changing
whiteboard sketches to electronic renderings. Diagrams that documented de-
sign decisions were often externalized in these temporary drawings and then
subsequently lost. Current visualization tools and the software development
practices that we observed do not solve these issues, but these results suggest
several directions for future research.

[Chong2007] Jan Chong and Tom Hurlbutt. The social dynamics of pair
programming. In Proc. International Conference on Software Engineering
(ICSE). IEEE, May 2007, DOI 10.1109/icse.2007.87.
Abstract: This paper presents data from a four month ethnographic study
of professional pair programmers from two software development teams. Con-
trary to the current conception of pair programmers, the pairs in this study
did not hew to the separate roles of “driver” and “navigator”. Instead, the
observed programmers moved together through different phases of the task,
considering and discussing issues at the same strategic “range” or level of
abstraction and in largely the same role. This form of interaction was re-
inforced by frequent switches in keyboard control during pairing and the
use of dual keyboards. The distribution of expertise among the members
of a pair had a strong influence on the tenor of pair programming interac-
tion. Keyboard control had a consistent secondary effect on decisionmaking
within the pair. These findings have implications for software development
managers and practitioners as well as for the design of software development
tools.

[Cinneide2012] Mel Ó Cinnéide, Laurence Tratt, Mark Harman, Steve Coun-
sell, and Iman Hemati Moghadam. Experimental assessment of software
metrics using automated refactoring. In Proc. International Symposium
on Empirical Software Engineering and Measurement (ESEM). ACM Press,
2012, DOI 10.1145/2372251.2372260.
Abstract: A large number of software metrics have been proposed in the
literature, but there is little understanding of how these metrics relate to one
another. We propose a novel experimental technique, based on search-based
refactoring, to assess software metrics and to explore relationships between

28

them. Our goal is not to improve the program being refactored, but to assess
the software metrics that guide the automated refactoring through repeated
refactoring experiments. We apply our approach to five popular cohesion
metrics using eight real-world Java systems, involving 300,000 lines of code
and over 3,000 refactorings. Our results demonstrate that cohesion metrics
disagree with each other in 55% of cases, and show how our approach can be
used to reveal novel and surprising insights into the software metrics under
investigation.

[Codoban2015] Mihai Codoban, Sruti Srinivasa Ragavan, Danny Dig, and
Brian Bailey. Software history under the lens: A study on why and how
developers examine it. In Proc. International Conference on Software Main-
tenance (ICSM). IEEE, Sep 2015, DOI 10.1109/icsm.2015.7332446.
Abstract: Despite software history being indispensable for developers, there
is little empirical knowledge about how they examine software history. With-
out such knowledge, researchers and tool builders are in danger of making
wrong assumptions and building inadequate tools. In this paper we present
an in-depth empirical study about the motivations developers have for ex-
amining software history, the strategies they use, and the challenges they
encounter. To learn these, we interviewed 14 experienced developers from
industry, and then extended our findings by surveying 217 developers. We
found that history does not begin with the latest commit but with uncommit-
ted changes. Moreover, we found that developers had different motivations
for examining recent and old history. Based on these findings we propose
3-LENS HISTORY, a novel unified model for reasoning about software his-
tory.

[Coelho2016] Roberta Coelho, Lucas Almeida, Georgios Gousios, Arie van
Deursen, and Christoph Treude. Exception handling bug hazards in An-
droid. Empirical Software Engineering, 22(3):1264–1304, Aug 2016, DOI
10.1007/s10664-016-9443-7.
Abstract: Adequate handling of exceptions has proven difficult for many
software engineers. Mobile app developers in particular, have to cope with
compatibility, middleware, memory constraints, and battery restrictions.
The goal of this paper is to obtain a thorough understanding of common
exception handling bug hazards that app developers face. To that end, we
first provide a detailed empirical study of over 6,000 Java exception stack
traces we extracted from over 600 open source Android projects. Key insights
from this study include common causes for system crashes, and common
chains of wrappings between checked and unchecked exceptions. Further-
more, we provide a survey with 71 developers involved in at least one of
the projects analyzed. The results corroborate the stack trace findings, and
indicate that developers are unaware of frequently occurring undocumented
exception handling behavior. Overall, the findings of our study call for tool
support to help developers understand their own and third party exception
handling and wrapping logic.

29

[Costa2019] Diego Elias Costa, Cor-Paul Bezemer, Philip Leitner, and Ar-
tur Andrzejak. What’s wrong with my benchmark results? studying bad
practices in JMH benchmarks. IEEE Transactions on Software Engineer-
ing, page 1–1, 2019, DOI 10.1109/tse.2019.2925345.
Abstract: Microbenchmarking frameworks, such as Java’s Microbench-
mark Harness (JMH), allow developers to write fine-grained performance
test suites at the method or statement level. However, due to the complex-
ities of the Java Virtual Machine, developers often struggle with writing
expressive JMH benchmarks which accurately represent the performance of
such methods or statements. In this paper, we empirically study bad prac-
tices of JMH benchmarks. We present a tool that leverages static analysis
to identify 5 bad JMH practices. Our empirical study of 123 open source
Java-based systems shows that each of these 5 bad practices are prevalent
in open source software. Further, we conduct several experiments to quan-
tify the impact of each bad practice in multiple case studies, and find that
bad practices often significantly impact the benchmark results. To validate
our experimental results, we constructed seven patches that fix the identi-
fied bad practices for six of the studied open source projects, of which six
were merged into the main branch of the project. In this paper, we show that
developers struggle with accurate Java microbenchmarking, and provide sev-
eral recommendations to developers of microbenchmarking frameworks on
how to improve future versions of their framework.

[Costa2022] Keila Costa, Ronivaldo Ferreira, Gustavo Pinto, Marcelo
d’Amorim, and Breno Miranda. Test flakiness across programming lan-
guages. IEEE Transactions on Software Engineering, page 1–14, 2022, DOI
10.1109/tse.2022.3208864.
Abstract: Regression Testing (RT) is a quality-assurance practice com-
monly adopted in the software industry to check if functionality remains
intact after code changes. Test flakiness is a serious problem for RT. A test
is said to be flaky when it non-deterministically passes or fails on a fixed
environment. Prior work studied test flakiness primarily on Java programs.
It is unclear, however, how problematic is test flakiness for software written
in other programming languages. This paper reports on a study focusing on
three central aspects of test flakiness: concentration, similarity, and cost.
Considering concentration, our results show that, for any given program-
ming language that we studied (C, Go, Java, JS, and Python), most issues
could be explained by a small fraction of root causes (5/13 root causes cover
78.07% of the issues) and could be fixed by a relatively small fraction of
fix strategies (10/23 fix strategies cover 85.20% of the issues). Considering
similarity, although there were commonalities in root causes and fixes across
languages (e.g., concurrency and async wait are common causes of flaki-
ness in most languages), we also found important differences (e.g., flakiness
due to improper release of resources are more common in C), suggesting that
there is opportunity to fine tuning analysis tools. Considering cost, we found
that issues related to flaky tests are resolved either very early once they are

30

posted (¡10 days), suggesting relevance, or very late (¿100 days), suggesting
irrelevance.

[CruzLemus2009] José A. Cruz-Lemus, Marcela Genero, M. Esperanza
Manso, Sandro Morasca, and Mario Piattini. Assessing the understand-
ability of UML statechart diagrams with composite states—a family of em-
pirical studies. Empirical Software Engineering, 14(6):685–719, Feb 2009,
DOI 10.1007/s10664-009-9106-z.
Abstract: The main goal of this work is to present a family of empirical
studies that we have carried out to investigate whether the use of composite
states may improve the understandability of UML statechart diagrams de-
rived from class diagrams. Our hypotheses derive from conventional wisdom,
which says that hierarchical modeling mechanisms are helpful in mastering
the complexity of a software system. In our research, we have carried out
three empirical studies, consisting of five experiments in total. The studies
differed somewhat as regards the size of the UML statechart models, though
their size and the complexity of the models were chosen so that they could
be analyzed by the subjects within a limited time period. The studies also
differed with respect to the type of subjects (students vs. professionals), the
familiarity of the subjects with the domains of the diagrams, and other fac-
tors. To integrate the results obtained from each of the five experiments, we
performed a meta-analysis study which allowed us to take into account the
differences between studies and to obtain the overall effect that the use of
composite states has on the understandability of UML statechart diagrams
throughout all the experiments. The results obtained are not completely
conclusive. They cast doubts on the usefulness of composite states for a bet-
ter understanding and memorizing of UML statechart diagrams. Composite
states seem only to be helpful for acquiring knowledge from the diagrams. At
any rate, it should be noted that these results are affected by the previous
experience of the subjects on modeling, as well as by the size and complex-
ity of the UML statechart diagrams we used, so care should be taken when
generalizing our results.

[Dabbish2012] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herb-
sleb. Social coding in GitHub: transparency and collaboration in an open
software repository. In Proc. Conference on Computer Supported Coopera-
tive Work (CSCW). ACM Press, 2012, DOI 10.1145/2145204.2145396.
Abstract: Social applications on the web let users track and follow the ac-
tivities of a large number of others regardless of location or affiliation. There
is a potential for this transparency to radically improve collaboration and
learning in complex knowledge-based activities. Based on a series of in-depth
interviews with central and peripheral GitHub users, we examined the value
of transparency for large-scale distributed collaborations and communities
of practice. We find that people make a surprisingly rich set of social infer-
ences from the networked activity information in GitHub, such as inferring
someone else’s technical goals and vision when they edit code, or guessing
which of several similar projects has the best chance of thriving in the long

31

term. Users combine these inferences into effective strategies for coordinating
work, advancing technical skills and managing their reputation.

[Dagenais2010] Barthélémy Dagenais and Martin P. Robillard. Creating and
evolving developer documentation. In Proc. International Symposium on
the Foundations of Software Engineering (FSE). ACM Press, 2010, DOI
10.1145/1882291.1882312.
Abstract: Developer documentation helps developers learn frameworks and
libraries. To better understand how documentation in open source projects
is created and maintained, we performed a qualitative study in which we
interviewed core contributors who wrote developer documentation and de-
velopers who read documentation. In addition, we studied the evolution of 19
documents by analyzing more than 1500 document revisions. We identified
the decisions that contributors make, the factors influencing these decisions
and the consequences for the project. Among many findings, we observed
how working on the documentation could improve the code quality and how
constant interaction with the projects’ community positively impacted the
documentation.

[Dang2012] Yingnong Dang, Rongxin Wu, Hongyu Zhang, Dongmei Zhang,
and Peter Nobel. ReBucket: a method for clustering duplicate crash reports
based on call stack similarity. In Proc. International Conference on Software
Engineering (ICSE). IEEE, Jun 2012, DOI 10.1109/icse.2012.6227111.
Abstract: Software often crashes. Once a crash happens, a crash report
could be sent to software developers for investigation upon user permis-
sion. To facilitate efficient handling of crashes, crash reports received by Mi-
crosoft’s Windows Error Reporting (WER) system are organized into a set
of “buckets”. Each bucket contains duplicate crash reports that are deemed
as manifestations of the same bug. The bucket information is important
for prioritizing efforts to resolve crashing bugs. To improve the accuracy of
bucketing, we propose ReBucket, a method for clustering crash reports based
on call stack matching. ReBucket measures the similarities of call stacks in
crash reports and then assigns the reports to appropriate buckets based
on the similarity values. We evaluate ReBucket using crash data collected
from five widely-used Microsoft products. The results show that ReBucket
achieves better overall performance than the existing methods. On average,
the F-measure obtained by ReBucket is about 0.88.

[Danilova2021] Anastasia Danilova, Alena Naiakshina, Stefan Horstmann,
and Matthew Smith. Do you really code? designing and evaluating screen-
ing questions for online surveys with programmers. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, May 2021, DOI
10.1109/icse43902.2021.00057.
Abstract: Recruiting professional programmers in sufficient numbers for re-
search studies can be challenging because they often cannot spare the time,
or due to their geographical distribution and potentially the cost involved.
Online platforms such as Clickworker or Qualtrics do provide options to re-

32

cruit participants with programming skill; however, misunderstandings and
fraud can be an issue. This can result in participants without programming
skill taking part in studies and surveys. If these participants are not detected,
they can cause detrimental noise in the survey data. In this paper, we develop
screener questions that are easy and quick to answer for people with pro-
gramming skill but difficult to answer correctly for those without. In order
to evaluate our questionnaire for efficacy and efficiency, we recruited several
batches of participants with and without programming skill and tested the
questions. In our batch 42% of Clickworkers stating that they have program-
ming skill did not meet our criteria and we would recommend filtering these
from studies. We also evaluated the questions in an adversarial setting. We
conclude with a set of recommended questions which researchers can use to
recruit participants with programming skill from online platforms.

[Davis2019] James C. Davis, Louis G. Michael IV, Christy A. Coghlan, Fran-
cisco Servant, and Dongyoon Lee. Why aren’t regular expressions a lingua
franca? An empirical study on the re-use and portability of regular expres-
sions. In Proc. European Software Engineering Conference/International
Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, Aug 2019, DOI 10.1145/3338906.3338909.
Abstract: This paper explores the extent to which regular expressions
(regexes) are portable across programming languages. Many languages offer
similar regex syntaxes, and it would be natural to assume that regexes can be
ported across language boundaries. But can regexes be copy/pasted across
language boundaries while retaining their semantic and performance char-
acteristics? In our survey of 158 professional software developers, most indi-
cated that they re-use regexes across language boundaries and about half re-
ported that they believe regexes are a universal language. We experimentally
evaluated the riskiness of this practice using a novel regex corpus—537,806
regexes from 193,524 projects written in JavaScript, Java, PHP, Python,
Ruby, Go, Perl, and Rust. Using our polyglot regex corpus, we explored the
hitherto-unstudied regex portability problems: logic errors due to seman-
tic differences, and security vulnerabilities due to performance differences.
We report that developers’ belief in a regex lingua franca is understandable
but unfounded. Though most regexes compile across language boundaries,
15% exhibit semantic differences across languages and 10% exhibit perfor-
mance differences across languages. We explained these differences using
regex documentation, and further illuminate our findings by investigating
regex engine implementations. Along the way we found bugs in the regex
engines of JavaScript-V8, Python, Ruby, and Rust, and potential semantic
and performance regex bugs in thousands of modules.

[DeKoven2019] Louis F. DeKoven, Audrey Randall, Ariana Mirian, Gautam
Akiwate, Ansel Blume, Lawrence K. Saul, Aaron Schulman, Geoffrey M.
Voelker, and Stefan Savage. Measuring security practices and how they
impact security. In Proceedings of the Internet Measurement Conference.
ACM, Oct 2019, DOI 10.1145/3355369.3355571.

33

Abstract: Security is a discipline that places significant expectations on lay
users. Thus, there are a wide array of technologies and behaviors that we
exhort end users to adopt and thereby reduce their security risk. However,
the adoption of these “best practices” — ranging from the use of antivirus
products to actively keeping software updated — is not well understood, nor
is their practical impact on security risk well-established. This paper explores
both of these issues via a large-scale empirical measurement study covering
approximately 15,000 computers over six months. We use passive monitoring
to infer and characterize the prevalence of various security practices in situ
as well as a range of other potentially security-relevant behaviors. We then
explore the extent to which differences in key security behaviors impact
real-world outcomes (i.e., that a device shows clear evidence of having been
compromised).

[DeLucia2009] Andrea De Lucia, Carmine Gravino, Rocco Oliveto, and Gen-
oveffa Tortora. An experimental comparison of ER and UML class diagrams
for data modelling. Empirical Software Engineering, 15(5):455–492, Dec
2009, DOI 10.1007/s10664-009-9127-7.
Abstract: We present the results of three sets of controlled experiments
aimed at analysing whether UML class diagrams are more comprehensible
than ER diagrams during data models maintenance. In particular, we con-
sidered the support given by the two notations in the comprehension and
interpretation of data models, comprehension of the change to perform to
meet a change request, and detection of defects contained in a data model.
The experiments involved university students with different levels of abil-
ity and experience. The results demonstrate that using UML class diagrams
subjects achieved better comprehension levels. With regard to the support
given by the two notations during maintenance activities the results demon-
strate that the two notations give the same support, while in general UML
class diagrams provide a better support with respect to ER diagrams during
verification activities.

[DePadua2018] Guilherme B. de Pádua and Weiyi Shang. Studying the re-
lationship between exception handling practices and post-release defects.
In Proc. International Conference on Mining Software Repositories (MSR).
ACM, May 2018, DOI 10.1145/3196398.3196435.
Abstract: Modern programming languages, such as Java and C#, typi-
cally provide features that handle exceptions. These features separate error-
handling code from regular source code and aim to assist in the practice
of software comprehension and maintenance. Nevertheless, their misuse can
still cause reliability degradation or even catastrophic software failures. Prior
studies on exception handling revealed the suboptimal practices of the ex-
ception handling flows and the prevalence of their anti-patterns. However,
little is known about the relationship between exception handling practices
and software quality. In this work, we investigate the relationship between
software quality (measured by the probability of having post-release de-
fects) and: (i) exception flow characteristics and (ii) 17 exception handling

34

anti-patterns. We perform a case study on three Java and C# open-source
projects. By building statistical models of the probability of post-release de-
fects using traditional software metrics and metrics that are associated with
exception handling practice, we study whether exception flow characteristics
and exception handling anti-patterns have a statistically significant relation-
ship with post-release defects. We find that exception flow characteristics in
Java projects have a significant relationship with post-release defects. In ad-
dition, although the majority of the exception handing anti-patterns are not
significant in the models, there exist anti-patterns that can provide signifi-
cant explanatory power to the probability of post-release defects. Therefore,
development teams should consider allocating more resources to improving
their exception handling practices and avoid the anti-patterns that are found
to have a relationship with post-release defects. Our findings also highlight
the need for techniques that assist in handling exceptions in the software
development practice.

[DeSouzaSantos2023] Ronnie de Souza Santos, Brody Stuart-Verner, and
Cleyton Magalhães. What do transgender software professionals say about
a career in the software industry? IEEE Software, page 1–6, 2023, DOI
10.1109/ms.2023.3257743.
Abstract: Diversity is an essential aspect of software development because
technology influences almost every aspect of modern society, and if the soft-
ware industry lacks diversity, software products might unintentionally con-
strain groups of individuals instead of promoting an equalitarian experience
to all. In this study, we investigate the perspectives of transgender software
professionals about a career in software engineering as one of the aspects
of diversity in the software industry. Our findings demonstrate that, on the
one hand, trans people choose careers in software engineering for two pri-
mary reasons: a) even though software development environments are not
exempt from discrimination, the software industry is safer than other indus-
tries for transgenders; b) trans people occasionally have to deal with gender
dysphoria, anxiety, and fear of judgment, and the work flexibility offered by
software companies allow them to cope with these issues more efficiently.

[Decan2021a] Alexandre Decan and Tom Mens. Lost in zero space—an
empirical comparison of 0.y.z releases in software package distribu-
tions. Science of Computer Programming, 208:102656, Aug 2021, DOI
10.1016/j.scico.2021.102656.
Abstract: Distributions of open source software packages dedicated to spe-
cific programming languages facilitate software development by allowing soft-
ware projects to depend on the functionality provided by such reusable pack-
ages. The health of a software project can be affected by the maturity of the
packages on which it depends. The version numbers of the used package re-
leases provide an indication of their maturity. Packages with a 0.y.z version
number are commonly assumed to be under initial development, suggesting
that they are likely to be less stable, and depending on them may be consid-
ered as less healthy. In this paper, we empirically study, for four open source

35

package distributions (Cargo, npm, Packagist and RubyGems) to which ex-
tent 0.y.z package releases and ≥1.0.0 package releases behave differently.
We quantify the prevalence of 0.y.z releases, we explore how long packages
remain in the initial development stage, we compare the update frequency
of 0.y.z and ≥1.0.0 package releases, we study how often 0.y.z releases are re-
quired by other packages, we assess whether semantic versioning is respected
for dependencies towards them, and we compare some characteristics of 0.y.z
and ≥1.0.0 package repositories hosted on GitHub. Among others, we ob-
serve that package distributions are more permissive than what semantic
versioning dictates for 0.y.z releases, and that many of the 0.y.z releases
can actually be regarded as mature packages. As a consequence, the version
number does not provide a good indication of the maturity of a package
release.

[Decan2021b] Alexandre Decan and Tom Mens. What do package depen-
dencies tell us about semantic versioning? IEEE Transactions on Software
Engineering, 47(6):1226–1240, Jun 2021, DOI 10.1109/tse.2019.2918315.
Abstract: The semantic versioning (semver) policy is commonly accepted
by open source package management systems to inform whether new releases
of software packages introduce possibly backward incompatible changes.
Maintainers depending on such packages can use this information to avoid
or reduce the risk of breaking changes in their own packages by specifying
version constraints on their dependencies. Depending on the amount of con-
trol a package maintainer desires to have over her package dependencies,
these constraints can range from very permissive to very restrictive. This
article empirically compares semver compliance of four software packaging
ecosystems (Cargo, npm, Packagist and Rubygems), and studies how this
compliance evolves over time. We explore to what extent ecosystem-specific
characteristics or policies influence the degree of compliance. We also pro-
pose an evaluation based on the “wisdom of the crowds” principle to help
package maintainers decide which type of version constraints they should
impose on their dependencies.

[Demaine2023] Erik D. Demaine and Martin L. Demaine. Every author as
first author, 2023.
Abstract: We propose a new standard for writing author names on papers
and in bibliographies, which places every author as a first author – superim-
posed. This approach enables authors to write papers as true equals, without
any advantage given to whoever’s name happens to come first alphabetically
(for example). We develop the technology for implementing this standard in
LaTeX, BibTeX, and HTML; show several examples; and discuss further
advantages.

[Dilhara2023] Malinda Dilhara, Danny Dig, and Ameya Ketkar. PYE-
VOLVE: Automating frequent code changes in Python ML systems.
https://danny.cs.colorado.edu/papers/PyEvolve ICSE2023.pdf, 2023.
Abstract: Because of the naturalness of software and the rapid evolu-

36

tion of Machine Learning (ML) techniques, frequently repeated code change
patterns (CPATs) occur often. They range from simple API migrations to
changes involving several complex control structures such as for loops. While
manually performing CPATs is tedious, the current state-of-the-art tech-
niques for inferring transformation rules are not advanced enough to handle
unseen variants of complex CPATs, resulting in a low recall rate. In this
paper we present a novel, automated workflow that mines CPATs, infers the
transformation rules, and then transplants them automatically to new target
sites. We designed, implemented, evaluated and released this in a tool, PYE-
VOLVE. At its core is a novel data-flow, control-flow aware transformation
rule inference engine. Our technique allows us to advance the state-of-the-
art for transformation-by-example tools; without it, 70% of the code changes
that PYEVOLVE transforms would not be possible to automate. Our thor-
ough empirical evaluation of over 40,000 transformations shows 97% preci-
sion and 94% recall. By accepting 90% of CPATs generated by PYEVOLVE
in famous open-source projects, developers confirmed its changes are useful.

[Dorner2023] Michael Dorner, Maximilian Capraro, Oliver Treidler, Tom-Eric
Kunz, Darja Šmite, Ehsan Zabardast, Daniel Mendez, and Krzysztof Wnuk.
Taxing collaborative software engineering, 2023.
Abstract: The engineering of complex software systems is often the result of
a highly collaborative effort. However, collaboration within a multinational
enterprise has an overlooked legal implication when developers collaborate
across national borders: It is taxable. In this short article, we discuss the un-
solved problem of taxing collaborative software engineering across borders.
We (1) introduce the reader to the basic principle of international taxation,
(2) identify three main challenges for taxing collaborative software engineer-
ing, and (3) estimate the industrial significance of cross-border collaboration
in modern software engineering by measuring cross-border code reviews at
a multinational software company.

[Durieux2020] Thomas Durieux, Claire Le Goues, Michael Hilton, and Rui
Abreu. Empirical study of restarted and flaky builds on travis CI. In Proc.
International Conference on Mining Software Repositories (MSR). ACM,
Jun 2020, DOI 10.1145/3379597.3387460.
Abstract: Continuous Integration (CI) is a development practice where
developers frequently integrate code into a common codebase. After the code
is integrated, the CI server runs a test suite and other tools to produce a
set of reports (e.g., the output of linters and tests). If the result of a CI
test run is unexpected, developers have the option to manually restart the
build, re-running the same test suite on the same code; this can reveal build
flakiness, if the restarted build outcome differs from the original build. In
this study, we analyze restarted builds, flaky builds, and their impact on the
development workflow. We observe that developers restart at least 1.72%
of builds, amounting to 56,522 restarted builds in our Travis CI dataset.
We observe that more mature and more complex projects are more likely
to include restarted builds. The restarted builds are mostly builds that are

37

initially failing due to a test, network problem, or a Travis CI limitations
such as execution timeout. Finally, we observe that restarted builds have an
impact on development workflow. Indeed, in 54.42% of the restarted builds,
the developers analyze and restart a build within an hour of the initial build
execution. This suggests that developers wait for CI results, interrupting
their workflow to address the issue. Restarted builds also slow down the
merging of pull requests by a factor of three, bringing median merging time
from 16h to 48h.

[Dzidek2008] W.J. Dzidek, E. Arisholm, and L.C. Briand. A realistic empir-
ical evaluation of the costs and benefits of UML in software maintenance.
IEEE Transactions on Software Engineering, 34(3):407–432, May 2008, DOI
10.1109/tse.2008.15.
Abstract: The Unified Modeling Language (UML) is the de facto standard
for object-oriented software analysis and design modeling. However, few em-
pirical studies exist that investigate the costs and evaluate the benefits of
using UML in realistic contexts. Such studies are needed so that the soft-
ware industry can make informed decisions regarding the extent to which
they should adopt UML in their development practices. This is the first con-
trolled experiment that investigates the costs of maintaining and the benefits
of using UML documentation during the maintenance and evolution of a real,
non-trivial system, using professional developers as subjects, working with a
state-of-the-art UML tool during an extended period of time. The subjects
in the control group had no UML documentation. In this experiment, the
subjects in the UML group had on average a practically and statistically
significant 54% increase in the functional correctness of changes (p=0.03),
and an insignificant 7% overall improvement in design quality (p=0.22) -
though a much larger improvement was observed on the first change task
(56%) - at the expense of an insignificant 14% increase in development time
caused by the overhead of updating the UML documentation (p=0.35).

[Eghbal2020] Nadia Eghbal. Working in Public: The Making and Mainte-
nance of Open Source Software. Stripe Press, 2020.
Abstract: An inside look at modern open source software developers and
their applications to, and influence on, our online social world.

[Eichberg2015] Michael Eichberg, Ben Hermann, Mira Mezini, and Leonid
Glanz. Hidden truths in dead software paths. In Proc. International Sympo-
sium on the Foundations of Software Engineering (FSE). ACM, Aug 2015,
DOI 10.1145/2786805.2786865.
Abstract: Approaches and techniques for statically finding a multitude of
issues in source code have been developed in the past. A core property of
these approaches is that they are usually targeted towards finding only a
very specific kind of issue and that the effort to develop such an analysis is
significant. This strictly limits the number of kinds of issues that can be de-
tected. In this paper, we discuss a generic approach based on the detection of
infeasible paths in code that can discover a wide range of code smells ranging

38

from useless code that hinders comprehension to real bugs. Code issues are
identified by calculating the difference between the control-flow graph that
contains all technically possible edges and the corresponding graph recorded
while performing a more precise analysis using abstract interpretation. We
have evaluated the approach using the Java Development Kit as well as the
Qualitas Corpus (a curated collection of over 100 Java Applications) and
were able to find thousands of issues across a wide range of categories.

[ElEmam2001] K. El Emam, S. Benlarbi, N. Goel, and S.N. Rai. The
confounding effect of class size on the validity of object-oriented metrics.
IEEE Transactions on Software Engineering, 27(7):630–650, Jul 2001, DOI
10.1109/32.935855.
Abstract: Much effort has been devoted to the development and empirical
validation of object-oriented metrics. The empirical validations performed
thus far would suggest that a core set of validated metrics is close to being
identified. However, none of these studies allow for the potentially confound-
ing effect of class size. We demonstrate a strong size confounding effect and
question the results of previous object-oriented metrics validation studies.
We first investigated whether there is a confounding effect of class size in
validation studies of object-oriented metrics and show that, based on pre-
vious work, there is reason to believe that such an effect exists. We then
describe a detailed empirical methodology for identifying those effects. Fi-
nally, we perform a study on a large C++ telecommunications framework to
examine if size is really a confounder. This study considered the Chidamber
and Kemerer metrics and a subset of the Lorenz and Kidd metrics. The de-
pendent variable was the incidence of a fault attributable to a field failure
(fault-proneness of a class). Our findings indicate that, before controlling for
size, the results are very similar to previous studies. The metrics that are
expected to be validated are indeed associated with fault-proneness.

[Ferrario2023] Maria Angela Ferrario and Emily Winter. Applying human
values theory to software engineering practice: Lessons and implications.
IEEE Transactions on Software Engineering, 49(3):973–990, Mar 2023, DOI
10.1109/tse.2022.3170087.
Abstract: The study of human values in software engineering (SE) is in-
creasingly recognized as a fundamental human-centric issue of SE decision
making. However, values studies in SE still face a number of issues, in-
cluding the difficulty of eliciting values in a systematic and structured way,
the challenges of measuring and tracking values over time, and the lack of
practice-based understanding of values among software practitioners. This
paper aims to help address these issues by: 1) outlining a research frame-
work that supports a systematic approach to values elicitation, analysis,
and understanding; 2) introducing tools and techniques that help elicit and
measure values during SE decision making processes in a systematic way;
and 3) applying such tools to a month-long research sprint co-designed with
an industry partner and conducted with 27 software practitioners. The case
study builds on lessons from an earlier pilot (12 participants) and combines

39

in-situ observations with the use of two values-informed tools: the Values
Q-Sort (V-QS), and the Values-Retro. The V-QS adapts instruments from
values research to the SE context, the Values-Retro adapts existing SE tech-
niques to values theory. We distil implications for research and practice in
ten lessons learned.

[Fischer2015] Lars Fischer and Stefan Hanenberg. An empirical investigation
of the effects of type systems and code completion on API usability using
TypeScript and JavaScript in MS Visual Studio. In Proc. Symposium on Dy-
namic Languages (DL). ACM, Oct 2015, DOI 10.1145/2816707.2816720.
Abstract: Recent empirical studies that compared static and dynamic type
systems on API usability showed a positive impact of static type systems on
developer productivity in most cases. Nevertheless, it is unclear how large
this effect is in comparison to other factors. One obvious factor in program-
ming is tooling: It is commonly accepted that modern IDEs have a large
positive impact on developers, although it is not clear which parts of modern
IDEs are responsible for that. One possible—and for most developers obvious
candidate—is code completion. This paper describes a 2x2 randomized trial
that compares JavaScript and Microsoft’s statically typed alternative Type-
Script with and without code completion in MS Visual Studio. While the
experiment shows (in correspondence to previous experiments) a large posi-
tive effect of the statically typed language TypeScript, the code completion
effect is not only marginal, but also just approaching statistical significance.
This seems to be an indicator that the effect of static type systems is larger
than often assumed, at least in comparison to code completion.

[Ford2016] Denae Ford, Justin Smith, Philip J. Guo, and Chris Parnin. Par-
adise unplugged: identifying barriers for female participation on Stack Over-
flow. In Proc. International Symposium on the Foundations of Software En-
gineering (FSE). ACM, Nov 2016, DOI 10.1145/2950290.2950331.
Abstract: It is no secret that females engage less in programming fields than
males. However, in online communities, such as Stack Overflow, this gender
gap is even more extreme: only 5.8% of contributors are female. In this
paper, we use a mixed-methods approach to identify contribution barriers
females face in online communities. Through 22 semi-structured interviews
with a spectrum of female users ranging from non-contributors to a top 100
ranked user of all time, we identified 14 barriers preventing them from con-
tributing to Stack Overflow. We then conducted a survey with 1470 female
and male developers to confirm which barriers are gender related or general
problems for everyone. Females ranked five barriers significantly higher than
males. A few of these include doubts in the level of expertise needed to con-
tribute, feeling overwhelmed when competing with a large number of users,
and limited awareness of site features. Still, there were other barriers that
equally impacted all Stack Overflow users or affected particular groups, such
as industry programmers. Finally, we describe several implications that may
encourage increased participation in the Stack Overflow community across
genders and other demographics.

40

[Ford2017] Denae Ford, Thomas Zimmermann, Christian Bird, and Nachiap-
pan Nagappan. Characterizing software engineering work with personas
based on knowledge worker actions. In Proc. International Symposium
on Empirical Software Engineering and Measurement (ESEM). IEEE, Nov
2017, DOI 10.1109/esem.2017.54.
Abstract: Mistaking versatility for universal skills, some companies tend
to categorize all software engineers the same not knowing a difference ex-
ists. For example, a company may select one of many software engineers
to complete a task, later finding that the engineer’s skills and style do not
match those needed to successfully complete that task. This can result in
delayed task completion and demonstrates that a one-size fits all concept
should not apply to how software engineers work. In order to gain a com-
prehensive understanding of different software engineers and their working
styles we interviewed 21 participants and surveyed 868 software engineers
at a large software company and asked them about their work in terms of
knowledge worker actions. We identify how tasks, collaboration styles, and
perspectives of autonomy can significantly effect different approaches to soft-
ware engineering work. To characterize differences, we describe empirically
informed personas on how they work. Our defined software engineering per-
sonas include those with focused debugging abilities, engineers with an active
interest in learning, experienced advisors who serve as experts in their role,
and more. Our study and results serve as a resource for building products,
services, and tools around these software engineering personas.

[Ford2019] Denae Ford, Mahnaz Behroozi, Alexander Serebrenik, and Chris
Parnin. Beyond the code itself: how programmers really look at pull re-
quests. In Proc. International Conference on Software Engineering (ICSE).
IEEE, May 2019, DOI 10.1109/icse-seis.2019.00014.
Abstract: Developers in open source projects must make decisions on con-
tributions from other community members, such as whether or not to accept
a pull request. However, secondary factors-beyond the code itself-can influ-
ence those decisions. For example, signals from GitHub profiles, such as a
number of followers, activity, names, or gender can also be considered when
developers make decisions. In this paper, we examine how developers use
these signals (or not) when making decisions about code contributions. To
evaluate this question, we evaluate how signals related to perceived gender
identity and code quality influenced decisions on accepting pull requests.
Unlike previous work, we analyze this decision process with data collected
from an eye-tracker. We analyzed differences in what signals developers said
are important for themselves versus what signals they actually used to make
decisions about others. We found that after the code snippet (x=57%), the
second place programmers spent their time fixating is on supplemental tech-
nical signals (x=32%), such as previous contributions and popular reposito-
ries. Diverging from what participants reported themselves, we also found
that programmers fixated on social signals more than recalled.

[Freeman1972] Jo Freeman. The tyranny of structurelessness. The Second

41

Wave, 2(1), 1972.
Abstract: An influential essay pointing out that every organization has a
power structure; the only question is whether it’s formal and accountable,
or informal and unaccountable.

[Fritzsch2021] Jonas Fritzsch, Marvin Wyrich, Justus Bogner, and Stefan
Wagner. Résumé-driven development: A definition and empirical character-
ization. In Proc. International Conference on Software Engineering (ICSE).
IEEE, May 2021, DOI 10.1109/icse-seis52602.2021.00011.
Abstract: Technologies play an important role in the hiring process for soft-
ware professionals. Within this process, several studies revealed misconcep-
tions and bad practices which lead to suboptimal recruitment experiences.
In the same context, grey literature anecdotally coined the term Résumé-
Driven Development (RDD), a phenomenon describing the overemphasis of
trending technologies in both job offerings and resumes as an interaction
between employers and applicants. While RDD has been sporadically men-
tioned in books and online discussions, there are so far no scientific studies on
the topic, despite its potential negative consequences. We therefore empiri-
cally investigated this phenomenon by surveying 591 software professionals
in both hiring (130) and technical (558) roles and identified RDD facets in
substantial parts of our sample: 60% of our hiring professionals agreed that
trends influence their job offerings, while 82% of our software professionals
believed that using trending technologies in their daily work makes them
more attractive for prospective employers. Grounded in the survey results,
we conceptualize a theory to frame and explain Résumé-Driven Develop-
ment. Finally, we discuss influencing factors and consequences and propose
a definition of the term. Our contribution provides a foundation for future re-
search and raises awareness for a potentially systemic trend that may broadly
affect the software industry.

[Fucci2016] Davide Fucci, Giuseppe Scanniello, Simone Romano, Martin
Shepperd, Boyce Sigweni, Fernando Uyaguari, Burak Turhan, Natalia Ju-
risto, and Markku Oivo. An external replication on the effects of test-driven
development using a multi-site blind analysis approach. In Proc. Inter-
national Symposium on Empirical Software Engineering and Measurement
(ESEM). ACM, Sep 2016, DOI 10.1145/2961111.2962592.
Abstract: Context: Test-driven development (TDD) is an agile practice
claimed to improve the quality of a software product, as well as the pro-
ductivity of its developers. A previous study (i.e., baseline experiment) at
the University of Oulu (Finland) compared TDD to a test-last development
(TLD) approach through a randomized controlled trial. The results failed to
support the claims. Goal: We want to validate the original study results by
replicating it at the University of Basilicata (Italy), using a different design.
Method: We replicated the baseline experiment, using a crossover design,
with 21 graduate students. We kept the settings and context as close as possi-
ble to the baseline experiment. In order to limit researchers bias, we involved
two other sites (UPM, Spain, and Brunel, UK) to conduct blind analysis of

42

the data. Results: The Kruskal-Wallis tests did not show any significant dif-
ference between TDD and TLD in terms of testing effort (p-value = .27),
external code quality (p-value = .82), and developers’ productivity (p-value
= .83). Nevertheless, our data revealed a difference based on the order in
which TDD and TLD were applied, though no carry over effect. Conclu-
sions: We verify the baseline study results, yet our results raises concerns
regarding the selection of experimental objects, particularly with respect to
their interaction with the order in which of treatments are applied. We rec-
ommend future studies to survey the tasks used in experiments evaluating
TDD. Finally, to lower the cost of replication studies and reduce researchers’
bias, we encourage other research groups to adopt similar multi-site blind
analysis approach described in this paper.

[Fucci2020] Davide Fucci, Giuseppe Scanniello, Simone Romano, and Natalia
Juristo. Need for sleep: The impact of a night of sleep deprivation on
novice developers’ performance. IEEE Transactions on Software Engineer-
ing, 46(1):1–19, Jan 2020, DOI 10.1109/tse.2018.2834900.
Abstract: We present a quasi-experiment to investigate whether, and to
what extent, sleep deprivation impacts the performance of novice software
developers using the agile practice of test-first development (TFD). We re-
cruited 45 undergraduates, and asked them to tackle a programming task.
Among the participants, 23 agreed to stay awake the night before carrying
out the task, while 22 slept normally. We analyzed the quality (i.e., the func-
tional correctness) of the implementations delivered by the participants in
both groups, their engagement in writing source code (i.e., the amount of
activities performed in the IDE while tackling the programming task) and
ability to apply TFD (i.e., the extent to which a participant is able to ap-
ply this practice). By comparing the two groups of participants, we found
that a single night of sleep deprivation leads to a reduction of 50 percent
in the quality of the implementations. There is notable evidence that the
developers’ engagement and their prowess to apply TFD are negatively im-
pacted. Our results also show that sleep-deprived developers make more fixes
to syntactic mistakes in the source code. We conclude that sleep deprivation
has possibly disruptive effects on software development activities. The results
open opportunities for improving developers’ performance by integrating the
study of sleep with other psycho-physiological factors in which the software
engineering research community has recently taken an interest in.

[Galappaththi2023] Akalanka Galappaththi and Sarah Nadi. A data set of
generalizable python code change patterns, 2023.
Abstract: Mining repetitive code changes from version control history is a
common way of discovering unknown change patterns. Such change patterns
can be used in code recommender systems or automated program repair
techniques. While there are such tools and datasets exist for Java, there is
little work on finding and recommending such changes in Python. In this pa-
per, we present a data set of manually vetted generalizable Python repetitive
code change patterns. We create a coding guideline to identify generalizable

43

change patterns that can be used in automated tooling. We leverage the
mined change patterns from recent work that mines repetitive changes in
Python projects and use our coding guideline to manually review the pat-
terns. For each change, we also record a description of the change and why
it is applied along with other characteristics such as the number of projects
it occurs in. This review process allows us to identify and share 72 Python
change patterns that can be used to build and advance Python developer
support tools.

[Gallagher2017] Kevin Gallagher, Sameer Patil, and Nasir D. Memon. New
me: Understanding expert and non-expert perceptions and usage of the tor
anonymity network. In Proc. Symposium on Usable Privacy and Security
(SOUPS), page 385–398. USENIX Association, 2017.
Abstract: Proper use of an anonymity system requires adequate under-
standing of how it functions. Yet, there is surprisingly little research that
looks into user understanding and usage of anonymity software. Improper use
stemming from a lack of sufficient knowledge of the system has the potential
to lead to deanonymization, which may hold severe personal consequences for
the user. We report on the understanding and the use of the Tor anonymity
system. Via semi-structured interviews with 17 individuals (6 experts and
11 non-experts) we found that experts and non-experts view, understand,
and use Tor in notably different ways. Moreover, both groups exhibit be-
havior as well as gaps in understanding that could potentially compromise
anonymity. Based on these findings, we provide several suggestions for im-
proving the user experience of Tor to facilitate better user understanding of
its operation, threat model, and limitations.

[Gamboa2021] Catarina Gamboa, Paulo Alexandre Santos, Christopher S.
Timperley, and Alcides Fonseca. User-driven design and evaluation of liquid
types in Java, 2021.
Abstract: Bugs that are detected earlier during the development lifecycle
are easier and cheaper to fix, whereas bugs that are found during produc-
tion are difficult and expensive to address, and may have dire consequences.
Type systems are particularly effective at identifying and preventing bugs
early in the development lifecycle by causing invalid programs to result in
build failure. Liquid Types are more powerful than those found in main-
stream programming languages, allowing the detection of more classes of
bugs. However, while Liquid Types were proposed in 2008 with their inte-
gration in ML and subsequently introduced in C (2012), Javascript(2012)
and Haskell(2014) through language extensions, they have yet to become
widely adopted by mainstream developers. This paper investigates how Liq-
uid Types can be integrated in a mainstream programming language, Java,
by proposing a new design that aims to lower the barrier to entry and adapts
to problems that Java developers commonly encounter at runtime. To pro-
mote accessibility, we conducted a series of developer surveys to design the
syntax of LiquidJava, our prototype. To evaluate the prototype’s usability,

44

we conducted a user study of 30 Java developers, concluding that users in-
tend to use LiquidJava and that it helped to find more bugs and debug
faster.

[Gao2017] Zheng Gao, Christian Bird, and Earl T. Barr. To type or not
to type: quantifying detectable bugs in JavaScript. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, May 2017, DOI
10.1109/icse.2017.75.
Abstract: JavaScript is growing explosively and is now used in large ma-
ture projects even outside the web domain. JavaScript is also a dynamically
typed language for which static type systems, notably Facebook’s Flow and
Microsoft’s TypeScript, have been written. What benefits do these static
type systems provide? Leveraging JavaScript project histories, we select a
fixed bug and check out the code just prior to the fix. We manually add
type annotations to the buggy code and test whether Flow and TypeScript
report an error on the buggy code, thereby possibly prompting a devel-
oper to fix the bug before its public release. We then report the proportion
of bugs on which these type systems reported an error. Evaluating static
type systems against public bugs, which have survived testing and review,
is conservative: it understates their effectiveness at detecting bugs during
private development, not to mention their other benefits such as facilitating
code search/completion and serving as documentation. Despite this uneven
playing field, our central finding is that both static type systems find an
important percentage of public bugs: both Flow 0.30 and TypeScript 2.0
successfully detect 15%!.

[Gao2020] Gao Gao, Finn Voichick, Michelle Ichinco, and Caitlin Kelle-
her. Exploring programmers’ API learning processes: Collecting web
resources as external memory. In Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, Aug 2020, DOI
10.1109/vl/hcc50065.2020.9127274.
Abstract: Modern programming frequently requires the use of APIs (Ap-
plication Programming Interfaces). Yet many programmers struggle when
trying to learn APIs. We ran an exploratory study in which we observed
participants performing an API learning task. We analyze their processes us-
ing a proposed model of API learning, grounded in Cognitive Load Theory,
Information Foraging Theory, and External Memory research. The results
provide support for the model of API Learning and add new insights into
the form and usage of external memory while learning APIs. Programmers
quickly curated a set of API resources through Information Foraging which
served as external memory and then primarily referred to these resources to
meet information needs while coding.

[Gauthier2013] Francois Gauthier and Ettore Merlo. Semantic smells and
errors in access control models: a case study in PHP. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, May 2013, DOI
10.1109/icse.2013.6606670.

45

Abstract: Access control models implement mechanisms to restrict access
to sensitive data from unprivileged users. Access controls typically check
privileges that capture the semantics of the operations they protect. Seman-
tic smells and errors in access control models stem from privileges that are
partially or totally unrelated to the action they protect. This paper presents
a novel approach, partly based on static analysis and information retrieval
techniques, for the automatic detection of semantic smells and errors in ac-
cess control models. Investigation of the case study application revealed 31
smells and 2 errors. Errors were reported to developers who quickly confirmed
their relevance and took actions to correct them. Based on the obtained re-
sults, we also propose three categories of semantic smells and errors to lay
the foundations for further research on access control smells in other systems
and domains.

[Ghiotto2020] Gleiph Ghiotto, Leonardo Murta, Marcio Barros, and André
van der Hoek. On the nature of merge conflicts: a study of 2,731 open source
Java projects hosted by GitHub. IEEE Transactions on Software Engineer-
ing, 46(8):892–915, Aug 2020, DOI 10.1109/tse.2018.2871083.
Abstract: When multiple developers change a software system in parallel,
these concurrent changes need to be merged to all appear in the software
being developed. Numerous merge techniques have been proposed to support
this task, but none of them can fully automate the merge process. Indeed, it
has been reported that as much as 10 to 20 percent of all merge attempts re-
sult in a merge conflict, meaning that a developer has to manually complete
the merge. To date, we have little insight into the nature of these merge
conflicts. What do they look like, in detail? How do developers resolve
them? Do any patterns exist that might suggest new merge techniques that
could reduce the manual effort? This paper contributes an in-depth study of
the merge conflicts found in the histories of 2,731 open source Java projects.
Seeded by the manual analysis of the histories of five projects, our automated
analysis of all 2,731 projects: (1) characterizes the merge conflicts in terms
of number of chunks, size, and programming language constructs involved,
(2) classifies the manual resolution strategies that developers use to address
these merge conflicts, and (3) analyzes the relationships between various
characteristics of the merge conflicts and the chosen resolution strategies.
Our results give rise to three primary recommendations for future merge
techniques, that—when implemented—could on one hand help in automat-
ically resolving certain types of conflicts and on the other hand provide the
developer with tool-based assistance to more easily resolve other types of
conflicts that cannot be automatically resolved.

[Giger2011] Emanuel Giger, Martin Pinzger, and Harald Gall. Using the Gini
Coefficient for bug prediction in Eclipse. In Proc. International Workshop on
Principles on Software Evolution/Workshop on Software Evolution (IWPSE-
EVOL). ACM Press, 2011, DOI 10.1145/2024445.2024455.
Abstract: The Gini coefficient is a prominent measure to quantify the
inequality of a distribution. It is often used in the field of economy to describe

46

how goods, e.g., wealth or farmland, are distributed among people. We use
the Gini coefficient to measure code ownership by investigating how changes
made to source code are distributed among the developer population. The
results of our study with data from the Eclipse platform show that less bugs
can be expected if a large share of all changes are accumulated, i.e., carried
out, by relatively few developers.

[Glanz2020] Leonid Glanz, Patrick Müller, Lars Baumgärtner, Michael Reif,
Sven Amann, Pauline Anthonysamy, and Mira Mezini. Hidden in plain sight:
Obfuscated strings threatening your privacy. In Proc. Asia Conference on
Computer and Communications Security (ACCCS). ACM, Oct 2020, DOI
10.1145/3320269.3384745.
Abstract: String obfuscation is an established technique used by propri-
etary, closed-source applications to protect intellectual property. Further-
more, it is also frequently used to hide spyware or malware in applications.
In both cases, the techniques range from bit-manipulation over XOR op-
erations to AES encryption. However, string obfuscation techniques/tools
suffer from one shared weakness: They generally have to embed the neces-
sary logic to deobfuscate strings into the app code. In this paper, we show
that most of the string obfuscation techniques found in malicious and be-
nign applications for Android can easily be broken in an automated fashion.
We developed StringHound, an open-source tool that uses novel techniques
that identify obfuscated strings and reconstruct the originals using slicing.
We evaluated StringHound on both benign and malicious Android apps.
In summary, we deobfuscate almost 30 times more obfuscated strings than
other string deobfuscation tools. Additionally, we analyzed 100,000 Google
Play Store apps and found multiple obfuscated strings that hide vulnera-
ble cryptographic usages, insecure internet accesses, API keys, hard-coded
passwords, and exploitation of privileges without the awareness of the de-
veloper. Furthermore, our analysis reveals that not only malware uses string
obfuscation but also benign apps make extensive use of string obfuscation.

[Golubev2021] Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlO-
mar, Timofey Bryksin, and Mohamed Wiem Mkaouer. One thousand and
one stories: a large-scale survey of software refactoring. In Proc. Eu-
ropean Software Engineering Conference/International Symposium on the
Foundations of Software Engineering (ESEC/FSE). ACM, Aug 2021, DOI
10.1145/3468264.3473924.
Abstract: Despite the availability of refactoring as a feature in popular
IDEs, recent studies revealed that developers are reluctant to use them, and
still prefer the manual refactoring of their code. At JetBrains, our goal is to
fully support refactoring features in IntelliJ-based IDEs and improve their
adoption in practice. Therefore, we start by raising the following main ques-
tions. How exactly do people refactor code? What refactorings are the most
popular? Why do some developers tend not to use convenient IDE refac-
toring tools? In this paper, we investigate the raised questions through the
design and implementation of a survey targeting 1,183 users of IntelliJ-based

47

IDEs. Our quantitative and qualitative analysis of the survey results shows
that almost two-thirds of developers spend more than one hour in a single
session refactoring their code; that refactoring types vary greatly in pop-
ularity; and that a lot of developers would like to know more about IDE
refactoring features but lack the means to do so. These results serve us in-
ternally to support the next generation of refactoring features, as well as can
help our research community to establish new directions in the refactoring
usability research.

[Gousios2016] Georgios Gousios, Margaret-Anne Storey, and Alberto Bac-
chelli. Work practices and challenges in pull-based development. In Proc.
International Conference on Software Engineering (ICSE). ACM, May 2016,
DOI 10.1145/2884781.2884826.
Abstract: The pull-based development model is an emerging way of con-
tributing to distributed software projects that is gaining enormous popular-
ity within the open source software (OSS) world. Previous work has exam-
ined this model by focusing on projects and their owners—we complement
it by examining the work practices of project contributors and the chal-
lenges they face. We conducted a survey with 645 top contributors to active
OSS projects using the pull-based model on GitHub, the prevalent social
coding site. We also analyzed traces extracted from corresponding GitHub
repositories. Our research shows that: contributors have a strong interest in
maintaining awareness of project status to get inspiration and avoid dupli-
cating work, but they do not actively propagate information; communication
within pull requests is reportedly limited to low-level concerns and contribu-
tors often use communication channels external to pull requests; challenges
are mostly social in nature, with most reporting poor responsiveness from
integrators; and the increased transparency of this setting is a confirmed mo-
tivation to contribute. Based on these findings, we present recommendations
for practitioners to streamline the contribution process and discuss potential
future research directions.

[Graziotin2014] Daniel Graziotin, Xiaofeng Wang, and Pekka Abrahamsson.
Happy software developers solve problems better: psychological measure-
ments in empirical software engineering. PeerJ Computer Science, 2:e289,
Mar 2014, DOI 10.7717/peerj.289.
Abstract: For more than thirty years, it has been claimed that a way to
improve software developers’ productivity and software quality is to focus
on people and to provide incentives to make developers satisfied and happy.
This claim has rarely been verified in software engineering research, which
faces an additional challenge in comparison to more traditional engineering
fields: software development is an intellectual activity and is dominated by
often-neglected human factors (called human aspects in software engineering
research). Among the many skills required for software development, devel-
opers must possess high analytical problem-solving skills and creativity for
the software construction process. According to psychology research, affec-
tive states—emotions and moods—deeply influence the cognitive process-

48

ing abilities and performance of workers, including creativity and analytical
problem solving. Nonetheless, little research has investigated the correla-
tion between the affective states, creativity, and analytical problem-solving
performance of programmers. This article echoes the call to employ psycho-
logical measurements in software engineering research. We report a study
with 42 participants to investigate the relationship between the affective
states, creativity, and analytical problem-solving skills of software develop-
ers. The results offer support for the claim that happy developers are indeed
better problem solvers in terms of their analytical abilities. The following
contributions are made by this study: (1) providing a better understanding
of the impact of affective states on the creativity and analytical problem-
solving capacities of developers, (2) introducing and validating psychologi-
cal measurements, theories, and concepts of affective states, creativity, and
analytical-problem-solving skills in empirical software engineering, and (3)
raising the need for studying the human factors of software engineering by
employing a multidisciplinary viewpoint.

[Green1996] Thomas R. G. Green and Marian Petre. Usability analysis
of visual programming environments: a ’cognitive dimensions’ framework.
Journal of Visual Languages & Computing, 7(2):131–174, Jun 1996, DOI
10.1006/jvlc.1996.0009.
Abstract: Abstract The cognitive dimensions framework is a broad-brush
evaluation technique for interactive devices and for non-interactive notations.
It sets out a small vocabulary of terms designed to capture the cognitively-
relevant aspects of structure, and shows how they can be traded off against
each other. The purpose of this paper is to propose the framework as an
evaluation technique for visual programming environments. We apply it to
two commercially-available dataflow languages (with further examples from
other systems) and conclude that it is effective and insightful; other HCI-
based evaluation techniques focus on different aspects and would make good
complements. Insofar as the examples we used are representative, current
VPLs are successful in achieving a good ’closeness of match’, but design-
ers need to consider the ’viscosity ’ (resistance to local change) and the
’secondary notation’ (possibility of conveying extra meaning by choice of
layout, colour, etc.).

[Gu2018] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. Deep code search.
In Proc. International Conference on Software Engineering (ICSE). ACM,
May 2018, DOI 10.1145/3180155.3180167.
Abstract: To implement a program functionality, developers can reuse pre-
viously written code snippets by searching through a large-scale codebase.
Over the years, many code search tools have been proposed to help develop-
ers. The existing approaches often treat source code as textual documents
and utilize information retrieval models to retrieve relevant code snippets
that match a given query. These approaches mainly rely on the textual sim-
ilarity between source code and natural language query. They lack a deep
understanding of the semantics of queries and source code. In this paper,

49

we propose a novel deep neural network named CODEnn (Code-Description
Embedding Neural Network). Instead of matching text similarity, CODEnn
jointly embeds code snippets and natural language descriptions into a high-
dimensional vector space, in such a way that code snippet and its correspond-
ing description have similar vectors. Using the unified vector representation,
code snippets related to a natural language query can be retrieved accord-
ing to their vectors. Semantically related words can also be recognized and
irrelevant/noisy keywords in queries can be handled. As a proof-of-concept
application, we implement a code search tool named DeepCS using the pro-
posed CODEnn model. We empirically evaluate DeepCS on a large scale
codebase collected from GitHub. The experimental results show that our
approach can effectively retrieve relevant code snippets and outperforms
previous techniques.

[Guler2019] Emre Güler, Cornelius Aschermann, Ali Abbasi, and Thorsten
Holz. AntiFuzz: Impeding fuzzing audits of binary executables. In Proc.
USENIX Conference on Security Symposium, page 1931–1947, Aug 2019,
DOI 10.5555/3361338.3361472.
Abstract: A general defense strategy in computer security is to increase the
cost of successful attacks in both computational resources as well as human
time. In the area of binary security, this is commonly done by using ob-
fuscation methods to hinder reverse engineering and the search for software
vulnerabilities. However, recent trends in automated bug finding changed the
modus operandi. Nowadays it is very common for bugs to be found by various
fuzzing tools. Due to ever-increasing amounts of automation and research on
better fuzzing strategies, large-scale, dragnet-style fuzzing of many hundreds
of targets becomes viable. As we show, current obfuscation techniques are
aimed at increasing the cost of human understanding and do little to slow
down fuzzing. In this paper, we introduce several techniques to protect a bi-
nary executable against an analysis with automated bug f inding approaches
that are based on fuzzing, symbolic/concolic execution, and taint-assisted
fuzzing (commonly known as hybrid fuzzing). More specifically, we perform
a systematic analysis of the fundamental assumptions of bug finding tools
and develop general countermeasures for each assumption. Note that these
techniques are not designed to target specific implementations of fuzzing
tools, but address general assumptions that bug finding tools necessarily
depend on. Our evaluation demonstrates that these techniques effectively
impede fuzzing audits, while introducing a negligible performance overhead.
Just as obfuscation techniques increase the amount of human labor needed
to find a vulnerability, our techniques render automated fuzzing-based ap-
proaches futile.

[Gulzar2016] Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo,
Sai Deep Tetali, Tyson Condie, Todd Millstein, and Miryung Kim. BigDe-
bug: debugging primitives for interactive big data processing in Spark. In
Proc. International Conference on Software Engineering (ICSE). ACM, May
2016, DOI 10.1145/2884781.2884813.

50

Abstract: Developers use cloud computing platforms to process a large
quantity of data in parallel when developing big data analytics. Debugging
the massive parallel computations that run in today’s data-centers is time
consuming and error-prone. To address this challenge, we design a set of in-
teractive, real-time debugging primitives for big data processing in Apache
Spark, the next generation data-intensive scalable cloud computing plat-
form. This requires re-thinking the notion of step-through debugging in a
traditional debugger such as gdb, because pausing the entire computation
across distributed worker nodes causes significant delay and naively inspect-
ing millions of records using a watchpoint is too time consuming for an end
user.First, BigDebug’s simulated breakpoints and on-demand watchpoints
allow users to selectively examine distributed, intermediate data on the cloud
with little overhead. Second, a user can also pinpoint a crash-inducing record
and selectively resume relevant sub-computations after a quick fix. Third,
a user can determine the root causes of errors (or delays) at the level of
individual records through a fine-grained data provenance capability. Our
evaluation shows that BigDebug scales to terabytes and its record-level trac-
ing incurs less than 25% overhead on average. It determines crash culprits
orders of magnitude more accurately and provides up to 100% time saving
compared to the baseline replay debugger. The results show that BigDebug
supports debugging at interactive speeds with minimal performance impact.

[Gunatilake2023] Hashini Gunatilake, John Grundy, Ingo Mueller, and
Rashina Hoda. Empathy models and software engineering – a preliminary
analysis and taxonomy, 2023.
Abstract: Empathy is widely used in many disciplines such as philosophy,
sociology, psychology, health care. Ability to empathise with software end-
users seems to be a vital skill software developers should possess. This is
because engineering successful software systems involves not only interact-
ing effectively with users but also understanding their true needs. Empathy
has the potential to address this situation. Empathy is a predominant hu-
man aspect that can be used to comprehend decisions, feelings, emotions
and actions of users. However, to date empathy has been under-researched
in software engineering (SE) context. In this position paper, we present our
exploration of key empathy models from different disciplines and our anal-
ysis of their adequacy for application in SE. While there is no evidence for
empathy models that are readily applicable to SE, we believe these models
can be adapted and applied in SE context with the aim of assisting software
engineers to increase their empathy for diverse end-user needs. We present a
preliminary taxonomy of empathy by carefully considering the most popu-
lar empathy models from different disciplines. We encourage future research
on empathy in SE as we believe it is an important human aspect that can
significantly influence the relationship between developers and end-users.

[Han2021] Junxiao Han, Shuiguang Deng, David Lo, Chen Zhi, Jian-
wei Yin, and Xin Xia. An empirical study of the landscape of open
source projects in baidu, alibaba, and tencent. In Proc. International

51

Conference on Software Engineering (ICSE). IEEE, May 2021, DOI
10.1109/icse-seip52600.2021.00039.
Abstract: Open source software has drawn more and more attention from
researchers, developers and companies nowadays. Meanwhile, many Chi-
nese technology companies are embracing open source and choosing to open
source their projects. Nevertheless, most previous studies are concentrated
on international companies such as Microsoft or Google, while the practi-
cal values of open source projects of Chinese technology companies remain
unclear. To address this issue, we conduct a mixed-method study to inves-
tigate the landscape of projects open sourced by three large Chinese tech-
nology companies, namely Baidu, Alibaba, and Tencent (BAT). We study
the categories and characteristics of open source projects, the developer’s
perceptions towards open sourcing effort for these companies, and the in-
ternationalization effort of their open source projects. We collected 1,000
open source projects that were open sourced by BAT in GitHub and per-
formed an online survey that received 101 responses from developers of these
projects. Some key findings include: 1) BAT prefer to open source frontend
development projects, 2) 88% of the respondents are positive towards open
sourcing software projects in their respective companies, 3) 64% of the re-
spondents reveal that the most common motivations for BAT to open source
their projects are the desire to gain fame, expand their influence and gain
recruitment advantage, 4) respondents believe that the most common in-
ternationalization effort is “providing an English version of readme files”, 5)
projects with more internationalization effort (i.e., include an English readme
file) are more popular. Our findings provide directions for software engineer-
ing researchers and provide practical suggestions to software developers and
Chinese technology companies.

[Hanenberg2010] Stefan Hanenberg. An experiment about static and dy-
namic type systems. In Proc. International Conference on Object-Oriented
Programming Systems Languages and Applications (OOPSLA). ACM Press,
2010, DOI 10.1145/1869459.1869462.
Abstract: Although static type systems are an essential part in teach-ing
and research in software engineering and computer science, there is hardly
any knowledge about what the impact of static type systems on the devel-
opment time or the resulting quality for a piece of software is. On the one
hand there are authors that state that static type systems decrease an ap-
plication’s complexity and hence its development time (which means that
the quality must be improved since developers have more time left in their
projects). On the other hand there are authors that argue that static type
systems increase development time (and hence decrease the code quality)
since they restrict developers to express themselves in a desired way. This
paper presents an empirical study with 49 subjects that studies the impact
of a static type system for the development of a parser over 27 hours working
time. In the experiments the existence of the static type system has neither a
positive nor a negative impact on an application’s development time (under

52

the conditions of the experiment).

[Hanenberg2013] Stefan Hanenberg, Sebastian Kleinschmager, Romain
Robbes, éric Tanter, and Andreas Stefik. An empirical study on the impact
of static typing on software maintainability. Empirical Software Engineering,
19(5):1335–1382, Dec 2013, DOI 10.1007/s10664-013-9289-1.
Abstract: Static type systems play an essential role in contemporary pro-
gramming languages. Despite their importance, whether static type systems
impact human software development capabilities remains open. One fre-
quently mentioned argument in favor of static type systems is that they
improve the maintainability of software systems—an often-used claim for
which there is little empirical evidence. This paper describes an experiment
that tests whether static type systems improve the maintainability of soft-
ware systems, in terms of understanding undocumented code, fixing type
errors, and fixing semantic errors. The results show rigorous empirical evi-
dence that static types are indeed beneficial to these activities, except when
fixing semantic errors. We further conduct an exploratory analysis of the
data in order to understand possible reasons for the effect of type systems
on the three kinds of tasks used in this experiment. From the exploratory
analysis, we conclude that developers using a dynamic type system tend to
look at different files more frequently when doing programming tasks—which
is a potential reason for the observed differences in time.

[Hannay2010] J.E. Hannay, E. Arisholm, H. Engvik, and D.I.K. Sjøberg. Ef-
fects of personality on pair programming. IEEE Transactions on Software
Engineering, 36(1):61–80, Jan 2010, DOI 10.1109/tse.2009.41.
Abstract: Personality tests in various guises are commonly used in recruit-
ment and career counseling industries. Such tests have also been considered
as instruments for predicting the job performance of software profession-
als both individually and in teams. However, research suggests that other
human-related factors such as motivation, general mental ability, expertise,
and task complexity also affect the performance in general. This paper re-
ports on a study of the impact of the Big Five personality traits on the
performance of pair programmers together with the impact of expertise and
task complexity. The study involved 196 software professionals in three coun-
tries forming 98 pairs. The analysis consisted of a confirmatory part and
an exploratory part. The results show that: (1) Our data do not confirm
a meta-analysis-based model of the impact of certain personality traits on
performance and (2) personality traits, in general, have modest predictive
value on pair programming performance compared with expertise, task com-
plexity, and country. We conclude that more effort should be spent on in-
vestigating other performance-related predictors such as expertise, and task
complexity, as well as other promising predictors, such as programming skill
and learning. We also conclude that effort should be spent on elaborating
on the effects of personality on various measures of collaboration, which,
in turn, may be used to predict and influence performance. Insights into

53

such malleable, rather than static, factors may then be used to improve pair
programming performance.

[Harms2016] Kyle James Harms, Jason Chen, and Caitlin L. Kelleher. Dis-
tractors in Parsons Problems decrease learning efficiency for young novice
programmers. In Proc. Conference on International Computing Education
Research (ICER). ACM, Aug 2016, DOI 10.1145/2960310.2960314.
Abstract: Parsons problems are an increasingly popular method for help-
ing inexperienced programmers improve their programming skills. In Parsons
problems, learners are given a set of programming statements that they must
assemble into the correct order. Parsons problems commonly use distractors,
extra statements that are not part of the solution. Yet, little is known about
the effect distractors have on a learner’s ability to acquire new programming
skills. We present a study comparing the effectiveness of learning program-
ming from Parsons problems with and without distractors. The results sug-
gest that distractors decrease learning efficiency. We found that distractor
participants showed no difference in transfer task performance compared to
those without distractors. However, the distractors increased learners cogni-
tive load, decreased their success at completing Parsons problems by 26%,
and increased learners’ time on task by 14%.

[Hata2019] Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and
Takashi Ishio. 9.6 million links in source code comments: purpose, evolu-
tion, and decay. In Proc. International Conference on Software Engineering
(ICSE). IEEE, May 2019, DOI 10.1109/icse.2019.00123.
Abstract: Links are an essential feature of the World Wide Web, and source
code repositories are no exception. However, despite their many undisputed
benefits, links can suffer from decay, insufficient versioning, and lack of bidi-
rectional traceability. In this paper, we investigate the role of links contained
in source code comments from these perspectives. We conducted a large-scale
study of around 9.6 million links to establish their prevalence, and we used
a mixed-methods approach to identify the links’ targets, purposes, decay,
and evolutionary aspects. We found that links are prevalent in source code
repositories, that licenses, software homepages, and specifications are com-
mon types of link targets, and that links are often included to provide meta-
data or attribution. Links are rarely updated, but many link targets evolve.
Almost 10% of the links included in source code comments are dead. We
then submitted a batch of link-fixing pull requests to open source software
repositories, resulting in most of our fixes being merged successfully. Our
findings indicate that links in source code comments can indeed be fragile,
and our work opens up avenues for future work to address these problems.

[Hatton1994] L. Hatton and A. Roberts. How accurate is scientific software?
IEEE Transactions on Software Engineering, 20(10):785–797, 1994, DOI
10.1109/32.328993.
Abstract: This paper describes some results of what, to the authors’ knowl-
edge, is the largest N-version programming experiment ever performed. The

54

object of this ongoing four-year study is to attempt to determine just how
consistent the results of scientific computation really are, and, from this,
to estimate accuracy. The experiment is being carried out in a branch of
the earth sciences known as seismic data processing, where 15 or so in-
dependently developed large commercial packages that implement mathe-
matical algorithms from the same or similar published specifications in the
same programming language (Fortran) have been developed over the last
20 years. The results of processing the same input dataset, using the same
user-specified parameters, for nine of these packages is reported in this pa-
per. Finally, feedback of obvious flaws was attempted to reduce the overall
disagreement. The results are deeply disturbing. Whereas scientists like to
think that their code is accurate to the precision of the arithmetic used,
in this study, numerical disagreement grows at around the rate of 1% in
average absolute difference per 4000 fines of implemented code, and, even
worse, the nature of the disagreement is nonrandom. Furthermore, the seis-
mic data processing industry has better than average quality standards for
its software development with both identifiable quality assurance functions
and substantial test datasets.

[Hatton1997] L. Hatton. The t-experiments: errors in scientific software.
In Ronald F. Boisvert, editor, Quality of Numerical Software, page 12–31.
Springer US, 1997, DOI 10.1007/978-1-5041-2940-4_2.
Abstract: This paper covers two very large experiments carried out con-
currently between 1990 and 1994, together known as the T-experiments.
Experiment T1 had the objective of measuring the consistency of several
million lines of scientific software written in C and Fortran 77 by static
deep-flow analysis across many different industries and application areas,
and experiment T2 had the objective of measuring the level of dynamic
disagreement between independent implementations of the same algorithms
acting on the same input data with the same parameters in just one of these
industrial application areas. Experiment T1 showed that C and Fortran are
riddled with statically detectable inconsistencies independent of the appli-
cation area. For example, interface inconsistencies occur at the rate of one
in every 7 interfaces on average in Fortran, and one in every 37 interfaces in
C. They also show that Fortran components are typically 2.5 times bigger
than C components, and that roughly 30% of the Fortran population and
10% of the C population would be deemed untestable by any standards.
Experiment T2 was even more disturbing. Whereas scientists like to think
that their results are accurate to the precision of the arithmetic used, in
this study, the degree of agreement gradually degenerated from 6 significant
figures to 1 significant figure during the computation. The reasons for this
disagreement are laid squarely at the door of software failure, as other pos-
sible causes are considered and rejected. Taken with other evidence, these
two experiments suggest that the results of scientific calculations involving
significant amounts of software should be taken with several large pinches of
salt.

55

[Hayashi2019] Junichi Hayashi, Yoshiki Higo, Shinsuke Matsumoto, and
Shinji Kusumoto. Impacts of daylight saving time on software development.
In Proc. International Conference on Mining Software Repositories (MSR).
IEEE, May 2019, DOI 10.1109/msr.2019.00076.
Abstract: Daylight saving time (DST) is observed in many countries and
regions. DST is not considered on some software systems at the beginning
of their developments, for example, software systems developed in regions
where DST is not observed. However, such systems may have to consider
DST at the requests of their users. Before now, there has been no study
about the impacts of DST on software development. In this paper, we study
the impacts of DST on software development by mining the repositories on
GitHub. We analyze the date when the code related to DST is changed,
and we analyze the regions where the developers applied the changes live.
Furthermore, we classify the changes into some patterns.

[Hemmati2013] Hadi Hemmati, Sarah Nadi, Olga Baysal, Oleksii Kononenko,
Wei Wang, Reid Holmes, and Michael W. Godfrey. The MSR Cook-
book: mining a decade of research. In Proc. International Confer-
ence on Mining Software Repositories (MSR). IEEE, May 2013, DOI
10.1109/msr.2013.6624048.
Abstract: The Mining Software Repositories (MSR) research community
has grown significantly since the first MSR workshop was held in 2004. As
the community continues to broaden its scope and deepens its expertise, it
is worthwhile to reflect on the best practices that our community has devel-
oped over the past decade of research. We identify these best practices by
surveying past MSR conferences and workshops. To that end, we review all
117 full papers published in the MSR proceedings between 2004 and 2012.
We extract 268 comments from these papers, and categorize them using a
grounded theory methodology. From this evaluation, four high-level themes
were identified: data acquisition and preparation, synthesis, analysis, and
sharing/replication. Within each theme we identify several common recom-
mendations, and also examine how these recommendations have evolved over
the past decade. In an effort to make this survey a living artifact, we also
provide a public forum that contains the extracted recommendations in the
hopes that the MSR community can engage in a continuing discussion on
our evolving best practices.

[Hermans2011] Felienne Hermans, Martin Pinzger, and Arie van Deursen.
Supporting professional spreadsheet users by generating leveled dataflow di-
agrams. In Proc. International Conference on Software Engineering (ICSE).
ACM, May 2011, DOI 10.1145/1985793.1985855.
Abstract: Thanks to their flexibility and intuitive programming model,
spreadsheets are widely used in industry, often for businesscritical applica-
tions. Similar to software developers, professional spreadsheet users demand
support for maintaining and transferring their spreadsheets. In this paper,
we first study the problems and information needs of professional spreadsheet
users by means of a survey conducted at a large financial company. Based on

56

these needs, we then present an approach that extracts this information from
spreadsheets and presents it in a compact and easy to understand way, with
leveled dataflow diagrams. Our approach comes with three different views
on the dataflow that allow the user to analyze the dataflow diagrams in a
top-down fashion. To evaluate the usefulness of the proposed approach, we
conducted a series of interviews as well as nine case studies in an industrial
setting. The results of the evaluation clearly indicate the demand for and
usefulness of our approach in ease the understanding of spreadsheets.

[Hermans2016] Felienne Hermans and Efthimia Aivaloglou. Do code smells
hamper novice programming? a controlled experiment on Scratch programs.
In Proc. International Conference on Program Comprehension (ICPC).
IEEE, May 2016, DOI 10.1109/icpc.2016.7503706.
Abstract: Recently, block-based programming languages like Alice, Scratch
and Blockly have become popular tools for programming education. There
is substantial research showing that block-based languages are suitable for
early programming education. But can block-based programs be smelly too?
And does that matter to learners? In this paper we explore the code smells
metaphor in the context of block-based programming language Scratch. We
conduct a controlled experiment with 61 novice Scratch programmers, in
which we divided the novices into three groups. One third receive a non-
smelly program, while the other groups receive a program suffering from
the Duplication or the Long Method smell respectively. All subjects then
perform the same comprehension tasks on their program, after which we
measure their time and correctness. The results of the experiment show that
code smell indeed influence performance: subjects working on the program
exhibiting code smells perform significantly worse, but the smells did not af-
fect the time subjects needed. Investigating different types of tasks in more
detail, we find that Long Method mainly decreases system understanding,
while Duplication decreases the ease with which subjects modify Scratch
programs.

[Hermans2021] Felienne Hermans. The Programmer’s Brain: What Every
Programmer Needs to Know About Cognition. Manning, 2021.
Abstract: Your brain responds in a predictable way when it encounters new
or difficult tasks. This unique book teaches you concrete techniques rooted
in cognitive science that will improve the way you learn and think about
code.

[Herraiz2010] Israel Herraiz and Ahmed E. Hassan. Beyond lines of code: Do
we need more complexity metrics? In Andy Oram and Greg Wilson, editors,
Making Software. O’Reilly, 2010.
Abstract: Summarizes work on code complexity metrics and finds that
there is little evidence any of them provide more information than simply
counting lines of code.

[Herzig2013] Kim Herzig, Sascha Just, and Andreas Zeller. It’s not a bug, it’s
a feature: how misclassification impacts bug prediction. In Proc. Interna-

57

tional Conference on Software Engineering (ICSE). IEEE, May 2013, DOI
10.1109/icse.2013.6606585.
Abstract: In a manual examination of more than 7,000 issue reports from
the bug databases of five open-source projects, we found 33.8% of all bug
reports to be misclassified - that is, rather than referring to a code fix,
they resulted in a new feature, an update to documentation, or an internal
refactoring. This misclassification introduces bias in bug prediction models,
confusing bugs and features: On average, 39% of files marked as defective
actually never had a bug. We discuss the impact of this misclassification on
earlier studies and recommend manual data validation for future studies.

[Hindle2012] Abram Hindle, Christian Bird, Thomas Zimmermann, and
Nachiappan Nagappan. Relating requirements to implementation via topic
analysis: do topics extracted from requirements make sense to managers
and developers? In Proc. International Conference on Software Mainte-
nance (ICSM). IEEE, Sep 2012, DOI 10.1109/icsm.2012.6405278.
Abstract: Large organizations like Microsoft tend to rely on formal require-
ments documentation in order to specify and design the software products
that they develop. These documents are meant to be tightly coupled with the
actual implementation of the features they describe. In this paper we evaluate
the value of high-level topic-based requirements traceability in the version
control system, using Latent Dirichlet Allocation (LDA). We evaluate LDA
topics on practitioners and check if the topics and trends extracted matches
the perception that Program Managers and Developers have about the ef-
fort put into addressing certain topics. We found that effort extracted from
version control that was relevant to a topic often matched the perception
of the managers and developers of what occurred at the time. Furthermore
we found evidence that many of the identified topics made sense to practi-
tioners and matched their perception of what occurred. But for some topics,
we found that practitioners had difficulty interpreting and labelling them.
In summary, we investigate the high-level traceability of requirements topics
to version control commits via topic analysis and validate with the actual
stakeholders the relevance of these topics extracted from requirements.

[Hindle2016] Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su, and
Premkumar Devanbu. On the naturalness of software. Communications of
the ACM, 59(5):122–131, Apr 2016, DOI 10.1145/2902362.
Abstract: Natural languages like English are rich, complex, and powerful.
The highly creative and graceful use of languages like English and Tamil,
by masters like Shakespeare and Avvaiyar, can certainly delight and in-
spire. But in practice, given cognitive constraints and the exigencies of daily
life, most human utterances are far simpler and much more repetitive and
predictable. In fact, these utterances can be very usefully modeled using
modern statistical methods. This fact has led to the phenomenal success of
statistical approaches to speech recognition, natural language translation,
question-answering, and text mining and comprehension. We begin with the

58

conjecture that most software is also natural, in the sense that it is cre-
ated by humans at work, with all the attendant constraints and limitations
- and thus, like natural language, it is also likely to be repetitive and pre-
dictable. We then proceed to ask whether a) code can be usefully modeled
by statistical language models and b) such models can be leveraged to sup-
port software engineers. Using the widely adopted n-gram model, we provide
empirical evidence supportive of a positive answer to both these questions.
We show that code is also very repetitive, and in fact even more so than
natural languages. As an example use of the model, we have developed a
simple code completion engine for Java that, despite its simplicity, already
improves Eclipse’s built-in completion capability. We conclude the paper by
laying out a vision for future research in this area.

[Hofmeister2017] Johannes Hofmeister, Janet Siegmund, and Daniel V. Holt.
Shorter identifier names take longer to comprehend. In Proc. International
Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, Feb 2017, DOI 10.1109/saner.2017.7884623.
Abstract: Developers spend the majority of their time comprehending code,
a process in which identifier names play a key role. Although many identifier
naming styles exist, they often lack an empirical basis and it is not quite
clear whether short or long identifier names facilitate comprehension. In this
paper, we investigate the effect of different identifier naming styles (letters,
abbreviations, words) on program comprehension, and whether these effects
arise because of their length or their semantics. We conducted an experi-
mental study with 72 professional C# developers, who looked for defects
in source-code snippets. We used a within-subjects design, such that each
developer saw all three versions of identifier naming styles and we measured
the time it took them to find a defect. We found that words lead to, on
average, 19% faster comprehension speed compared to letters and abbrevi-
ations, but we did not find a significant difference in speed between letters
and abbreviations. The results of our study suggest that defects in code are
more difficult to detect when code contains only letters and abbreviations.
Words as identifier names facilitate program comprehension and can help to
save costs and improve software quality.

[Hora2021a] Andre Hora. Googling for software development: What de-
velopers search for and what they find. In Proc. International Con-
ference on Mining Software Repositories (MSR). IEEE, May 2021, DOI
10.1109/msr52588.2021.00044.
Abstract: Developers often search for software resources on the web. In
practice, instead of going directly to websites (e.g., Stack Overflow), they
rely on search engines (e.g., Google). Despite this being a common activ-
ity, we are not yet aware of what developers search from the perspective
of popular software development websites and what search results are re-
turned. With this knowledge, we can understand real-world queries, devel-
opers’ needs, and the query impact on the search results. In this paper, we
provide an empirical study to understand what developers search on the

59

web and what they find. We assess 1.3M queries to popular programming
websites and we perform thousands of queries on Google to explore search
results. We find that (i) developers’ queries typically start with keywords
(e.g., Python, Android, etc.), are short (3 words), tend to omit functional
words, and are similar among each other; (ii) minor changes to queries do
not largely affect the Google search results, however, some cosmetic changes
may have a non-negligible impact; and (iii) search results are dominated
by Stack Overflow, but YouTube is also a relevant source nowadays. We
conclude by presenting detailed implications for researchers and developers.

[Hora2021b] Andre Hora. What code is deliberately excluded from test cover-
age and why? In Proc. International Conference on Mining Software Repos-
itories (MSR). IEEE, May 2021, DOI 10.1109/msr52588.2021.00051.
Abstract: Test coverage is largely used to assess test effectiveness. In prac-
tice, not all code is equally important for coverage analysis, for instance,
code that will not be executed during tests is irrelevant and can actually
harm the analysis. Some coverage tools provide support for code exclusion
from coverage reports, however, we are not yet aware of what code tends
to be excluded nor the reasons behind it. This can support the creation of
more accurate coverage reports and reveal novel and harmful usage cases.
In this paper, we provide the first empirical study to understand code ex-
clusion practices in test coverage. We mine 55 Python projects and assess
commit messages and code comments to detect rationales for exclusions. We
find that (1) over 1/3 of the projects perform deliberate coverage exclusion;
(2) 75% of the code are already created using the exclusion feature, while
25% add it over time; (3) developers exclude non-runnable, debug-only, and
defensive code, but also platform-specific and conditional importing; and (4)
most code is excluded because it is already untested, low-level, or complex.
Finally, we discuss implications to improve coverage analysis and shed light
on the existence of biased coverage reports.

[Hundhausen2011] Christopher D. Hundhausen, Pawan Agarwal, and
Michael Trevisan. Online vs. face-to-face pedagogical code reviews. In Proc.
Technical Symposium on Computer Science Education (SIGCSE). ACM
Press, 2011, DOI 10.1145/1953163.1953201.
Abstract: Given the increased importance of communication, teamwork,
and critical thinking skills in the computing profession, we have been ex-
ploring studio-based instructional methods, in which students develop solu-
tions and iteratively refine them through critical review by their peers and
instructor. We have developed an adaptation of studio-based instruction for
computing education called the pedagogical code review (PCR), which is
modeled after the code inspection process used in the software industry. Un-
fortunately, PCRs are time-intensive, making them difficult to implement
within a typical computing course. To address this issue, we have developed
an online environment that allows PCRs to take place asynchronously out-
side of class. We conducted an empirical study that compared a CS 1 course
with online PCRs against a CS 1 course with face-to-face PCRs. Our study

60

had three key results: (a) in the course with face-to-face PCRs, student
attitudes with respect to self-efficacy and peer learning were significantly
higher; (b) in the course with face-to-face PCRs, students identified more
substantive issues in their reviews; and (c) in the course with face-to-face
PCRs, students were generally more positive about the value of PCRs. In
light of our findings, we recommend specific ways online PCRs can be better
designed.

[Inozemtseva2014] Laura Inozemtseva and Reid Holmes. Coverage is
not strongly correlated with test suite effectiveness. In Proc. Interna-
tional Conference on Software Engineering (ICSE). ACM, May 2014, DOI
10.1145/2568225.2568271.
Abstract: The coverage of a test suite is often used as a proxy for its ability
to detect faults. However, previous studies that investigated the correlation
between code coverage and test suite effectiveness have failed to reach a con-
sensus about the nature and strength of the relationship between these test
suite characteristics. Moreover, many of the studies were done with small
or synthetic programs, making it unclear whether their results generalize to
larger programs, and some of the studies did not account for the confounding
influence of test suite size. In addition, most of the studies were done with
adequate suites, which are are rare in practice, so the results may not gener-
alize to typical test suites. We have extended these studies by evaluating the
relationship between test suite size, coverage, and effectiveness for large Java
programs. Our study is the largest to date in the literature: we generated
31,000 test suites for five systems consisting of up to 724,000 lines of source
code. We measured the statement coverage, decision coverage, and modi-
fied condition coverage of these suites and used mutation testing to evaluate
their fault detection effectiveness. We found that there is a low to moderate
correlation between coverage and effectiveness when the number of test cases
in the suite is controlled for. In addition, we found that stronger forms of
coverage do not provide greater insight into the effectiveness of the suite.
Our results suggest that coverage, while useful for identifying under-tested
parts of a program, should not be used as a quality target because it is not
a good indicator of test suite effectiveness.

[Jacobson2013] Ivar Jacobson, Pan-Wei Ng, Paul E. McMahon, Ian Spence,
and Svante Lidman. The Essence of Software Engineering: Applying the
SEMAT Kernel. Addison-Wesley Professional, 2013.
Abstract: SEMAT (Software Engineering Methods and Theory) is an in-
ternational initiative designed to identify a common ground, or universal
standard, for software engineering. It is supported by some of the most dis-
tinguished contributors to the field. Creating a simple language to describe
methods and practices, the SEMAT team expresses this common ground as
a kernel—or framework—of elements essential to all software development.
The Essence of Software Engineering introduces this kernel and shows how
to apply it when developing software and improving a team’s way of work-
ing. It is a book for software professionals, not methodologists. Its usefulness

61

to development team members, who need to evaluate and choose the best
practices for their work, goes well beyond the description or application of
any single method.

[Jesse2022] Kevin Jesse, Premkumar Devanbu, and Anand Ashok Sawant.
Learning to predict user-defined types. IEEE Transactions on Software En-
gineering, page 1–1, 2022, DOI 10.1109/tse.2022.3178945.
Abstract: TypeScript is a widely adopted gradual typed language where
developers can optionally type variables, functions, parameters and more.
Probabilistic type inference approaches with ML (machine learning) work
well especially for commonly occurring types such as boolean, number, and
string. TypeScript permits a wide range of types including developer defined
class names and type interfaces. These developer defined types, termed user-
defined types, can be written within the realm of language naming conven-
tions. The set of user-defined types is boundless and existing bounded type
guessing approaches are an imperfect solution. Existing works either under
perform in user-defined types or ignore user-defined types altogether. This
work leverages a BERT-style pre-trained model, with multi-task learning
objectives, to learn how to type user-defined classes and interfaces. Thus
we present DIVERSETYPER, a solution that explores the diverse set of
user-defined types by uniquely aligning classes and interfaces declarations to
the places in which they are used. DIVERSETYPER surpasses all existing
works including those that model user-defined types.

[Jiang2022] Yuan Jiang, Christian Kastner, and Shurui Zhou. Elevat-
ing Jupyter notebook maintenance tooling by identifying and extract-
ing notebook structures. In 2022 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, Oct 2022, DOI
10.1109/icsme55016.2022.00047.
Abstract: Data analysis is an exploratory, interactive, and often collab-
orative process. Computational notebooks have become a popular tool to
support this process, among others because of their ability to interleave
code, narrative text, and results. However, notebooks in practice are often
criticized as hard to maintain and being of low code quality, including prob-
lems such as unused or duplicated code and out-of-order code execution.
Data scientists can benefit from better tool support when maintaining and
evolving notebooks. We argue that central to such tool support is identifying
the structure of notebooks. We present a lightweight and accurate approach
to extract notebook structure and outline several ways such structure can
be used to improve maintenance tooling for notebooks, including navigation
and finding alternatives.

[Jin2021] Xianhao Jin and Francisco Servant. What helped, and what did
not? an evaluation of the strategies to improve continuous integration. In
Proc. International Conference on Software Engineering (ICSE). IEEE, May
2021, DOI 10.1109/icse43902.2021.00031.
Abstract: Continuous integration (CI) is a widely used practice in modern

62

software engineering. Unfortunately, it is also an expensive practice - Google
and Mozilla estimate their CI systems in millions of dollars. There are a
number of techniques and tools designed to or having the potential to save
the cost of CI or expand its benefit - reducing time to feedback. However,
their benefits in some dimensions may also result in drawbacks in others.
They may also be beneficial in other scenarios where they are not designed
to help. In this paper, we perform the first exhaustive comparison of tech-
niques to improve CI, evaluating 14 variants of 10 techniques using selection
and prioritization strategies on build and test granularity. We evaluate their
strengths and weaknesses with 10 different cost and time-tofeedback saving
metrics on 100 real-world projects. We analyze the results of all techniques
to understand the design decisions that helped different dimensions of bene-
fit. We also synthesized those results to lay out a series of recommendations
for the development of future research techniques to advance this area.

[Johnson2023] Brittany Johnson, Christian Bird, Denae Ford, Nicole Fors-
gren, and Tom Zimmermann. Make your tools sparkle with trust: The
PICSE framework for trust in software tools. In ICSE SEIP, May 2023.
Abstract: The day to day of a software engineer involves a variety of tasks.
While many of these tasks are collaborative and completed as such, it is not
always possible or feasible to engage with other engineers for task comple-
tion. Software tools, such as code generators and static analysis tools, aim
to fill this gap by providing additional support for developers to effectively
complete their tasks. With a steady stream of new tools that emerging to
support software engineers, including a new breed of tools that rely on ar-
tificial intelligence, there are important questions we should aim to answer
regarding the trust engineers can, and should, put into their software tools
and what it means to build a trustworthy tool. In this paper, we present find-
ings from an industry interview study conducted with 18 engineers across
and external to the Microsoft organization. Based on these interviews, we
introduce the PICSE (pronounced ”pixie”) framework for trust in software
tools to provide preliminary insights into factors that influence engineer trust
in their software tools. We also discuss how the PICSE framework can be
considered and applied in practice for designing and developing trustworthy
software tools.

[Jolak2020] Rodi Jolak, Maxime Savary-Leblanc, Manuela Dalibor, Andreas
Wortmann, Regina Hebig, Juraj Vincur, Ivan Polasek, Xavier Le Pal-
lec, Sébastien Gérard, and Michel R. V. Chaudron. Software engineer-
ing whispers: The effect of textual vs. graphical software design descrip-
tions on software design communication. Empirical Software Engineering,
25(6):4427–4471, Sep 2020, DOI 10.1007/s10664-020-09835-6.
Abstract: Software engineering is a social and collaborative activity. Com-
municating and sharing knowledge between software developers requires
much effort. Hence, the quality of communication plays an important role
in influencing project success. To better understand the effect of communi-
cation on project success, more in-depth empirical studies investigating this

63

phenomenon are needed. We investigate the effect of using a graphical ver-
sus textual design description on co-located software design communication.
Therefore, we conducted a family of experiments involving a mix of 240 soft-
ware engineering students from four universities. We examined how different
design representations (i.e., graphical vs. textual) affect the ability to Ex-
plain, Understand, Recall, and Actively Communicate knowledge. We found
that the graphical design description is better than the textual in promoting
Active Discussion between developers and improving the Recall of design
details. Furthermore, compared to its unaltered version, a well-organized
and motivated textual design description—that is used for the same amount
of time—enhances the recall of design details and increases the amount of
active discussions at the cost of reducing the perceived quality of explaining.

[Jorgensen2011] Magne Jørgensen and Stein Grimstad. the impact of irrel-
evant and misleading information on software development effort estimates:
a randomized controlled field experiment. IEEE Transactions on Software
Engineering, 37(5):695–707, Sep 2011, DOI 10.1109/tse.2010.78.
Abstract: Studies in laboratory settings report that software development
effort estimates can be strongly affected by effort-irrelevant and misleading
information. To increase our knowledge about the importance of these effects
in field settings, we paid 46 outsourcing companies from various countries to
estimate the required effort of the same five software development projects.
The companies were allocated randomly to either the original requirement
specification or a manipulated version of the original requirement specifica-
tion. The manipulations were as follows: 1) reduced length of requirement
specification with no change of content, 2) information about the low effort
spent on the development of the old system to be replaced, 3) information
about the client’s unrealistic expectations about low cost, and 4) a restric-
tion of a short development period with start up a few months ahead. We
found that the effect sizes in the field settings were much smaller than those
found for similar manipulations in laboratory settings. Our findings sug-
gest that we should be careful about generalizing to field settings the effect
sizes found in laboratory settings. While laboratory settings can be useful to
demonstrate the existence of an effect and better understand it, field studies
may be needed to study the size and importance of these effects.

[Jorgensen2012] Magne Jørgensen and Stein Grimstad. Software de-
velopment estimation biases: the role of interdependence. IEEE
Transactions on Software Engineering, 38(3):677–693, May 2012, DOI
10.1109/tse.2011.40.
Abstract: Software development effort estimates are frequently too low,
which may lead to poor project plans and project failures. One reason for
this bias seems to be that the effort estimates produced by software devel-
opers are affected by information that has no relevance for the actual use
of effort. We attempted to acquire a better understanding of the underly-
ing mechanisms and the robustness of this type of estimation bias. For this
purpose, we hired 374 software developers working in outsourcing companies

64

to participate in a set of three experiments. The experiments examined the
connection between estimation bias and developer dimensions: self-construal
(how one sees oneself), thinking style, nationality, experience, skill, educa-
tion, sex, and organizational role. We found that estimation bias was present
along most of the studied dimensions. The most interesting finding may be
that the estimation bias increased significantly with higher levels of inter-
dependence, i.e., with stronger emphasis on connectedness, social context,
and relationships. We propose that this connection may be enabled by an
activation of one’s self-construal when engaging in effort estimation, and
a connection between a more interdependent self-construal and increased
search for indirect messages, lower ability to ignore irrelevant context, and
a stronger emphasis on socially desirable responses.

[Jovanovic2022] Ana Jovanovic and Allison Sullivan. Towards automated in-
put generation for sketching alloy models. In Proceedings of the IEEE/ACM
10th International Conference on Formal Methods in Software Engineering.
ACM, May 2022, DOI 10.1145/3524482.3527651.
Abstract: Writing declarative models has numerous benefits, ranging from
automated reasoning and correction of design-level properties before systems
are built, to automated testing and debugging of their implementations after
they are built. Alloy is a declarative modeling language that is well suited
for verifying system designs. While Alloy comes deployed in the Analyzer,
an automated scenario-finding tool set, writing correct models remains a
difficult and error-prone task. ASketch is a synthesis framework that helps
users build their Alloy models. ASketch takes as an input a partial Alloy
models with holes and an AUnit test suite. As output, ASketch returns a
completed model that passes all tests. ASketch’s initial evaluation reveals
ASketch to be a promising approach to synthesize Alloy models. In this pa-
per, we present and explore SketchGen2, an approach that looks to broaden
the adoption of ASketch by increasing the automation of the inputs needed
for the sketching process. Experimental results show SketchGen2 is effective
at producing both expressions and test suites for synthesis.

[Kaleeswaran2023] Arut Prakash Kaleeswaran, Arne Nordmann, Thomas
Vogel, and Lars Grunske. A user study for evaluation of formal verifica-
tion results and their explanation at Bosch, 2023.
Abstract: Context: Ensuring safety for any sophisticated system is getting
more complex due to the rising number of features and functionalities. This
calls for formal methods to entrust confidence in such systems. Neverthe-
less, using formal methods in industry is demanding because of their lack
of usability and the difficulty of understanding verification results. Objec-
tive: We evaluate the acceptance of formal methods by Bosch automotive
engineers, particularly whether the difficulty of understanding verification re-
sults can be reduced. Method: We perform two different exploratory studies.
First, we conduct a user survey to explore challenges in identifying inconsis-
tent specifications and using formal methods by Bosch automotive engineers.

65

Second, we perform a one-group pretest-posttest experiment to collect im-
pressions from Bosch engineers familiar with formal methods to evaluate
whether understanding verification results is simplified by our counterexam-
ple explanation approach. Results: The results from the user survey indicate
that identifying refinement inconsistencies, understanding formal notations,
and interpreting verification results are challenging. Nevertheless, engineers
are still interested in using formal methods in real-world development pro-
cesses because it could reduce the manual effort for verification. Additionally,
they also believe formal methods could make the system safer. Furthermore,
the one-group pretest-posttest experiment results indicate that engineers are
more comfortable understanding the counterexample explanation than the
raw model checker output. Limitations: The main limitation of this study is
the generalizability beyond the target group of Bosch automotive engineers.

[Kamienski2021] Arthur V. Kamienski, Luisa Palechor, Cor-Paul Bezemer,
and Abram Hindle. PySStuBs: Characterizing single-statement bugs
in popular open-source Python projects. In Proc. International Con-
ference on Mining Software Repositories (MSR). IEEE, May 2021, DOI
10.1109/msr52588.2021.00066.
Abstract: Single-statement bugs (SStuBs) can have a severe impact on de-
veloper productivity. Despite usually being simple and not offering much of
a challenge to fix, these bugs may still disturb a developer’s workflow and
waste precious development time. However, few studies have paid attention
to these simple bugs, focusing instead on bugs of any size and complexity. In
this study, we explore the occurrence of SStuBs in some of the most popular
open-source Python projects on GitHub, while also characterizing their pat-
terns and distribution. We further compare these bugs to SStuBs found in a
previous study on Java Maven projects. We find that these Python projects
have different SStuB patterns than the ones in Java Maven projects and
identify 7 new SStuB patterns. Our results may help uncover the impor-
tance of understanding these bugs for the Python programming language,
and how developers can handle them more effectively.

[KanatAlexander2012] Max Kanat-Alexander. Code Simplicity: The Sci-
ence of Software Development. O’Reilly, 2012.
Abstract: Good software development results in simple code. Unfortu-
nately, much of the code existing in the world today is far too complex.
This concise guide helps you understand the fundamentals of good software
development through universal laws—principles you can apply to any pro-
gramming language or project from here to eternity.

[Kapser2008] Cory J. Kapser and Michael W. Godfrey. ”cloning con-
sidered harmful” considered harmful: patterns of cloning in soft-
ware. Empirical Software Engineering, 13(6):645–692, Jul 2008, DOI
10.1007/s10664-008-9076-6.
Abstract: Literature on the topic of code cloning often asserts that du-
plicating code within a software system is a bad practice, that it causes

66

harm to the system’s design and should be avoided. However, in our studies,
we have found significant evidence that cloning is often used in a variety
of ways as a principled engineering tool. For example, one way to evaluate
possible new features for a system is to clone the affected subsystems and
introduce the new features there, in a kind of sandbox testbed. As features
mature and become stable within the experimental subsystems, they can be
migrated incrementally into the stable code base; in this way, the risk of
introducing instabilities in the stable version is minimized. This paper de-
scribes several patterns of cloning that we have observed in our case studies
and discusses the advantages and disadvantages associated with using them.
We also examine through a case study the frequencies of these clones in
two medium-sized open source software systems, the Apache web server and
the Gnumeric spreadsheet application. In this study, we found that as many
as 71% of the clones could be considered to have a positive impact on the
maintainability of the software system.

[Kasi2013] Bakhtiar Khan Kasi and Anita Sarma. Cassandra: proactive con-
flict minimization through optimized task scheduling. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, May 2013, DOI
10.1109/icse.2013.6606619.
Abstract: Software conflicts arising because of conflicting changes are a
regular occurrence and delay projects. The main precept of workspace aware-
ness tools has been to identify potential conflicts early, while changes are still
small and easier to resolve. However, in this approach conflicts still occur
and require developer time and effort to resolve. We present a novel con-
flict minimization technique that proactively identifies potential conflicts,
encodes them as constraints, and solves the constraint space to recommend
a set of conflict-minimal development paths for the team. Here we present
a study of four open source projects to characterize the distribution of con-
flicts and their resolution efforts. We then explain our conflict minimization
technique and the design and implementation of this technique in our proto-
type, Cassandra. We show that Cassandra would have successfully avoided
a majority of conflicts in the four open source test subjects. We demonstrate
the efficiency of our approach by applying the technique to a simulated set
of scenarios with higher than normal incidence of conflicts.

[Kavaler2019] David Kavaler, Asher Trockman, Bogdan Vasilescu, and
Vladimir Filkov. Tool choice matters: JavaScript quality assurance
tools and usage outcomes in GitHub projects. In Proc. International
Conference on Software Engineering (ICSE). IEEE, May 2019, DOI
10.1109/icse.2019.00060.
Abstract: Quality assurance automation is essential in modern software
development. In practice, this automation is supported by a multitude of
tools that fit different needs and require developers to make decisions about
which tool to choose in a given context. Data and analytics of the pros and
cons can inform these decisions. Yet, in most cases, there is a dearth of em-
pirical evidence on the effectiveness of existing practices and tool choices.

67

We propose a general methodology to model the time-dependent effect of
automation tool choice on four outcomes of interest: prevalence of issues,
code churn, number of pull requests, and number of contributors, all with
a multitude of controls. On a large data set of npm JavaScript projects, we
extract the adoption events for popular tools in three task classes: linters,
dependency managers, and coverage reporters. Using mixed methods ap-
proaches, we study the reasons for the adoptions and compare the adoption
effects within each class, and sequential tool adoptions across classes. We
find that some tools within each group are associated with more beneficial
outcomes than others, providing an empirical perspective for the benefits of
each. We also find that the order in which some tools are implemented is
associated with varying outcomes.

[Kernighan1979] Brian W. Kernighan and P. J. Plauger. The Elements of
Programming Style. McGraw-Hill, 2nd edition, 1979.
Abstract: Lays out several dozen rules for good programming style; while
examples are in FORTRAN, the rules apply to almost every language.

[Kernighan1981] Brian W. Kernighan and P. J. Plauger. Software Tools in
Pascal. Addison-Wesley Professional, 1981.
Abstract: Shows readers how to build simple version of the the program-
ming tools they use themselves, and in doing so shows how to think about
software design.

[Kernighan1983] Brian W. Kernighan and Rob Pike. The Unix Programming
Environment. Prentice-Hall, 1983.
Abstract: Explains the Unix “lots of little tools, easily recombined” ap-
proach to computing with lots of examples.

[Keuning2023] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. A sys-
tematic mapping study of code quality in education – with complete bibli-
ography, 2023.
Abstract: While functionality and correctness of code has traditionally
been the main focus of computing educators, quality aspects of code are get-
ting increasingly more attention. High-quality code contributes to the main-
tainability of software systems, and should therefore be a central aspect of
computing education. We have conducted a systematic mapping study to
give a broad overview of the research conducted in the field of code quality
in an educational context. The study investigates paper characteristics, top-
ics, research methods, and the targeted programming languages. We found
195 publications (1976–2022) on the topic in multiple databases, which we
systematically coded to answer the research questions. This paper reports
on the results and identifies developments, trends, and new opportunities for
research in the field of code quality in computing education.

[Khomh2012] Foutse Khomh, Tejinder Dhaliwal, Ying Zou, and Bram
Adams. Do faster releases improve software quality? an empirical case study
of Mozilla Firefox. In Proc. International Conference on Mining Software

68

Repositories (MSR). IEEE, Jun 2012, DOI 10.1109/msr.2012.6224279.
Abstract: Nowadays, many software companies are shifting from the tradi-
tional 18-month release cycle to shorter release cycles. For example, Google
Chrome and Mozilla Firefox release new versions every 6 weeks. These
shorter release cycles reduce the users’ waiting time for a new release and
offer better marketing opportunities to companies, but it is unclear if the
quality of the software product improves as well, since shorter release cy-
cles result in shorter testing periods. In this paper, we empirically study the
development process of Mozilla Firefox in 2010 and 2011, a period during
which the project transitioned to a shorter release cycle. We compare crash
rates, median uptime, and the proportion of post-release bugs of the versions
that had a shorter release cycle with those having a traditional release cycle,
to assess the relation between release cycle length and the software quality
observed by the end user. We found that (1) with shorter release cycles, users
do not experience significantly more post-release bugs and (2) bugs are fixed
faster, yet (3) users experience these bugs earlier during software execution
(the program crashes earlier).

[Kiefer2015] Marc Kiefer, Daniel Warzel, and Walter F. Tichy. An empirical
study on parallelism in modern open-source projects. In Proc. International
Workshop on Software Engineering for Parallel Systems (SEPS). ACM, Oct
2015, DOI 10.1145/2837476.2837481.
Abstract: Writing parallel programs is hard, especially for inexperienced
programmers. Parallel language features are still being added on a regular
basis to most modern object-oriented languages and this trend is likely to
continue. Being able to support developers with tools for writing and opti-
mizing parallel programs requires a deep understanding of how programmers
approach and implement parallelism. We present an empirical study of 135
parallel open-source projects in Java, C# and C++ ranging from small (¡
1000 lines of code) to very large (¿ 2M lines of code) codebases. We examine
the projects to find out how language features, synchronization mechanisms,
parallel data structures and libraries are used by developers to express paral-
lelism. We also determine which common parallel patterns are used and how
the implemented solutions compare to typical textbook advice. The results
show that similar parallel constructs are used equally often across languages,
but usage also heavily depends on how easy to use a certain language feature
is. Patterns that do not map well to a language are much rarer compared
to other languages. Bad practices are prevalent in hobby projects but also
occur in larger projects.

[Kim2013a] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim.
Automatic patch generation learned from human-written patches. In Proc.
International Conference on Software Engineering (ICSE). IEEE, May 2013,
DOI 10.1109/icse.2013.6606626.
Abstract: Patch generation is an essential software maintenance task be-
cause most software systems inevitably have bugs that need to be fixed.
Unfortunately, human resources are often insufficient to fix all reported

69

and known bugs. To address this issue, several automated patch genera-
tion techniques have been proposed. In particular, a genetic-programming-
based patch generation technique, GenProg, proposed by Weimer et al., has
shown promising results. However, these techniques can generate nonsensi-
cal patches due to the randomness of their mutation operations. To address
this limitation, we propose a novel patch generation approach, Pattern-based
Automatic program Repair (Par), using fix patterns learned from existing
human-written patches. We manually inspected more than 60,000 human-
written patches and found there are several common fix patterns. Our ap-
proach leverages these fix patterns to generate program patches automat-
ically. We experimentally evaluated Par on 119 real bugs. In addition, a
user study involving 89 students and 164 developers confirmed that patches
generated by our approach are more acceptable than those generated by
GenProg. Par successfully generated patches for 27 out of 119 bugs, while
GenProg was successful for only 16 bugs.

[Kim2013b] Jinhan Kim, Sanghoon Lee, Seung-Won Hwang, and Sunghun
Kim. Enriching documents with examples. ACM Transactions on Informa-
tion Systems, 31(1):1–27, Jan 2013, DOI 10.1145/2414782.2414783.
Abstract: Software developers increasingly rely on information from the
Web, such as documents or code examples on application programming
interfaces (APIs), to facilitate their development processes. However, API
documents often do not include enough information for developers to fully
understand how to use the APIs, and searching for good code examples
requires considerable effort. To address this problem, we propose a novel
code example recommendation system that combines the strength of brows-
ing documents and searching for code examples and returns API documents
embedded with high-quality code example summaries mined from the Web.
Our evaluation results show that our approach provides code examples with
high precision and boosts programmer productivity.

[Kim2016] Dohyeong Kim, Yonghwi Kwon, Peng Liu, I. Luk Kim,
David Mitchel Perry, Xiangyu Zhang, and Gustavo Rodriguez-Rivera. Apex:
automatic programming assignment error explanation. In Proc. Interna-
tional Conference on Object-Oriented Programming Systems Languages and
Applications (OOPSLA). ACM, Oct 2016, DOI 10.1145/2983990.2984031.
Abstract: This paper presents Apex, a system that can automatically gen-
erate explanations for programming assignment bugs, regarding where the
bugs are and how the root causes led to the runtime failures. It works by com-
paring the passing execution of a correct implementation (provided by the
instructor) and the failing execution of the buggy implementation (submitted
by the student). The technique overcomes a number of technical challenges
caused by syntactic and semantic differences of the two implementations.
It collects the symbolic traces of the executions and matches assignment
statements in the two execution traces by reasoning about symbolic equiv-
alence. It then matches predicates by aligning the control dependences of

70

the matched assignment statements, avoiding direct matching of path con-
ditions which are usually quite different. Our evaluation shows that Apex is
every effective for 205 buggy real world student submissions of 4 program-
ming assignments, and a set of 15 programming assignment type of buggy
programs collected from stackoverflow.com, precisely pinpointing the root
causes and capturing the causality for 94.5% of them. The evaluation on a
standard benchmark set with over 700 student bugs shows similar results.
A user study in the classroom shows that Apex has substantially improved
student productivity.

[Kim2023] Jinhan Kim, Jongchan Park, and Shin Yoo. The inversive relation-
ship between bugs and patches: An empirical study, 2023.
Abstract: Software bugs pose an ever-present concern for developers, and
patching such bugs requires a considerable amount of costs through complex
operations. In contrast, introducing bugs can be an effortless job, in that even
a simple mutation can easily break the Program Under Test (PUT). Exist-
ing research has considered these two opposed activities largely separately,
either trying to automatically generate realistic patches to help developers,
or to find realistic bugs to simulate and prevent future defects. Despite the
fundamental differences between them, however, we hypothesise that they
do not syntactically differ from each other when considered simply as code
changes. To examine this assumption systematically, we investigate the re-
lationship between patches and buggy commits, both generated manually
and automatically, using a clustering and pattern analysis. A large scale
empirical evaluation reveals that up to 70% of patches and faults can be
clustered together based on the similarity between their lexical patterns;
further, 44% of the code changes can be abstracted into the identical change
patterns. Moreover, we investigate whether code mutation tools can be used
as Automated Program Repair (APR) tools, and APR tools as code muta-
tion tools. In both cases, the inverted use of mutation and APR tools can
perform surprisingly well, or even better, when compared to their original,
intended uses. For example, 89% of patches found by SequenceR, a deep
learning based APR tool, can also be found by its inversion, i.e., a model
trained with faults and not patches. Similarly, real fault coupling study of
mutants reveals that TBar, a template based APR tool, can generate 14%
and 3% more fault couplings than traditional mutation tools, PIT and Major
respectively, when used as a mutation tool. Our findings suggest that the
valid scope of mining code changes for either mutation or APR can be wider
than previously thought.

[Kinshumann2011] Kinshuman Kinshumann, Kirk Glerum, Steve Green-
berg, Gabriel Aul, Vince Orgovan, Greg Nichols, David Grant, Gretchen
Loihle, and Galen Hunt. Debugging in the (very) large: ten years of imple-
mentation and experience. Communications of the ACM, 54(7):111–116, Jul
2011, DOI 10.1145/1965724.1965749.
Abstract: Windows Error Reporting (WER) is a distributed system that
automates the processing of error reports coming from an installed base of

71

a billion machines. WER has collected billions of error reports in 10 years
of operation. It collects error data automatically and classifies errors into
buckets, which are used to prioritize developer effort and report fixes to
users. WER uses a progressive approach to data collection, which minimizes
overhead for most reports yet allows developers to collect detailed informa-
tion when needed. WER takes advantage of its scale to use error statistics
as a tool in debugging; this allows developers to isolate bugs that cannot
be found at smaller scale. WER has been designed for efficient operation at
large scale: one pair of database servers records all the errors that occur on
all Windows computers worldwide.

[Kinsman2021] Timothy Kinsman, Mairieli Wessel, Marco A. Gerosa,
and Christoph Treude. How do software developers use GitHub ac-
tions to automate their workflows? In Proc. International Confer-
ence on Mining Software Repositories (MSR). IEEE, May 2021, DOI
10.1109/msr52588.2021.00054.
Abstract: Automated tools are frequently used in social coding repositories
to perform repetitive activities that are part of the distributed software de-
velopment process. Recently, GitHub introduced GitHub Actions, a feature
providing automated work-flows for repository maintainers. Although sev-
eral Actions have been built and used by practitioners, relatively little has
been done to evaluate them. Understanding and anticipating the effects of
adopting such kind of technology is important for planning and management.
Our research is the first to investigate how developers use Actions and how
several activity indicators change after their adoption. Our results indicate
that, although only a small subset of repositories adopted GitHub Actions to
date, there is a positive perception of the technology. Our findings also indi-
cate that the adoption of GitHub Actions increases the number of monthly
rejected pull requests and decreases the monthly number of commits on
merged pull requests. These results are especially relevant for practitioners
to understand and prevent undesirable effects on their projects.

[Kocaguneli2012] Ekrem Kocaguneli, Tim Menzies, and Jacky W. Keung.
On the value of ensemble effort estimation. IEEE Transactions on Software
Engineering, 38(6):1403–1416, Nov 2012, DOI 10.1109/tse.2011.111.
Abstract: Background: Despite decades of research, there is no consen-
sus on which software effort estimation methods produce the most accurate
models. Aim: Prior work has reported that, given M estimation methods, no
single method consistently outperforms all others. Perhaps rather than rec-
ommending one estimation method as best, it is wiser to generate estimates
from ensembles of multiple estimation methods. Method: Nine learners were
combined with 10 preprocessing options to generate 9×10 = 90 solo methods.
These were applied to 20 datasets and evaluated using seven error measures.
This identified the best n (in our case n = 13) solo methods that showed
stable performance across multiple datasets and error measures. The top 2,
4, 8, and 13 solo methods were then combined to generate 12 multimeth-
ods, which were then compared to the solo methods. Results: 1) The top

72

10 (out of 12) multimethods significantly outperformed all 90 solo methods.
2) The error rates of the multimethods were significantly less than the solo
methods. 3) The ranking of the best multimethod was remarkably stable.
Conclusion: While there is no best single effort estimation method, there
exist best combinations of such effort estimation methods.

[Kochhar2019] Pavneet Singh Kochhar, Eirini Kalliamvakou, Nachiappan
Nagappan, Thomas Zimmermann, and Christian Bird. Moving from
closed to open source: Observations from six transitioned projects to
GitHub. IEEE Transactions on Software Engineering, page 1–1, 2019, DOI
10.1109/tse.2019.2937025.
Abstract: Open source software systems have gained a lot of attention in
the past few years. With the emergence of open source platforms like GitHub,
developers can contribute, store, and manage their projects with ease. Large
organizations like Microsoft, Google, and Facebook are open sourcing their
in-house technologies in an effort to more broadly involve the community
in the development of software systems. Although closed source and open
source systems have been studied extensively, there has been little research
on the transition from closed source to open source systems. Through this
study we aim to: a) provide guidance and insights for other teams planning
to open source their projects and b) to help them avoid pitfalls during the
transition process. We studied six different Microsoft systems, which were
recently open-sourced i.e., CoreFX, CoreCLR, Roslyn, Entity Framework,
MVC, and Orleans. This paper presents the transition from the viewpoints
of both Microsoft and the open source community based on interviews with
eleven Microsoft developer, five Microsoft senior managers involved in the
decision to open source, and eleven open-source developers. From Microsoft’s
perspective we discuss the reasons for the transition, experiences of devel-
opers involved, and the transition’s outcomes and challenges. Our results
show that building a vibrant community, prompt answers, developing an
open source culture, security regulations and business opportunities are the
factors which persuade companies to open source their products. We also
discuss the transition outcomes on processes such as code reviews, version
control systems, continuous integration as well as developers’ perception of
these changes. From the open source community’s perspective, we illustrate
the response to the open-sourcing initiative through contributions and inter-
actions with the internal developers and provide guidelines for other projects
planning to go open source.

[Kosar2011] Tomaž Kosar, Marjan Mernik, and Jeffrey C. Carver. Program
comprehension of domain-specific and general-purpose languages: com-
parison using a family of experiments. Empirical Software Engineering,
17(3):276–304, Aug 2011, DOI 10.1007/s10664-011-9172-x.
Abstract: Domain-specific languages (DSLs) are often argued to have a
simpler notation than general-purpose languages (GPLs), since the notation
is adapted to the specific problem domain. Consequently, the impact of do-
main relevance on the creation of the problem representation is believed to

73

improve programmers’ efficiency and accuracy when using DSLs compared
with using similar solutions like application libraries in GPLs. Most of the
common beliefs have been based upon qualitative conclusions drawn by de-
velopers. Rather than implementing the same problem in a DSL and in a
GPL and comparing the efficiency and accuracy of each approach, develop-
ers often compare the implementation of a new program in a DSL to their
previous experiences implementing similar programs in GPLs. Such a con-
clusion may or may not be valid. This paper takes a more skeptical approach
to acceptance of those beliefs. By reporting on a family of three empirical
studies comparing DSLs and GPLs in different domains. The results of the
studies showed that when using a DSL, developers are more accurate and
more efficient in program comprehension than when using a GPL. These re-
sults validate some of the long-held beliefs of the DSL community that until
now were only supported by anecdotal evidence.

[Kosar2018] Tomaž Kosar, Sašo Gaberc, Jeffrey C. Carver, and Marjan
Mernik. Program comprehension of domain-specific and general-purpose
languages: replication of a family of experiments using integrated develop-
ment environments. Empirical Software Engineering, 23(5):2734–2763, Feb
2018, DOI 10.1007/s10664-017-9593-2.
Abstract: Domain-specific languages (DSLs) allow developers to write code
at a higher level of abstraction compared with general-purpose languages
(GPLs). Developers often use DSLs to reduce the complexity of GPLs. Our
previous study found that developers performed program comprehension
tasks more accurately and efficiently with DSLs than with corresponding
APIs in GPLs. This study replicates our previous study to validate and ex-
tend the results when developers use IDEs to perform program comprehen-
sion tasks. We performed a dependent replication of a family of experiments.
We made two specific changes to the original study: (1) participants used
IDEs to perform the program comprehension tasks, to address a threat to va-
lidity in the original experiment and (2) each participant performed program
comprehension tasks on either DSLs or GPLs, not both as in the original
experiment. The results of the replication are consistent with and expanded
the results of the original study. Developers are significantly more effective
and efficient in tool-based program comprehension when using a DSL than
when using a corresponding API in a GPL. The results indicate that, where
a DSL is available, developers will perform program comprehension better
using the DSL than when using the corresponding API in a GPL.

[Krein2016] Jonathan L. Krein, Lutz Prechelt, Natalia Juristo, Aziz Nan-
thaamornphong, Jeffrey C. Carver, Sira Vegas, Charles D. Knutson,
Kevin D. Seppi, and Dennis L. Eggett. A multi-site joint replication of
a design patterns experiment using moderator variables to generalize across
contexts. IEEE Transactions on Software Engineering, 42(4):302–321, Apr
2016, DOI 10.1109/tse.2015.2488625.
Abstract: Context. Several empirical studies have explored the benefits of
software design patterns, but their collective results are highly inconsistent.

74

Resolving the inconsistencies requires investigating moderators—i.e., vari-
ables that cause an effect to differ across contexts. Objectives. Replicate a
design patterns experiment at multiple sites and identify sufficient moder-
ators to generalize the results across prior studies. Methods. We perform a
close replication of an experiment investigating the impact (in terms of time
and quality) of design patterns (Decorator and Abstract Factory) on software
maintenance. The experiment was replicated once previously, with divergent
results. We execute our replication at four universities—spanning two conti-
nents and three countries—using a new method for performing distributed
replications based on closely coordinated, small-scale instances (“joint repli-
cation”). We perform two analyses: 1) a post-hoc analysis of moderators,
based on frequentist and Bayesian statistics; 2) an a priori analysis of the
original hypotheses, based on frequentist statistics. Results. The main ef-
fect differs across the previous instances of the experiment and across the
sites in our distributed replication. Our analysis of moderators (including
developer experience and pattern knowledge) resolves the differences suffi-
ciently to allow for cross-context (and cross-study) conclusions. The final
conclusions represent 126 participants from five universities and 12 software
companies, spanning two continents and at least four countries. Conclusions.
The Decorator pattern is found to be preferable to a simpler solution during
maintenance, as long as the developer has at least some prior knowledge of
the pattern. For Abstract Factory, the simpler solution is found to be mostly
equivalent to the pattern solution. Abstract Factory is shown to require a
higher level of knowledge and/or experience than Decorator for the pattern
to be beneficial.

[Kula2022a] Elvan Kula, Eric Greuter, Arie van Deursen, and Georgios
Gousios. Factors affecting on-time delivery in large-scale agile software de-
velopment. IEEE Transactions on Software Engineering, 48(9):3573–3592,
Sep 2022, DOI 10.1109/tse.2021.3101192.
Abstract: Late delivery of software projects and cost overruns have been
common problems in the software industry for decades. Both problems are
manifestations of deficiencies in effort estimation during project planning.
With software projects being complex socio-technical systems, a large pool
of factors can affect effort estimation and on-time delivery. To identify the
most relevant factors and their interactions affecting schedule deviations in
large-scale agile software development, we conducted a mixed-methods case
study at ING: two rounds of surveys revealed a multitude of organizational,
people, process, project and technical factors which were then quantified
and statistically modeled using software repository data from 185 teams.
We find that factors such as requirements refinement, task dependencies,
organizational alignment and organizational politics are perceived to have
the greatest impact on on-time delivery, whereas proxy measures such as
project size, number of dependencies, historical delivery performance and
team familiarity can help explain a large degree of schedule deviations. We
also discover hierarchical interactions among factors: organizational factors

75

are perceived to interact with people factors, which in turn impact techni-
cal factors. We compose our findings in the form of a conceptual framework
representing influential factors and their relationships to on-time delivery.
Our results can help practitioners identify and manage delay risks in agile
settings, can inform the design of automated tools to predict schedule over-
runs and can contribute towards the development of a relational theory of
software project management.

[Kula2022b] Raula Gaikovina Kula and Christoph Treude. In war and peace:
The impact of world politics on software ecosystems, 2022.
Abstract: Reliance on third-party libraries is now commonplace in con-
temporary software engineering. Being open source in nature, these libraries
should advocate for a world where the freedoms and opportunities of open
source software can be enjoyed by all. Yet, there is a growing concern related
to maintainers using their influence to make political stances (i.e., referred to
as protestware). In this paper, we reflect on the impact of world politics on
software ecosystems, especially in the context of the ongoing War in Ukraine.
We show three cases where world politics has had an impact on a software
ecosystem, and how these incidents may result in either benign or malignant
consequences. We further point to specific opportunities for research, and
conclude with a research agenda with ten research questions to guide future
research directions.

[Ladisa2023] Piergiorgio Ladisa, Serena Elisa Ponta, Antonino Sabetta, Ma-
tias Martinez, and Olivier Barais. Journey to the center of software supply
chain attacks, 2023.
Abstract: This work discusses open-source software supply chain attacks
and proposes a general taxonomy describing how attackers conduct them.
We then provide a list of safeguards to mitigate such attacks. We present our
tool ”Risk Explorer for Software Supply Chains” to explore such information
and we discuss its industrial use-cases.

[Latendresse2021] Jasmine Latendresse, Rabe Abdalkareem, Diego Elias
Costa, and Emad Shihab. How effective is continuous integration
in indicating single-statement bugs? In Proc. International Confer-
ence on Mining Software Repositories (MSR). IEEE, May 2021, DOI
10.1109/msr52588.2021.00062.
Abstract: Continuous Integration (CI) is the process of automatically com-
piling, building, and testing code changes in the hope of catching bugs as
they are introduced into the code base. With bug fixing being a core and in-
creasingly costly task in software development, the community has adopted
CI to mitigate this issue and improve the quality of their software products.
Bug fixing is a core task in software development and becomes increasingly
costly over time. However, little is known about how effective CI is at detect-
ing simple, single-statement bugs.In this paper, we analyze the effectiveness
of CI in 14 popular open source Java-based projects to warn about 318
single-statement bugs (SStuBs). We analyze the build status at the commits

76

that introduce SStuBs and before the SStuBs were fixed. We then investi-
gate how often CI indicates the presence of these bugs, through test failure.
Our results show that only 2% of the commits that introduced SStuBs have
builds with failed tests and 7.5% of builds before the fix reported test fail-
ures. Upon close manual inspection, we found that none of the failed builds
actually captured SStuBs, indicating that CI is not the right medium to cap-
ture the SStuBs we studied. Our results suggest that developers should not
rely on CI to catch SStuBs or increase their CI pipeline coverage to detect
single-statement bugs.

[Lee2022] Carol S. Lee, Margaret Bowman, and Jenny L. Wu. Preliminary
outcomes from a single-session, asynchronous online, stress and anxiety
management workshop for college students. Trends in Psychiatry and Psy-
chotherapy, 2022, DOI 10.47626/2237-6089-2021-0448.
Abstract: Objective: Self-guided asynchronous online interventions may
provide college students access to evidence-based care, while mitigating bar-
riers like limited hours of service. Thus, we examined the preliminary ef-
fectiveness of a 45-minute self-guided, asynchronous online, Dialectical Be-
havior Therapy (DBT)-informed stress and anxiety management workshop.
Participants: College undergraduates (N = 131) were randomized to either
workshop (n = 65) or waitlist control (n = 66) conditions. Methods: Partici-
pants in the workshop condition completed baseline measures of depression,
stress, and anxiety, before completing the workshop. Participants in the wait-
list control condition only completed the baseline measures. All participants
were reassessed at one-week follow-up. Results: Controlling for baseline mea-
sures, students in the workshop condition experienced significantly less stress
and greater self-efficacy to regulate stress and anxiety at follow-up, compared
to waitlist controls. Conclusions: A 45-minute self-guided, asynchronous on-
line, DBT Skills-informed stress and anxiety management workshop may
reduce stress and self-efficacy to regulate stress and anxiety.

[Leinonen2023] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa,
Seth Bernstein, Joanne Kim, Andrew Tran, and Arto Hellas. Comparing
code explanations created by students and large language models, 2023.
Abstract: Reasoning about code and explaining its purpose are fundamen-
tal skills for computer scientists. There has been extensive research in the
field of computing education on the relationship between a student’s ability
to explain code and other skills such as writing and tracing code. In par-
ticular, the ability to describe at a high-level of abstraction how code will
behave over all possible inputs correlates strongly with code writing skills.
However, developing the expertise to comprehend and explain code accu-
rately and succinctly is a challenge for many students. Existing pedagogical
approaches that scaffold the ability to explain code, such as producing ex-
emplar code explanations on demand, do not currently scale well to large
classrooms. The recent emergence of powerful large language models (LLMs)
may offer a solution. In this paper, we explore the potential of LLMs in gen-
erating explanations that can serve as examples to scaffold students’ ability

77

to understand and explain code. To evaluate LLM-created explanations, we
compare them with explanations created by students in a large course (n
≈ 1000) with respect to accuracy, understandability and length. We find
that LLM-created explanations, which can be produced automatically on
demand, are rated as being significantly easier to understand and more ac-
curate summaries of code than student-created explanations. We discuss the
significance of this finding, and suggest how such models can be incorporated
into introductory programming education.

[Leitao2019] Roxanne Leitão. Technology-facilitated intimate partner
abuse: a qualitative analysis of data from online domestic abuse fo-
rums. Human–Computer Interaction, 36(3):203–242, Dec 2019, DOI
10.1080/07370024.2019.1685883.
Abstract: This article reports on a qualitative analysis of data gathered
from three online discussion forums for victims and survivors of domestic
abuse. The analysis focussed on technology-facilitated abuse and the findings
cover three main themes, namely, 1) forms of technology-facilitated abuse
being discussed on the forums, 2) the ways in which forum members are using
technology within the context of intimate partner abuse, and 3) the digital
privacy and security advice being exchanged between victims/survivors on
the forums. The article concludes with a discussion on the dual role of digital
technologies within the context of intimate partner abuse, on the challenges
and advantages of digital ubiquity, as well as on the issues surrounding digital
evidence of abuse, and the labor of managing digital privacy and security.

[Lemire2021] Daniel Lemire. Number parsing at a gigabyte per second.
Software: Practice and Experience, 51(8):1700–1727, May 2021, DOI
10.1002/spe.2984.
Abstract: With disks and networks providing gigabytes per second, pars-
ing decimal numbers from strings becomes a bottleneck. We consider the
problem of parsing decimal numbers to the nearest binary floating-point
value. The general problem requires variable-precision arithmetic. However,
we need at most 17 digits to represent 64-bit standard floating-point num-
bers (IEEE 754). Thus, we can represent the decimal significand with a
single 64-bit word. By combining the significand and precomputed tables,
we can compute the nearest floating-point number using as few as one or
two 64-bit multiplications. Our implementation can be several times faster
than conventional functions present in standard C libraries on modern 64-bit
systems (Intel, AMD, ARM, and POWER9). Our work is available as open
source software used by major systems such as Apache Arrow and Yandex
ClickHouse. The Go standard library has adopted a version of our approach.

[Levy2020] Karen Levy and Bruce Schneier. Privacy threats in inti-
mate relationships. Journal of Cybersecurity, 6(1), Jan 2020, DOI
10.1093/cybsec/tyaa006.
Abstract: This article provides an overview of intimate threats: a class
of privacy threats that can arise within our families, romantic partnerships,

78

close friendships, and caregiving relationships. Many common assumptions
about privacy are upended in the context of these relationships, and many
otherwise effective protective measures fail when applied to intimate threats.
Those closest to us know the answers to our secret questions, have access to
our devices, and can exercise coercive power over us. We survey a range of
intimate relationships and describe their common features. Based on these
features, we explore implications for both technical privacy design and policy,
and offer design recommendations for ameliorating intimate privacy risks.

[Lewis2013] Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu,
Rong Ou, and E. James Whitehead. Does bug prediction support hu-
man developers? findings from a Google case study. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, May 2013, DOI
10.1109/icse.2013.6606583.
Abstract: While many bug prediction algorithms have been developed by
academia, they’re often only tested and verified in the lab using automated
means. We do not have a strong idea about whether such algorithms are
useful to guide human developers. We deployed a bug prediction algorithm
across Google, and found no identifiable change in developer behavior. Using
our experience, we provide several characteristics that bug prediction algo-
rithms need to meet in order to be accepted by human developers and truly
change how developers evaluate their code.

[Li2013] Sihan Li, Hucheng Zhou, Haoxiang Lin, Tian Xiao, Haibo Lin, Wei
Lin, and Tao Xie. A characteristic study on failures of production distributed
data-parallel programs. In Proc. International Conference on Software En-
gineering (ICSE). IEEE, May 2013, DOI 10.1109/icse.2013.6606646.
Abstract: SCOPE is adopted by thousands of developers from tens of
different product teams in Microsoft Bing for daily web-scale data process-
ing, including index building, search ranking, and advertisement display.
A SCOPE job is composed of declarative SQL-like queries and imperative
C# user-defined functions (UDFs), which are executed in pipeline by thou-
sands of machines. There are tens of thousands of SCOPE jobs executed
on Microsoft clusters per day, while some of them fail after a long execu-
tion time and thus waste tremendous resources. Reducing SCOPE failures
would save significant resources. This paper presents a comprehensive char-
acteristic study on 200 SCOPE failures/fixes and 50 SCOPE failures with
debugging statistics from Microsoft Bing, investigating not only major fail-
ure types, failure sources, and fixes, but also current debugging practice.
Our major findings include (1) most of the failures (84.5%) are caused by
defects in data processing rather than defects in code logic; (2) table-level
failures (22.5%) are mainly caused by programmers’ mistakes and frequent
data-schema changes while row-level failures (62%) are mainly caused by ex-
ceptional data; (3) 93% fixes do not change data processing logic; (4) there
are 8% failures with root cause not at the failure-exposing stage, making
current debugging practice insufficient in this case. Our study results pro-
vide valuable guidelines for future development of data-parallel programs.

79

We believe that these guidelines are not limited to SCOPE, but can also be
generalized to other similar data-parallel platforms.

[Liao2016] Soohyun Nam Liao, Daniel Zingaro, Michael A. Laurenzano,
William G. Griswold, and Leo Porter. Lightweight, early identification of
at-risk CS1 students. In Proc. Conference on International Computing Edu-
cation Research (ICER). ACM, Aug 2016, DOI 10.1145/2960310.2960315.
Abstract: Being able to identify low-performing students early in the term
may help instructors intervene or differently allocate course resources. Prior
work in CS1 has demonstrated that clicker correctness in Peer Instruction
courses correlates with exam outcomes and, separately, that machine learn-
ing models can be built based on early-term programming assessments. This
work aims to combine the best elements of each of these approaches. We
offer a methodology for creating models, based on in-class clicker questions,
to predict cross-term student performance. In as early as week 3 in a 12-week
CS1 course, this model is capable of correctly predicting students as being in
danger of failing, or not, for 70% of the students, with only 17% of students
misclassified as not at-risk when at-risk. Additional measures to ensure more
broad applicability of the methodology, along with possible limitations, are
explored.

[Licorish2022] Sherlock A. Licorish and Markus Wagner. Combining GIN
and PMD for code improvements. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion. ACM, Jul 2022, DOI
10.1145/3520304.3528772.
Abstract: Software developers are increasingly dependent on question and
answer portals and blogs for coding solutions. While such interfaces provide
useful information, there are concerns that code hosted here is often incor-
rect, insecure or incomplete. Previous work indeed detected a range of faults
in code provided on Stack Overflow through the use of static analysis. Static
analysis may go a far way towards quickly establishing the health of software
code available online. In addition, mechanisms that enable rapid automated
program improvement may then enhance such code. Accordingly, we present
this proof of concept. We use the PMD static analysis tool to detect per-
formance faults for a sample of Stack Overflow Java code snippets, before
performing mutations on these snippets using GIN. We then re-analyse the
performance faults in these snippets after the GIN mutations. GIN’s Ran-
domSampler was used to perform 17,986 unique line and statement patches
on 3,034 snippets where PMD violations were removed from 770 patched
versions. Our outcomes indicate that static analysis techniques may be com-
bined with automated program improvement methods to enhance publicly
available code with very little resource requirements. We discuss our planned
research agenda in this regard.

[Lima2021] Luan P. Lima, Lincoln S. Rocha, Carla I. M. Bezerra, and
Matheus Paixao. Assessing exception handling testing practices in open-
source libraries. Empirical Software Engineering, 26(5), Jun 2021, DOI

80

10.1007/s10664-021-09983-3.
Abstract: Modern programming languages (e.g., Java and C#) provide
features to separate error-handling code from regular code, seeking to en-
hance software comprehensibility and maintainability. Nevertheless, the way
exception handling (EH) code is structured in such languages may lead to
multiple, different, and complex control flows, which may affect the soft-
ware testability. Previous studies have reported that EH code is typically
neglected, not well tested, and its misuse can lead to reliability degradation
and catastrophic failures. However, little is known about the relationship
between testing practices and EH testing effectiveness. In this exploratory
study, we (i) measured the adequacy degree of EH testing concerning code
coverage (instruction, branch, and method) criteria; and (ii) evaluated the
effectiveness of the EH testing by measuring its capability to detect arti-
ficially injected faults (i.e., mutants) using 7 EH mutation operators. Our
study was performed using test suites of 27 long-lived Java libraries from
open-source ecosystems. Our results show that instructions and branches
within catch blocks and throw instructions are less covered, with statistical
significance, than the overall instructions and branches. Nevertheless, most
of the studied libraries presented test suites capable of detecting more than
70% of the injected faults. From a total of 12, 331 mutants created in this
study, the test suites were able to detect 68% of them.

[Lin2020] Sarah Lin, Ibraheem Ali, and Greg Wilson. Ten quick tips for mak-
ing things findable. PLOS Computational Biology, 16(12):e1008469, Dec
2020, DOI 10.1371/journal.pcbi.1008469.
Abstract: The distribution of scholarly content today happens in the con-
text of an immense deluge of information found on the internet. As a result,
researchers face serious challenges when archiving and finding information
that relates to their work. Library science principles provide a framework
for navigating information ecosystems in order to help researchers improve
findability of their professional output. Here, we describe the information
ecosystem which consists of users, context, and content, all 3 of which must
be addressed to make information findable and usable. We provide a set of
tips that can help researchers evaluate who their users are, how to archive
their research outputs to encourage findability, and how to leverage struc-
tural elements of software to make it easier to find information within and
beyond their publications. As scholars evaluate their research communica-
tion strategies, they can use these steps to improve how their research is
discovered and reused.

[Lo2015] David Lo, Nachiappan Nagappan, and Thomas Zimmermann. How
practitioners perceive the relevance of software engineering research. In
Proc. International Symposium on the Foundations of Software Engineer-
ing (FSE). ACM, Aug 2015, DOI 10.1145/2786805.2786809.
Abstract: The number of software engineering research papers over the
last few years has grown significantly. An important question here is: how
relevant is software engineering research to practitioners in the field? To

81

address this question, we conducted a survey at Microsoft where we invited
3,000 industry practitioners to rate the relevance of research ideas contained
in 571 ICSE, ESEC/FSE and FSE papers that were published over a five
year period. We received 17,913 ratings by 512 practitioners who labelled
ideas as essential, worthwhile, unimportant, or unwise. The results from the
survey suggest that practitioners are positive towards studies done by the
software engineering research community: 71% of all ratings were essential
or worthwhile. We found no correlation between the citation counts and the
relevance scores of the papers. Through a qualitative analysis of free text
responses, we identify several reasons why practitioners considered certain
research ideas to be unwise. The survey approach described in this paper is
lightweight: on average, a participant spent only 22.5 minutes to respond
to the survey. At the same time, the results can provide useful insight to
conference organizers, authors, and participating practitioners.

[Lopez2018] Fernando López de la Mora and Sarah Nadi. An empirical study
of metric-based comparisons of software libraries. In Proc. International
Conference on Predictive Models and Data Analytics in Software Engineer-
ing (PROMISE). ACM, Oct 2018, DOI 10.1145/3273934.3273937.
Abstract: Software libraries provide a set of reusable functionality, which
helps developers write code in a systematic and timely manner. However,
selecting the appropriate library to use is often not a trivial task. AIMS: In
this paper, we investigate the usefulness of software metrics in helping de-
velopers choose libraries.Different developers care about different aspects of
a library and two developers looking for a library in a given domain may not
necessarily choose the same library. Thus, instead of directly recommending
a library to use, we provide developers with a metric-based comparison of
libraries in the same domain to empower them with the information they
need to make an informed decision. METHOD:We use software data analyt-
ics from several sources of information to create quantifiable metric-based
comparisons of software libraries. For evaluation, we select 34 open-source
Java libraries from 10 popular domains and extract nine metrics related
to these libraries. We then conduct a survey of 61 developers to evaluate
whether our proposed metric-based comparison is useful, and to understand
which metrics developers care about. RESULTS: Our results show that de-
velopers find that the proposed technique provides useful information when
selecting libraries. We observe that developers care the most about metrics
related to the popularity, security, and performance of libraries. We also
find that the usefulness of some metrics may vary according to the domain.
CONCLUSIONS:Our survey results showed that our proposed technique is
useful.We are currently building a public website for metric-based library
comparisons, while incorporating the feedback we obtained from our survey
participants.

[Louis2020] Annie Louis, Santanu Kumar Dash, Earl T. Barr, Michael D.
Ernst, and Charles Sutton. Where should i comment my code?: a dataset

82

and model for predicting locations that need comments. In Proc. Interna-
tional Conference on Software Engineering (ICSE). ACM, Jun 2020, DOI
10.1145/3377816.3381736.
Abstract: Programmers should write code comments, but not on every line
of code. We have created a machine learning model that suggests locations
where a programmer should write a code comment. We trained it on exist-
ing commented code to learn locations that are chosen by developers. Once
trained, the model can predict locations in new code. Our models achieved
precision of 74% and recall of 13% in identifying comment-worthy locations.
This first success opens the door to future work, both in the new where-to-
comment problem and in guiding comment generation. Our code and data
is available at http://groups.inf.ed.ac.uk/cup/comment-locator/.

[Maalej2014] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer
Koschke. On the comprehension of program comprehension. ACM Transac-
tions on Software Engineering and Methodology, 23(4):1–37, Sep 2014, DOI
10.1145/2622669.
Abstract: Research in program comprehension has evolved considerably
over the past decades. However, only little is known about how developers
practice program comprehension in their daily work. This article reports
on qualitative and quantitative research to comprehend the strategies, tools,
and knowledge used for program comprehension. We observed 28 professional
developers, focusing on their comprehension behavior, strategies followed,
and tools used. In an online survey with 1,477 respondents, we analyzed the
importance of certain types of knowledge for comprehension and where de-
velopers typically access and share this knowledge. We found that developers
follow pragmatic comprehension strategies depending on context. They try
to avoid comprehension whenever possible and often put themselves in the
role of users by inspecting graphical interfaces. Participants confirmed that
standards, experience, and personal communication facilitate comprehen-
sion. The team size, its distribution, and open-source experience influence
their knowledge sharing and access behavior. While face-to-face communica-
tion is preferred for accessing knowledge, knowledge is frequently shared in
informal comments. Our results reveal a gap between research and practice,
as we did not observe any use of comprehension tools and developers seem to
be unaware of them. Overall, our findings call for reconsidering the research
agendas towards context-aware tool support.

[Madampe2022] Kashumi Madampe, Rashina Hoda, and John Grundy. The
emotional roller coaster of responding to requirements changes in software
engineering. IEEE Transactions on Software Engineering, page 1–1, 2022,
DOI 10.1109/tse.2022.3172925.
Abstract: Background: A preliminary study we conducted showed that
software practitioners respond to requirements changes (RCs) with different
emotions, and that their emotions vary at stages of the RC handling life cy-
cle, such as receiving, developing, and delivering RCs. Furthermore, such de-
veloper emotions have direct linkages to cognition, productivity, and decision

83

making. Therefore, it is important to gain a comprehensive understanding
the role of emotions in a critical scenarios like handling RCs. Objective: We
wanted to study how practitioners emotionally respond to RCs. Method: We
conducted a world-wide survey with the participation of 201 software prac-
titioners. In our survey, we used the Job-related Affective Well-being Scale
(JAWS) and open-ended questions to capture participants emotions when
handling RCs in their work and query about the different circumstances
when they feel these emotions. We used a combined approach of statistical
analysis, JAWS, and Socio-Technical Grounded Theory (STGT) for Data
Analysis to analyse our survey data. Findings: We identified (1) emotional
responses to RCs, i.e., the most common emotions felt by practitioners when
handling RCs; (2) different stimuli – such as the RC, the practitioner, team,
manager, customer – that trigger these emotions through their own different
characteristics; (3) emotion dynamics, i.e., the changes in emotions during
the RC handling life cycle; (4) RC stages where particular emotions are
triggered; and (5) time related aspects that regulate the emotion dynamics.
Conclusion: Practitioners are not pleased with receiving RCs all the time.
Last minute RCs introduced closer to a deadline especially violate emotional
well-being of practitioners. We present some practical recommendations for
practitioners to follow, including a dual-purpose emotion-centric decision
guide to help decide when to introduce or accept an RC, and some future
key research directions.

[Maenpaa2018] Hanna Mäenpää, Simo Mäkinen, Terhi Kilamo, Tommi
Mikkonen, Tomi Männistö, and Paavo Ritala. Organizing for open-
ness: six models for developer involvement in hybrid OSS projects.
Journal of Internet Services and Applications, 9(1), Aug 2018, DOI
10.1186/s13174-018-0088-1.
Abstract: This article examines organization and governance of commer-
cially influenced Open Source Software development communities by pre-
senting a multiple-case study of six contemporary, hybrid OSS projects. The
findings provide in-depth understanding on how to design the participatory
nature of the software development process, while understanding the factors
that influence the delicate balance of openness, motivations, and governance.
The results lay ground for further research on how to organize and manage
developer communities where needs of the stakeholders are competing, yet
complementary.

[Mahmoudi2019] Mehran Mahmoudi, Sarah Nadi, and Nikolaos Tsan-
talis. Are refactorings to blame? an empirical study of refactor-
ings in merge conflicts. In Proc. International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, Feb 2019, DOI
10.1109/saner.2019.8668012.
Abstract: With the rise of distributed software development, branching
has become a popular approach that facilitates collaboration between soft-
ware developers. One of the biggest challenges that developers face when

84

using multiple development branches is dealing with merge conflicts. Con-
flicts occur when inconsistent changes happen to the code. Resolving these
conflicts can be a cumbersome task as it requires prior knowledge about the
changes in each of the development branches. A type of change that could
potentially lead to complex conflicts is code refactoring. Previous studies
have proposed techniques for facilitating conflict resolution in the presence
of refactorings. However, the magnitude of the impact that refactorings have
on merge conflicts has never been empirically evaluated. In this paper, we
perform an empirical study on almost 3,000 wellengineered open-source Java
software repositories and investigate the relation between merge conflicts and
15 popular refactoring types. Our results show that refactoring operations are
involved in 22% of merge conflicts, which is remarkable taking into account
that we investigated a relatively small subset of all possible refactoring types.
Furthermore, certain refactoring types, such as EXTRACT METHOD, tend
to be more problematic for merge conflicts. Our results also suggest that
conflicts that involve refactored code are usually more complex, compared
to conflicts with no refactoring changes.

[Majumder2019] Suvodeep Majumder, Joymallya Chakraborty, Amritanshu
Agrawal, and Tim Menzies. Communication and code dependency effects on
software code quality: An empirical analysis of herbsleb hypothesis, 2019.

[Majumder2021] Suvodeep Majumder, Joymallya Chakraborty, Gina R. Bai,
Kathryn T. Stolee, and Tim Menzies. Fair enough: Searching for sufficient
measures of fairness, 2021.
Abstract: Testing machine learning software for ethical bias has become
a pressing current concern. In response, recent research has proposed a
plethora of new fairness metrics, for example, the dozens of fairness metrics
in the IBM AIF360 toolkit. This raises the question: How can any fairness
tool satisfy such a diverse range of goals? While we cannot completely sim-
plify the task of fairness testing, we can certainly reduce the problem. This
paper shows that many of those fairness metrics effectively measure the same
thing. Based on experiments using seven real-world datasets, we find that
(a) 26 classification metrics can be clustered into seven groups, and (b) four
dataset metrics can be clustered into three groups. Further, each reduced
set may actually predict different things. Hence, it is no longer necessary
(or even possible) to satisfy all fairness metrics. In summary, to simplify the
fairness testing problem, we recommend the following steps: (1) determine
what type of fairness is desirable (and we offer a handful of such types); then
(2) lookup those types in our clusters; then (3) just test for one item per
cluster.

[Malik2019] Mashkoor Malik, Alexandre C. G. Schimel, Giuseppe Masetti,
Marc Roche, Julian Le Deunf, Margaret F.J. Dolan, Jonathan Beau-
doin, Jean-Marie Augustin, Travis Hamilton, and Iain Parnum. Re-
sults from the first phase of the seafloor backscatter processing soft-
ware inter-comparison project. Geosciences, 9(12):516, Dec 2019, DOI

85

10.3390/geosciences9120516.
Abstract: Seafloor backscatter mosaics are now routinely produced from
multibeam echosounder data and used in a wide range of marine applica-
tions. However, large differences (¿5 dB) can often be observed between the
mosaics produced by different software packages processing the same dataset.
Without transparency of the processing pipeline and the lack of consistency
between software packages raises concerns about the validity of the final
results. To recognize the source(s) of inconsistency between software, it is
necessary to understand at which stage(s) of the data processing chain the
differences become substantial. To this end, willing commercial and aca-
demic software developers were invited to generate intermediate processed
backscatter results from a common dataset, for cross-comparison. The first
phase of the study requested intermediate processed results consisting of two
stages of the processing sequence: the one-value-per-beam level obtained af-
ter reading the raw data and the level obtained after radiometric corrections
but before compensation of the angular dependence. Both of these interme-
diate results showed large differences between software solutions. This study
explores the possible reasons for these differences and highlights the need
for collaborative efforts between software developers and their users to im-
prove the consistency and transparency of the backscatter data processing
sequence.

[Malloy2018] Brian A. Malloy and James F. Power. An empirical analysis of
the transition from Python 2 to Python 3. Empirical Software Engineering,
24(2):751–778, Jul 2018, DOI 10.1007/s10664-018-9637-2.
Abstract: Python is one of the most popular and widely adopted program-
ming languages in use today. In 2008 the Python developers introduced a
new version of the language, Python 3.0, that was not backward compatible
with Python 2, initiating a transitional phase for Python software devel-
opers. In this paper, we describe a study that investigates the degree to
which Python software developers are making the transition from Python 2
to Python 3. We have developed a Python compliance analyser, PyComply,
and have analysed a previously studied corpus of Python applications called
Qualitas. We use PyComply to measure and quantify the degree to which
Python 3 features are being used, as well as the rate and context of their
adoption in the Qualitas corpus. Our results indicate that Python software
developers are not exploiting the new features and advantages of Python
3, but rather are choosing to retain backward compatibility with Python 2.
Moreover, Python developers are confining themselves to a language subset,
governed by the diminishing intersection of Python 2, which is not under
development, and Python 3, which is under development with new features
being introduced as the language continues to evolve.

[Mangano2015] Nicolas Mangano, Thomas D. LaToza, Marian Petre, and
André van der Hoek. How software designers interact with sketches at the
whiteboard. IEEE Transactions on Software Engineering, 41(2):135–156,
Feb 2015, DOI 10.1109/tse.2014.2362924.

86

Abstract: Whiteboard sketches play a crucial role in software develop-
ment, helping to support groups of designers in reasoning about a software
design problem at hand. However, little is known about these sketches and
how they support design ’in the moment’, particularly in terms of the re-
lationships among sketches, visual syntactic elements within sketches, and
reasoning activities. To address this gap, we analyzed 14 hours of design
activity by eight pairs of professional software designers, manually coding
over 4000 events capturing the introduction of visual syntactic elements into
sketches, focus transitions between sketches, and reasoning activities. Our
findings indicate that sketches serve as a rich medium for supporting design
conversations. Designers often use general-purpose notations. Designers in-
troduce new syntactic elements to record aspects of the design, or re-purpose
sketches as the design develops. Designers constantly shift focus between
sketches, using groups of sketches together that contain complementary in-
formation. Finally, sketches play an important role in supporting several
types of reasoning activities (mental simulation, review of progress, consid-
eration of alternatives). But these activities often leave no trace and rarely
lead to sketch creation. We discuss the implications of these and other find-
ings for the practice of software design at the whiteboard and for the creation
of new electronic software design sketching tools.

[Margulieux2020] Lauren E. Margulieux, Briana B. Morrison, and Adrienne
Decker. Reducing withdrawal and failure rates in introductory programming
with subgoal labeled worked examples. International Journal of STEM Ed-
ucation, 7(1), May 2020, DOI 10.1186/s40594-020-00222-7.
Abstract: Background: Programming a computer is an increasingly valu-
able skill, but dropout and failure rates in introductory programming courses
are regularly as high as 50%. Like many fields, programming requires stu-
dents to learn complex problem-solving procedures from instructors who
tend to have tacit knowledge about low-level procedures that they have
automatized. The subgoal learning framework has been used in program-
ming and other fields to breakdown procedural problem solving into smaller
pieces that novices can grasp more easily, but it has only been used in short-
term interventions. In this study, the subgoal learning framework was im-
plemented throughout a semester-long introductory programming course to
explore its longitudinal effects. Of 265 students in multiple sections of the
course, half received subgoal-oriented instruction while the other half re-
ceived typical instruction. Results: Learning subgoals consistently improved
performance on quizzes, which were formative and given within a week of
learning a new procedure, but not on exams, which were summative. While
exam performance was not statistically better, the subgoal group had lower
variance in exam scores and fewer students dropped or failed the course
than in the control group. To better understand the learning process, we
examined students’ responses to open-ended questions that asked them to
explain the problem-solving process. Furthermore, we explored characteris-
tics of learners to determine how subgoal learning affected students at risk of

87

dropout or failure. Conclusions: Students in an introductory programming
course performed better on initial assessments when they received instruc-
tions that used our intervention, subgoal labels. Though the students did
not perform better than the control group on exams on average, they were
less likely to get failing grades or to drop the course. Overall, subgoal labels
seemed especially effective for students who might otherwise struggle to pass
or complete the course.

[Marinescu2011] Cristina Marinescu. Are the classes that use exceptions
defect prone? In Proc. International Workshop on Principles on Software
Evolution/Workshop on Software Evolution (IWPSE-EVOL). ACM Press,
2011, DOI 10.1145/2024445.2024456.
Abstract: Exception handling is a mechanism that highlights exceptional
functionality of software systems. Currently many empirical studies point out
that sometimes developers neglect exceptional functionality, minimizing its
importance. In this paper we investigate if the design entities (classes) that
use exceptions are more defect prone than the other classes. The results,
based on analyzing three releases of Eclipse, show that indeed the classes
that use exceptions are more defect prone than the other classes. Based on
our results, developers are advertised to pay more attention to the way they
handle exceptions.

[Masood2020a] Zainab Masood, Rashina Hoda, and Kelly Blincoe.
How agile teams make self-assignment work: a grounded theory
study. Empirical Software Engineering, 25(6):4962–5005, Sep 2020, DOI
10.1007/s10664-020-09876-x.
Abstract: Self-assignment, a self-directed method of task allocation in
which teams and individuals assign and choose work for themselves, is con-
sidered one of the hallmark practices of empowered, self-organizing agile
teams. Despite all the benefits it promises, agile software teams do not prac-
tice it as regularly as other agile practices such as iteration planning and
daily stand-ups, indicating that it is likely not an easy and straighforward
practice. There has been very little empirical research on self-assignment.
This Grounded Theory study explores how self-assignment works in agile
projects. We collected data through interviews with 42 participants repre-
senting 28 agile teams from 23 software companies and supplemented these
interviews with observations. Based on rigorous application of Grounded
Theory analysis procedures such as open, axial, and selective coding, we
present a comprehensive grounded theory of making self-assignment work
that explains the (a) context and (b) causal conditions that give rise to the
need for self-assignment, (c) a set of facilitating conditions that mediate how
self-assignment may be enabled, (d) a set of constraining conditions that me-
diate how self-assignment may be constrained and which are overcome by
a set of (e) strategies applied by agile teams, which in turn result in (f)
a set of consequences, all in an attempt to make the central phenomenon,
self-assignment, work. The findings of this study will help agile practitioners
and companies understand different aspects of self-assignment and practice

88

it with confidence regularly as a valuable practice. Additionally, it will help
teams already practicing self-assignment to apply strategies to overcome the
challenges they face on an everyday basis.

[Mattmann2015] Chris A. Mattmann, Joshua Garcia, Ivo Krka, Daniel
Popescu, and Nenad Medvidović. Revisiting the anatomy and physiol-
ogy of the grid. Journal of Grid Computing, 13(1):19–34, Jan 2015, DOI
10.1007/s10723-015-9324-0.
Abstract: A domain-specific software architecture (DSSA) represents an
effective, generalized, reusable solution to constructing software systems
within a given application domain. In this paper, we revisit the widely cited
DSSA for the domain of grid computing. We have studied systems in this do-
main over the last ten years. During this time, we have repeatedly observed
that, while individual grid systems are widely used and deemed successful,
the grid DSSA is actually underspecified to the point where providing a pre-
cise answer regarding what makes a software system a grid system is nearly
impossible. Moreover, every one of the existing purported grid technologies
actually violates the published grid DSSA. In response to this, based on an
analysis of the source code, documentation, and usage of eighteen of the
most pervasive grid technologies, we have significantly refined the original
grid DSSA. We demonstrate that this DSSA much more closely matches the
grid technologies studied. Our refinements allow us to more definitively iden-
tify a software system as a grid technology, and distinguish it from software
libraries, middleware, and frameworks.

[McGee2011] Sharon McGee and Des Greer. Software requirements
change taxonomy: evaluation by case study. In Proc. International
Requirements Engineering Conference (RE). IEEE, Aug 2011, DOI
10.1109/re.2011.6051641.
Abstract: Although a number of requirements change classifications have
been proposed in the literature, there is no empirical assessment of their
practical value in terms of their capacity to inform change monitoring and
management. This paper describes an investigation of the informative ef-
ficacy of a taxonomy of requirements change sources which distinguishes
between changes arising from ’market’, ’organisation’, ’project vision’, ’spec-
ification’ and ’solution’. This investigation was effected through a case study
where change data was recorded over a 16 month period covering the devel-
opment lifecycle of a government sector software application. While insuffi-
ciency of data precluded an investigation of changes arising due to the change
source of ’market’, for the remainder of the change sources, results indicate
a significant difference in cost, value to the customer and management con-
siderations. Findings show that higher cost and value changes arose more
often from ’organisation’ and ’vision’ sources; these changes also generally
involved the co-operation of more stakeholder groups and were considered to
be less controllable than changes arising from the ’specification’ or ’solution’
sources. Overall, the results suggest that monitoring and measuring change

89

using this classification is a practical means to support change management,
understanding and risk visibility.

[McIntosh2011] Shane McIntosh, Bram Adams, Thanh H.D. Nguyen, Yasu-
taka Kamei, and Ahmed E. Hassan. An empirical study of build maintenance
effort. In Proc. International Conference on Software Engineering (ICSE).
ACM, May 2011, DOI 10.1145/1985793.1985813.
Abstract: The build system of a software project is responsible for trans-
forming source code and other development artifacts into executable pro-
grams and deliverables. Similar to source code, build system specifications
require maintenance to cope with newly implemented features, changes to
imported Application Program Interfaces (APIs), and source code restruc-
turing. In this paper, we mine the version histories of one proprietary and
nine open source projects of different sizes and domain to analyze the over-
head that build maintenance imposes on developers. We split our analysis
into two dimensions: (1) Build Coupling, i.e., how frequently source code
changes require build changes, and (2) Build Ownership, i.e., the proportion
of developers responsible for build maintenance. Our results indicate that,
despite the difference in scale, the build system churn rate is comparable
to that of the source code, and build changes induce more relative churn
on the build system than source code changes induce on the source code.
Furthermore, build maintenance yields up to a 27% overhead on source code
development and a 44% overhead on test development. Up to 79% of source
code developers and 89% of test code developers are significantly impacted
by build maintenance, yet investment in build experts can reduce the pro-
portion of impacted developers to 22% of source code developers and 24%
of test code developers.

[McIntosh2021] Lukas McIntosh and Caroline D. Hardin. Do hackathon
projects change the world? an empirical analysis of GitHub repositories.
In Proc. Technical Symposium on Computer Science Education (SIGCSE).
ACM, Mar 2021, DOI 10.1145/3408877.3432435.
Abstract: Hackathons, the increasingly popular collaborative technology
challenge events, are praised for producing modern solutions to real world
problems. They have, however, recently been criticized for positing that seri-
ous real world problems can be solved in 24-48 hours of undergraduate cod-
ing. Projects created at hackathons are typically demos or proof-of-concepts,
and little is known about the fate of them after the hackathon ends. Do
they receive continued development in preparation for real world use and
maintenance as part of actually being used, or are they abandoned? Since
participants often use GitHub (Microsoft’s popular version control system),
it is possible to check. This quantitative, empirical study uses a series of
Python scripts to complete a robust analysis of development patterns for
all 11,889 of the U.S. based 2018-2019 Major League Hacking (MLH) affil-
iated hackathon projects which had GitHub repositories. Of these projects,
approximately 85% of commits were made within the first month, and ap-
proximately 77% of the total commits occurred within the first week. Only

90

7% of projects had any activity 6 months after the event ended. Evaluated
projects had an average of only 3.097 distinct commit dates, and the average
of commits divided by the length of the development period was only 0.1.
This indicates that few projects receive the post-event attention expected of
an actively developed project. Finally, this study offers a dialogue of possible
ways to reformat hackathons to help increase the average longevity of the
development period for projects.

[McLeod2011] Laurie McLeod and Stephen G. MacDonell. Factors that affect
software systems development project outcomes. ACM Computing Surveys,
43(4):1–56, Oct 2011, DOI 10.1145/1978802.1978803.
Abstract: Determining the factors that have an influence on software sys-
tems development and deployment project outcomes has been the focus of
extensive and ongoing research for more than 30 years. We provide here a
survey of the research literature that has addressed this topic in the period
1996–2006, with a particular focus on empirical analyses. On the basis of
this survey we present a new classification framework that represents an ab-
stracted and synthesized view of the types of factors that have been asserted
as influencing project outcomes.

[McNamara2018] Andrew McNamara, Justin Smith, and Emerson Murphy-
Hill. Does ACM’s code of ethics change ethical decision making in soft-
ware development? In Proc. European Software Engineering Confer-
ence/International Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, Oct 2018, DOI 10.1145/3236024.3264833.
Abstract: Ethical decisions in software development can substantially im-
pact end-users, organizations, and our environment, as is evidenced by recent
ethics scandals in the news. Organizations, like the ACM, publish codes of
ethics to guide software-related ethical decisions. In fact, the ACM has re-
cently demonstrated renewed interest in its code of ethics and made updates
for the first time since 1992. To better understand how the ACM code of
ethics changes software-related decisions, we replicated a prior behavioral
ethics study with 63 software engineering students and 105 professional soft-
ware developers, measuring their responses to 11 ethical vignettes. We found
that explicitly instructing participants to consider the ACM code of ethics in
their decision making had no observed effect when compared with a control
group. Our findings suggest a challenge to the research community: if not
a code of ethics, what techniques can improve ethical decision making in
software engineering?

[Mehrpour2022] Sahar Mehrpour and Thomas D. LaToza. Can static anal-
ysis tools find more defects? Empirical Software Engineering, 28(1), Nov
2022, DOI 10.1007/s10664-022-10232-4.
Abstract: Static analysis tools find defects in code, checking code against
rules to reveal potential defects. Many studies have evaluated these tools
by measuring their ability to detect known defects in code. But these stud-
ies measure the current state of tools rather than their future potential to

91

find more defects. To investigate the prospects for tools to find more de-
fects, we conducted a study where we formulated each issue raised by a code
reviewer as a violation of a rule, which we then compared to what static
analysis tools might potentially check. We first gathered a corpus of 1323
defects found through code review. Through a qualitative analysis process,
for each defect we identified a violated rule and the type of Static Analy-
sis Tool (SAT) which might check this rule. We found that SATs might, in
principle, be used to detect as many as 76% of code review defects, con-
siderably more than current tools have been demonstrated to successfully
detect. Among a variety of types of SATs, Style Checkers and AST Pattern
Checkers had the broadest coverage of defects, each with the potential to
detect 25% of all code review defects. We found that static analysis tools
might be able to detect more code review defects by better supporting the
creation of project-specific rules. We also investigated the characteristics of
code review defects not detectable by traditional static analysis techniques,
which to detect might require tools which simulate human judgements about
code.

[Meldrum2020] Sarah Meldrum, Sherlock A. Licorish, Caitlin A. Owen, and
Bastin Tony Roy Savarimuthu. Understanding Stack Overflow code qual-
ity: A recommendation of caution. Science of Computer Programming,
199:102516, Nov 2020, DOI 10.1016/j.scico.2020.102516.
Abstract: Community Question and Answer (CQA) platforms use the
power of online groups to solve problems, or gain information. While these
websites host useful information, it is critical that the details provided on
these platforms are of high quality, and that users can trust the information.
This is particularly necessary for software development, given the ubiquitous
use of software across all sections of contemporary society. Stack Overflow is
the leading CQA platform for programmers, with a community comprising
over 10 million contributors. While research confirms the popularity of Stack
Overflow, concerns have been raised about the quality of answers that are
provided to questions on Stack Overflow. Code snippets often contained in
these answers have been investigated; however, the quality of these artefacts
remains unclear. This could be problematic for the software engineering com-
munity, as evidence has shown that Stack Overflow snippets are frequently
used in both open source and commercial software. This research fills this gap
by evaluating the quality of code snippets on Stack Overflow. We explored
various aspects of code snippet quality, including reliability and conformance
to programming rules, readability, performance and security. Outcomes show
variation in the quality of Stack Overflow code snippets for the different di-
mensions; however, overall, quality issues in Stack Overflow snippets were
not always severe. Vigilance is encouraged for those reusing Stack Overflow
code snippets.

[Meneely2011] Andrew Meneely, Pete Rotella, and Laurie Williams. Does
adding manpower also affect quality? an empirical, longitudinal analysis.

92

In Proc. International Symposium on Foundations of Software Engineer-
ing/International Symposium on the Foundations of Software Engineering
(SIGSOFT/FSE). ACM Press, 2011, DOI 10.1145/2025113.2025128.
Abstract: With each new developer to a software development team comes
a greater challenge to manage the communication, coordination, and knowl-
edge transfer amongst teammates. Fred Brooks discusses this challenge in
The Mythical Man-Month by arguing that rapid team expansion can lead
to a complex team organization structure. While Brooks focuses on produc-
tivity loss as the negative outcome, poor product quality is also a substan-
tial concern. But if team expansion is unavoidable, can any quality impacts
be mitigated? Our objective is to guide software engineering managers by
empirically analyzing the effects of team size, expansion, and structure on
product quality. We performed an empirical, longitudinal case study of a
large Cisco networking product over a five year history. Over that time, the
team underwent periods of no expansion, steady expansion, and accelerated
expansion. Using team-level metrics, we quantified characteristics of team
expansion, including team size, expansion rate, expansion acceleration, and
modularity with respect to department designations. We examined statistical
correlations between our monthly team-level metrics and monthly product-
level metrics. Our results indicate that increased team size and linear growth
are correlated with later periods of better product quality. However, periods
of accelerated team expansion are correlated with later periods of reduced
software quality. Furthermore, our linear regression prediction model based
on team metrics was able to predict the product’s post-release failure rate
within a 95% prediction interval for 38 out of 40 months. Our analysis pro-
vides insight for project managers into how the expansion of development
teams can impact product quality.

[Meng2013] Na Meng, Miryung Kim, and Kathryn S. McKinley. Lase: lo-
cating and applying systematic edits by learning from examples. In Proc.
International Conference on Software Engineering (ICSE). IEEE, May 2013,
DOI 10.1109/icse.2013.6606596.
Abstract: Adding features and fixing bugs often require systematic edits
that make similar, but not identical, changes to many code locations. Find-
ing all the relevant locations and making the correct edits is a tedious and
error-prone process for developers. This paper addresses both problems using
edit scripts learned from multiple examples. We design and implement a tool
called LASE that (1) creates a context-aware edit script from two or more
examples, and uses the script to (2) automatically identify edit locations
and to (3) transform the code. We evaluate LASE on an oracle test suite of
systematic edits from Eclipse JDT and SWT. LASE finds edit locations with
99% precision and 89% recall, and transforms them with 91% accuracy. We
also evaluate LASE on 37 example systematic edits from other open source
programs and find LASE is accurate and effective. Furthermore, we con-
firmed with developers that LASE found edit locations which they missed.
Our novel algorithm that learns from multiple examples is critical to achiev-

93

ing high precision and recall; edit scripts created from only one example
produce too many false positives, false negatives, or both. Our results in-
dicate that LASE should help developers in automating systematic editing.
Whereas most prior work either suggests edit locations or performs simple
edits, LASE is the first to do both for nontrivial program edits.

[Menzies2016] Tim Menzies, William Nichols, Forrest Shull, and Lucas Lay-
man. Are delayed issues harder to resolve? revisiting cost-to-fix of defects
throughout the lifecycle. Empirical Software Engineering, 22(4):1903–1935,
Nov 2016, DOI 10.1007/s10664-016-9469-x.
Abstract: Many practitioners and academics believe in a delayed issue ef-
fect (DIE); i.e. the longer an issue lingers in the system, the more effort it
requires to resolve. This belief is often used to justify major investments in
new development processes that promise to retire more issues sooner. This
paper tests for the delayed issue effect in 171 software projects conducted
around the world in the period from 2006–2014. To the best of our knowledge,
this is the largest study yet published on this effect. We found no evidence
for the delayed issue effect; i.e. the effort to resolve issues in a later phase
was not consistently or substantially greater than when issues were resolved
soon after their introduction. This paper documents the above study and
explores reasons for this mismatch between this common rule of thumb and
empirical data. In summary, DIE is not some constant across all projects.
Rather, DIE might be an historical relic that occurs intermittently only in
certain kinds of projects. This is a significant result since it predicts that
new development processes that promise to faster retire more issues will not
have a guaranteed return on investment (depending on the context where
applied), and that a long-held truth in software engineering should not be
considered a global truism.

[Meyer2014] André N. Meyer, Thomas Fritz, Gail C. Murphy, and Thomas
Zimmermann. Software developers’ perceptions of productivity. In Proc. In-
ternational Symposium on the Foundations of Software Engineering (FSE).
ACM, Nov 2014, DOI 10.1145/2635868.2635892.
Abstract: The better the software development community becomes at cre-
ating software, the more software the world seems to demand. Although there
is a large body of research about measuring and investigating productivity
from an organizational point of view, there is a paucity of research about how
software developers, those at the front-line of software construction, think
about, assess and try to improve their productivity. To investigate software
developers’ perceptions of software development productivity, we conducted
two studies: a survey with 379 professional software developers to help elicit
themes and an observational study with 11 professional software developers
to investigate emergent themes in more detail. In both studies, we found
that developers perceive their days as productive when they complete many
or big tasks without significant interruptions or context switches. Yet, the
observational data we collected shows our participants performed significant
task and activity switching while still feeling productive. We analyze such

94

apparent contradictions in our findings and use the analysis to propose ways
to better support software developers in a retrospection and improvement of
their productivity through the development of new tools and the sharing of
best practices.

[Meyer2021] Andre N. Meyer, Earl T. Barr, Christian Bird, and Thomas
Zimmermann. Today was a good day: The daily life of software developers.
IEEE Transactions on Software Engineering, 47(5):863–880, May 2021, DOI
10.1109/tse.2019.2904957.
Abstract: What is a good workday for a software developer? What is a
typical workday? We seek to answer these two questions to learn how to
make good days typical. Concretely, answering these questions will help to
optimize development processes and select tools that increase job satisfaction
and productivity. Our work adds to a large body of research on how software
developers spend their time. We report the results from 5,971 responses of
professional developers at Microsoft, who reflected about what made their
workdays good and typical, and self-reported about how they spent their
time on various activities at work. We developed conceptual frameworks to
help define and characterize developer workdays from two new perspectives:
good and typical. Our analysis confirms some findings in previous work, in-
cluding the fact that developers actually spend little time on development
and developers’ aversion for meetings and interruptions. It also discovered
new findings, such as that only 1.7 percent of survey responses mentioned
emails as a reason for a bad workday, and that meetings and interruptions
are only unproductive during development phases; during phases of planning,
specification and release, they are common and constructive. One key find-
ing is the importance of agency, developers’ control over their workday and
whether it goes as planned or is disrupted by external factors. We present ac-
tionable recommendations for researchers and managers to prioritize process
and tool improvements that make good workdays typical. For instance, in
light of our finding on the importance of agency, we recommend that, where
possible, managers empower developers to choose their tools and tasks.

[Miedema2021] Daphne Miedema, Efthimia Aivaloglou, and George Fletcher.
Identifying SQL misconceptions of novices: findings from a think-aloud
study. In Proc. Conference on International Computing Education Research
(ICER). ACM, Aug 2021, DOI 10.1145/3446871.3469759.
Abstract: SQL is the most commonly taught database query language.
While previous research has investigated the errors made by novices dur-
ing SQL query formulation, the underlying causes for these errors have re-
mained unexplored. Understanding the basic misconceptions held by novices
which lead to these errors would help improve how we teach query languages
to our students. In this paper we aim to identify the misconceptions that
might be the causes of documented SQL errors that novices make. To this
end, we conducted a qualitative think-aloud study to gather information on
the thinking process of university students while solving query formulation
problems. With the queries in hand, we analyzed the underlying causes for

95

the errors made by our participants. In this paper we present the identified
SQL misconceptions organized into four top-level categories: misconceptions
based in previous course knowledge, generalization-based misconceptions,
language-based misconceptions, and misconceptions due to an incomplete or
incorrect mental model. A deep exploration of misconceptions can uncover
gaps in instruction. By drawing attention to these, we aim to improve SQL
education.

[Miedema2022] Daphne Miedema, George Fletcher, and Efthimia Aivaloglou.
So many brackets!: an analysis of how SQL learners (mis)manage complex-
ity during query formulation. In Proc. International Conference on Program
Comprehension (ICPC). ACM, May 2022, DOI 10.1145/3524610.3529158.
Abstract: The Structured Query Language (SQL) is a widely taught
database query language in computer science, data science, and software
engineering programs. While highly expressive, SQL is challenging to learn
for novices. Various research has explored the errors and mistakes that SQL
users make. Specific attributes of SQL code, such as the number of tables and
the degree of nesting, have been found to impact its understandability and
maintainability. Furthermore, prior studies have shown that novices have
significant issues using SQL correctly, due to factors such as expressive ease,
existing knowledge and misconceptions, and the impact of cognitive load. In
this paper we identify another factor: self-inflicted query complexity, where
users hinder their own problem solving process. We analyse 8K intermediate
and final student attempts to six SQL exer-cises, approaching complexity
from four perspective: correctness, execution order, edit distance and query
intricacy. Through our analyses, we find that our students are hindered in
their query formulation process by mismanaging complexity through writing
overly elaborate queries containing unnecessary elements, overusing brackets
and nesting, and incrementally building queries with persistent errors.

[Miller2016] Craig S. Miller and Amber Settle. Some trouble with trans-
parency: an analysis of student errors with object-oriented Python. In Proc.
Conference on International Computing Education Research (ICER). ACM,
Aug 2016, DOI 10.1145/2960310.2960327.
Abstract: We investigated implications of transparent mechanisms in
the context of an introductory object-oriented programming course using
Python. Here transparent mechanisms are those that reveal how the instance
object in Python relates to its instance data. We asked students to write a
new method for a provided Python class in an attempt to answer two re-
search questions: 1) to what extent do Python’s transparent OO mechanisms
lead to student difficulties? and 2) what are common pitfalls in OO program-
ming using Python that instructors should address? Our methodology also
presented the correct answer to the students and solicited their comments
on their submission. We conducted a content analysis to classify errors in
the student submissions. We find that most students had difficulty with the
instance (self) object, either by omitting the parameter in the method defini-
tion, by failing to use the instance object when referencing attributes of the

96

object, or both. Reference errors in general were more common than other
errors, including misplaced returns and indentation errors. These issues may
be connected to problems with parameter passing and using dot-notation,
which we argue are prerequisites for OO development in Python.

[Miller2020] Barton Miller, Mengxiao Zhang, and Elisa Heymann. The rele-
vance of classic fuzz testing: Have we solved this one? IEEE Transactions
on Software Engineering, page 1–1, 2020, DOI 10.1109/tse.2020.3047766.
Abstract: As fuzz testing has passed its 30th anniversary, and in the face
of the incredible progress in fuzz testing techniques and tools, the question
arises if the classic, basic fuzz technique is still useful and applicable? In
that tradition, we have updated the basic fuzz tools and testing scripts and
applied them to a large collection of Unix utilities on Linux, FreeBSD, and
MacOS. As before, our failure criteria was whether the program crashed or
hung. We found that 9 crash or hang out of 74 utilities on Linux, 15 out of
78 utilities on FreeBSD, and 12 out of 76 utilities on MacOS. A total of 24
different utilities failed across the three platforms. We note that these failure
rates are somewhat higher than our in previous 1995, 2000, and 2006 studies
of the reliability of command line utilities. In the basic fuzz tradition, we
debugged each failed utility and categorized the causes the failures. Classic
categories of failures, such as pointer and array errors and not checking re-
turn codes, were still broadly present in the current results. In addition, we
found a couple of new categories of failures appearing. We present examples
of these failures to illustrate the programming practices that allowed them to
happen. As a side note, we tested the limited number of utilities available in
a modern programming language (Rust) and found them to be of no better
reliability than the standard ones.

[Mirzamomen2023] Zahra Mirzamomen and Marcel Böhme. Finding bug-
inducing program environments, 2023.
Abstract: Some bugs cannot be exposed by program inputs, but only by
certain program environments. During execution, most programs access var-
ious resources, like databases, files, or devices, that are external to the pro-
gram and thus part of the program’s environment. In this paper, we present
a coverage-guided, mutation-based environment synthesis approach of bug-
inducing program environments. Specif- ically, we observe that programs
interact with their environment via dedicated system calls and propose to
intercept these system calls (i) to capture the resources accessed during the
first execution of an input as initial program environment, and (ii) mutate
copies of these resources during subsequent executions of that input to gen-
erate slightly changed program environments. Any generated environment
that is observed to increase coverage is added to the corpus of environment
seeds and becomes subject to further fuzzing. Bug-inducing program environ-
ments are reported to the user. Experiments demonstrate the effectiveness of
our approach. We implemented a prototype called AFLChaos which found
bugs in the resource-handling code of five (5) of the seven (7) open source
projects in our benchmark set (incl. OpenSSL). Automatically, AFLChaos

97

generated environments consisting of bug-inducing databases used for storing
information, bug-inducing multimedia files used for streaming, bug-inducing
cryptographic keys used for encryption, and bug-inducing configuration files
used to configure the program. To support open science, we publish the
experimental infrastructure, our tool, and all data.

[Mitropoulos2019] Dimitris Mitropoulos, Panos Louridas, Vitalis Salis, and
Diomidis Spinellis. Time present and time past: Analyzing the evo-
lution of JavaScript code in the wild. In Proc. International Confer-
ence on Mining Software Repositories (MSR). IEEE, May 2019, DOI
10.1109/msr.2019.00029.
Abstract: JavaScript is one of the web’s key building blocks. It is used by
the majority of web sites and it is supported by all modern browsers. We
present the first large-scale study of client-side JavaScript code over time.
Specifically, we have collected and analyzed a dataset containing daily snap-
shots of JavaScript code coming from Alexa’s Top 10000 web sites (7.5 GB
per day) for nine consecutive months, to study different temporal aspects of
web client code. We found that scripts change often; typically every few days,
indicating a rapid pace in web applications development. We also found that
the lifetime of web sites themselves, measured as the time between JavaScript
changes, is also short, in the same time scale. We then performed a quali-
tative analysis to investigate the nature of the changes that take place. We
found that apart from standard changes such as the introduction of new
functions, many changes are related to online configuration management. In
addition, we examined JavaScript code reuse over time and especially the
widespread reliance on third-party libraries. Furthermore, we observed how
quality issues evolve by employing established static analysis tools to identify
potential software bugs, whose evolution we tracked over time. Our results
show that quality issues seem to persist over time, while vulnerable libraries
tend to decrease.

[Mo2021] Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, and Qiong Feng.
Architecture anti-patterns: Automatically detectable violations of design
principles. IEEE Transactions on Software Engineering, 47(5):1008–1028,
May 2021, DOI 10.1109/tse.2019.2910856.
Abstract: In large-scale software systems, error-prone or change-prone files
rarely stand alone. They are typically architecturally connected and their
connections usually exhibit architecture problems causing the propagation
of error-proneness or change-proneness. In this paper, we propose and em-
pirically validate a suite of architecture anti-patterns that occur in all large-
scale software systems and are involved in high maintenance costs. We define
these architecture anti-patterns based on fundamental design principles and
Baldwin and Clark’s design rule theory. We can automatically detect these
anti-patterns by analyzing a project’s structural relationships and revision
history. Through our analyses of 19 large-scale software projects, we demon-
strate that these architecture anti-patterns have significant impact on files’

98

bug-proneness and change-proneness. In particular, we show that 1) files in-
volved in these architecture anti-patterns are more error-prone and change-
prone; 2) the more anti-patterns a file is involved in, the more error-prone
and change-prone it is; and 3) while all of our defined architecture anti-
patterns contribute to file’s error-proneness and change-proneness, Unstable
Interface and Crossing contribute the most by far.

[Mockus2010] Audris Mockus. Organizational volatility and its ef-
fects on software defects. In Proc. International Symposium on the
Foundations of Software Engineering (FSE). ACM Press, 2010, DOI
10.1145/1882291.1882311.
Abstract: The key premise of an organization is to allow more efficient
production, including production of high quality software. To achieve that,
an organization defines roles and reporting relationships. Therefore, changes
in organization’s structure are likely to affect product’s quality. We propose
and investigate a relationship between developer-centric measures of orga-
nizational change and the probability of customer-reported defects in the
context of a large software project. We find that the proximity to an or-
ganizational change is significantly associated with reductions in software
quality. We also replicate results of several prior studies of software quality
supporting findings that code, change, and developer characteristics affect
fault-proneness. In contrast to prior studies we find that distributed devel-
opment decreases quality. Furthermore, recent departures from an organiza-
tion were associated with increased probability of customer-reported defects,
thus demonstrating that in the observed context the organizational change
reduces product quality.

[Moe2010] Nils Brede Moe, Torgeir Dingsøyr, and Tore Dyb̊a. A team-
work model for understanding an agile team: A case study of a Scrum
project. Information and Software Technology, 52(5):480–491, May 2010,
DOI 10.1016/j.infsof.2009.11.004.
Abstract: Context: Software development depends significantly on team
performance, as does any process that involves human interaction. Objective:
Most current development methods argue that teams should self-manage.
Our objective is thus to provide a better understanding of the nature of self-
managing agile teams, and the teamwork challenges that arise when intro-
ducing such teams. Method: We conducted extensive fieldwork for 9months
in a software development company that introduced Scrum. We focused on
the human sensemaking, on how mechanisms of teamwork were understood
by the people involved. Results: We describe a project through Dickinson
and McIntyre’s teamwork model, focusing on the interrelations between es-
sential teamwork components. Problems with team orientation, team leader-
ship and coordination in addition to highly specialized skills and correspond-
ing division of work were important barriers for achieving team effectiveness.
Conclusion: Transitioning from individual work to self-managing teams re-
quires a reorientation not only by developers but also by management. This

99

transition takes time and resources, but should not be neglected. In addi-
tion to Dickinson and McIntyre’s teamwork components, we found trust and
shared mental models to be of fundamental importance.

[Mokhov2018] Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones.
Build systems à la carte. Proceedings of the ACM on Programming Lan-
guages, 2(ICFP):1–29, Jul 2018, DOI 10.1145/3236774.
Abstract: Build systems are awesome, terrifying—and unloved. They are
used by every developer around the world, but are rarely the object of study.
In this paper we offer a systematic, and executable, framework for developing
and comparing build systems, viewing them as related points in landscape
rather than as isolated phenomena. By teasing apart existing build systems,
we can recombine their components, allowing us to prototype new build
systems with desired properties.

[Moldon2021] Lukas Moldon, Markus Strohmaier, and Johannes Wachs. How
gamification affects software developers: Cautionary evidence from a natural
experiment on GitHub. In Proc. International Conference on Software En-
gineering (ICSE). IEEE, May 2021, DOI 10.1109/icse43902.2021.00058.
Abstract: We examine how the behavior of software developers changes in
response to removing gamification elements from GitHub, an online platform
for collaborative programming and software development. We find that the
unannounced removal of daily activity streak counters from the user inter-
face (from user profile pages) was followed by significant changes in behavior.
Long-running streaks of activity were abandoned and became less common.
Weekend activity decreased and days in which developers made a single con-
tribution became less common. Synchronization of streaking behavior in the
platform’s social network also decreased, suggesting that gamification is a
powerful channel for social influence. Focusing on a set of software develop-
ers that were publicly pursuing a goal to make contributions for 100 days
in a row, we find that some of these developers abandon this quest follow-
ing the removal of the public streak counter. Our findings provide evidence
for the significant impact of gamification on the behavior of developers on
large collaborative programming and software development platforms. They
urge caution: gamification can steer the behavior of software developers in
unexpected and unwanted directions.

[Muhammad2019] Hisham Muhammad, Lucas C. Villa Real, and Michael
Homer. Taxonomy of package management in programming languages and
operating systems. In Proc. Workshop on Programming Languages and Op-
erating Systems (PLOS). ACM, Oct 2019, DOI 10.1145/3365137.3365402.
Abstract: Package management is instrumental for programming languages
and operating systems, and yet it is neglected by both areas as an implemen-
tation detail. For this reason, it lacks the same kind of conceptual organiza-
tion: we lack terminology to classify them or to reason about their design
trade-offs. In this paper, we share our experience in both OS and language-
specific package manager development, categorizing families of package man-

100

agers and discussing their design implications beyond particular implemen-
tations. We also identify possibilities in the still largely unexplored area of
package manager interoperability.

[Nagappan2008] Nachiappan Nagappan, E. Michael Maximilien, Thiru-
malesh Bhat, and Laurie Williams. Realizing quality improvement
through test driven development: results and experiences of four indus-
trial teams. Empirical Software Engineering, 13(3):289–302, Feb 2008, DOI
10.1007/s10664-008-9062-z.
Abstract: Test-driven development (TDD) is a software development prac-
tice that has been used sporadically for decades. With this practice, a soft-
ware engineer cycles minute-by-minute between writing failing unit tests
and writing implementation code to pass those tests. Test-driven develop-
ment has recently re-emerged as a critical enabling practice of agile software
development methodologies. However, little empirical evidence supports or
refutes the utility of this practice in an industrial context. Case studies were
conducted with three development teams at Microsoft and one at IBM that
have adopted TDD. The results of the case studies indicate that the pre-
release defect density of the four products decreased between 40% and 90%
relative to similar projects that did not use the TDD practice. Subjectively,
the teams experienced a 15–35% increase in initial development time after
adopting TDD.

[Nagappan2015] Meiyappan Nagappan, Romain Robbes, Yasutaka Kamei,
éric Tanter, Shane McIntosh, Audris Mockus, and Ahmed E. Hassan. An
empirical study of goto in C code from GitHub repositories. In Proc. In-
ternational Symposium on the Foundations of Software Engineering (FSE).
ACM, Aug 2015, DOI 10.1145/2786805.2786834.
Abstract: It is nearly 50 years since Dijkstra argued that goto obscures the
flow of control in program execution and urged programmers to abandon
the goto statement. While past research has shown that goto is still in use,
little is known about whether goto is used in the unrestricted manner that
Dijkstra feared, and if it is ’harmful’ enough to be a part of a post-release
bug. We, therefore, conduct a two part empirical study - (1) qualitatively
analyze a statistically representative sample of 384 files from a population of
almost 250K C programming language files collected from over 11K GitHub
repositories and find that developers use goto in C files for error handling
(80.21±5%) and cleaning up resources at the end of a procedure (40.36±5%);
and (2) quantitatively analyze the commit history from the release branches
of six OSS projects and find that no goto statement was removed/modified
in the post-release phase of four of the six projects. We conclude that devel-
opers limit themselves to using goto appropriately in most cases, and not in
an unrestricted manner like Dijkstra feared, thus suggesting that goto does
not appear to be harmful in practice.

[Nakajo1991] Takeshi Nakajo and Hitoshi Kume. A case history analysis of
software error cause-effect relationships. IEEE Transactions on Software

101

Engineering, 17(8):830–838, 1991, DOI 10.1109/32.83917.
Abstract: Approximately 700 errors in four commercial measuring-control
software products were analyzed, and the cause-effect relationships of errors
occurring during software development were identified. The analysis method
used defined appropriate observation points along the path leading from
cause to effect of a software error and gathered the corresponding data by
analyzing each error using fault tree analysis. Each observation point’s data
were categorized, and the relationships between two adjoining points were
summarized using a cross-indexing table. Four major error-occurrence mech-
anisms were identified; two are related to hardware and software interface
specification misunderstandings, while the other two are related to system
and module function misunderstandings. The effects of structured analysis
and structured design methods on software errors were evaluated.

[Nakshatri2016] Suman Nakshatri, Maithri Hegde, and Sahithi Thandra.
Analysis of exception handling patterns in Java projects. In Proc. Inter-
national Conference on Mining Software Repositories (MSR). ACM, May
2016, DOI 10.1145/2901739.2903499.
Abstract: Exception handling is a powerful tool provided by many pro-
gramming languages to help developers deal with unforeseen conditions.
Java is one of the few programming languages to enforce an additional com-
pilation check on certain subclasses of the Exception class through checked
exceptions. As part of this study, empirical data was extracted from software
projects developed in Java. The intent is to explore how developers respond
to checked exceptions and identify common patterns used by them to deal
with exceptions, checked or otherwise. Bloch’s book “Effective Java” [1] was
used as reference for best practices in exception handling. These recommen-
dations were compared against results from the empirical data. Results of
this study indicate that most programmers ignore checked exceptions and
leave them unnoticed. Additionally, it is observed that classes higher in the
exception class hierarchy are more frequently used as compared to specific
exception subclasses.

[Nassif2021] Mathieu Nassif, Alexa Hernandez, Ashvitha Sridharan, and Mar-
tin P. Robillard. Generating unit tests for documentation. IEEE Transac-
tions on Software Engineering, 2021, DOI 10.1109/tse.2021.3087087.
Abstract: Software projects capture redundant information in various kinds
of artifacts, as specifications from the source code are also tested and doc-
umented. Such redundancy provides an opportunity to reduce development
effort by supporting the joint generation of different types of artifact. We
introduce a tool-supported technique, called DScribe, that allows developers
to combine unit tests and documentation templates, and to invoke those
templates to generate documentation and unit tests. DScribe supports the
detection and replacement of outdated documentation, and the use of tem-
plates can encourage extensive test suites with a consistent style. Our eval-
uation of 835 specifications revealed that 85% were not tested or correctly
documented, and DScribe could be used to automatically generate 97% of

102

the tests and documentation. An additional study revealed that tests gener-
ated by DScribe are more focused and readable than those written by human
testers or generated by state-of-the-art automated techniques.

[Ndukwe2023] Ifeanyi G. Ndukwe, Sherlock A. Licorish, Amjed Tahir, and
Stephen G. MacDonell. How have views on software quality differed over
time? research and practice viewpoints. Journal of Systems and Software,
195:111524, Jan 2023, DOI 10.1016/j.jss.2022.111524.
Abstract: Context: Over the years, there has been debate about what con-
stitutes software quality and how it should be measured. This controversy
has caused uncertainty across the software engineering community, affecting
levels of commitment to the many potential determinants of quality among
developers. An up-to-date catalogue of software quality views could pro-
vide developers with contem- porary guidelines and templates. In fact, it is
necessary to learn about views on the quality of code on frequently used on-
line collaboration platforms (e.g., Stack Overflow), given that the quality of
code snippets can affect the quality of software products developed. If quality
models are unsuitable for aiding developers because they lack relevance, de-
velopers will hold relaxed or inappropriate views of software quality, thereby
lacking awareness and commitment to such practices. Objective: We aim
to explore differences in interest in quality characteristics across research
and practice. We also seek to identify quality characteristics practitioners
consider important when judging code snippet quality. First, we examine
the literature for quality characteristics used frequently for judging software
quality, followed by the quality characteristics commonly used by researchers
to study code snippet quality. Finally, we investigate quality characteristics
used by practitioners to judge the quality of code snippets. Methods: We
conducted two systematic literature reviews followed by semi-structured in-
terviews of 50 practitioners to address this gap. Results: The outcomes of
the semi-structured interviews revealed that most practitioners judged the
quality of code snippets using five quality dimensions: Functionality, Read-
ability, Efficiency, Security and Reliability. However, other dimensions were
also considered (i.e., Reusability, Maintainability, Usability, Compatibility
and Completeness). This outcome differed from how the researchers judged
code snippet quality. Conclusion: Practitioners today mainly rely on code
snippets from online code resources, and specific models or quality charac-
teristics are emphasised based on their need to address distinct concerns
(e.g., mobile vs web vs standalone applications, regular vs machine learning
applications, or open vs closed source applications). Consequently, software
quality models should be adapted for the domain of consideration and not
seen as one-size-fits-all. This study will lead to targeted support for various
clusters of the software development community.

[Near2016] Joseph P. Near and Daniel Jackson. Finding security bugs in web
applications using a catalog of access control patterns. In Proc. Interna-
tional Conference on Software Engineering (ICSE). ACM, May 2016, DOI
10.1145/2884781.2884836.

103

Abstract: We propose a specification-free technique for finding missing se-
curity checks in web applications using a catalog of access control patterns in
which each pattern models a common access control use case. Our implemen-
tation, SPACE, checks that every data exposure allowed by an application’s
code matches an allowed exposure from a security pattern in our catalog.
The only user-provided input is a mapping from application types to the
types of the catalog; the rest of the process is entirely automatic. In an
evaluation on the 50 most watched Ruby on Rails applications on Github,
SPACE reported 33 possible bugs—23 previously unknown security bugs,
and 10 false positives.

[Nejati2023] Mahtab Nejati, Mahmoud Alfadel, and Shane McIntosh. Code
review of build system specifications: Prevalence, purposes, patterns, and
perceptions. In Proc. ICSE’23, 2023.
Abstract: Build systems automate the integration of source code into ex-
ecutables. Maintaining build systems is known to be challenging. Lax build
maintenance can lead to costly build breakages or unexpected software be-
haviour. Code review is a broadly adopted practice to improve software
quality. Yet, little is known about how code review is applied to build spec-
ifications. In this paper, we present the first empirical study of how code
review is practiced in the context of build specifications. Through quantita-
tive analysis of 502,931 change sets from the Qt and Eclipse communities, we
observe that changes to build specifications are at least two times less likely
to be discussed during code review when compared to production and test
code changes. A qualitative analysis of 500 change sets reveals that (i) com-
ments on changes to build specifications are more likely to point out defects
than rates reported in the literature for production and test code, and (ii)
issues related to evolvability of the code and dependency-related issues are
the most frequently raised types of issues. Follow-up interviews with nine de-
velopers with 1-40 years of experience point out social and technical factors
that hinder rigorous review of build specifications, such as a prevailing lack
of understanding of and interest in build systems among developers, and the
lack of dedicated tooling to support the review of build specifications.

[Newman2023] Kaia Newman, Madeline Endres, Brittany Johnson, and
Westley Weimer. From organizations to individuals: Psychoactive substance
use by professional programmers, 2023.
Abstract: Psychoactive substances, which influence the brain to alter per-
ceptions and moods, have the potential to have positive and negative effects
on critical software engineering tasks. They are widely used in software, but
that use is not well understood. We present the results of the first qualita-
tive investigation of the experiences of, and challenges faced by, psychoactive
substance users in professional software communities. We conduct a thematic
analysis of hour-long interviews with 26 professional programmers who use
psychoactive substances at work. Our results provide insight into individ-
ual motivations and impacts, including mental health and the relationships

104

between various substances and productivity. Our findings elaborate on so-
cialization effects, including soft skills, stigma, and remote work. The anal-
ysis also highlights implications for organizational policy, including positive
and negative impacts on recruitment and retention. By exploring individual
usage motivations, social and cultural ramifications, and organizational pol-
icy, we demonstrate how substance use can permeate all levels of software
development.

[Ni2021] Ansong Ni, Daniel Ramos, Aidan Z. H. Yang, Ines Lynce, Vasco
Manquinho, Ruben Martins, and Claire Le Goues. SOAR: A syn-
thesis approach for data science API refactoring. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, May 2021, DOI
10.1109/icse43902.2021.00023.
Abstract: With the growth of the open-source data science community,
both the number of data science libraries and the number of versions for
the same library are increasing rapidly. To match the evolving APIs from
those libraries, open-source organizations often have to exert manual effort
to refactor the APIs used in the code base. Moreover, due to the abundance
of similar open-source libraries, data scientists working on a certain appli-
cation may have an abundance of libraries to choose, maintain and migrate
between. The manual refactoring between APIs is a tedious and error-prone
task. Although recent research efforts were made on performing automatic
API refactoring between different languages, previous work relies on statisti-
cal learning with collected pairwise training data for the API matching and
migration. Using large statistical data for refactoring is not ideal because
such training data will not be available for a new library or a new version of
the same library. We introduce Synthesis for OpenSource API Refactoring
(SOAR), a novel technique that requires no training data to achieve API
migration and refactoring. SOAR relies only on the documentation that is
readily available at the release of the library to learn API representations
and mapping between libraries. Using program synthesis, SOAR automati-
cally computes the correct configuration of arguments to the APIs and any
glue code required to invoke those APIs. SOAR also uses the interpreter’s
error messages when running refactored code to generate logical constraints
that can be used to prune the search space. Our empirical evaluation shows
that SOAR can successfully refactor 80% of our benchmarks corresponding
to deep learning models with up to 44 layers with an average run time of
97.23 seconds, and 90% of the data wrangling benchmarks with an average
run time of 17.31 seconds.

[Nielebock2018] Sebastian Nielebock, Dariusz Krolikowski, Jacob Krüger,
Thomas Leich, and Frank Ortmeier. Commenting source code: is it
worth it for small programming tasks? Empirical Software Engineering,
24(3):1418–1457, Nov 2018, DOI 10.1007/s10664-018-9664-z.
Abstract: Maintaining a program is a time-consuming and expensive task
in software engineering. Consequently, several approaches have been pro-
posed to improve the comprehensibility of source code. One of such ap-

105

proaches are comments in the code that enable developers to explain the
program with their own words or predefined tags. Some empirical studies
indicate benefits of comments in certain situations, while others find no
benefits at all. Thus, the real effect of comments on software development
remains uncertain. In this article, we describe an experiment in which 277
participants, mainly professional software developers, performed small pro-
gramming tasks on differently commented code. Based on quantitative and
qualitative feedback, we i) partly replicate previous studies, ii) investigate
performances of differently experienced participants when confronted with
varying types of comments, and iii) discuss the opinions of developers on
comments. Our results indicate that comments seem to be considered more
important in previous studies and by our participants than they are for small
programming tasks. While other mechanisms, such as proper identifiers, are
considered more helpful by our participants, they also emphasize the neces-
sity of comments in certain situations.

[Nussli2012] Marc-Antoine Nüssli and Patrick Jermann. Effects of sharing
text selections on gaze cross-recurrence and interaction quality in a pair
programming task. In Proc. Conference on Computer Supported Coopera-
tive Work (CSCW). ACM Press, 2012, DOI 10.1145/2145204.2145371.
Abstract: We present a dual eye-tracking study that demonstrates the ef-
fect of sharing selection among collaborators in a remote pair-programming
scenario. Forty pairs of engineering students completed several program un-
derstanding tasks while their gaze was synchronously recorded. The coupling
of the programmers’ focus of attention was measured by a cross-recurrence
analysis of gaze that captures how much programmers look at the same se-
quence of spots within a short time span. A high level of gaze cross-recurrence
is typical for pairs who actively engage in grounding efforts to build and
maintain shared understanding. As part of their grounding efforts, program-
mers may use text selection to perform collaborative references. Broadcast
selections serve as indexing sites for the selector as they attract non-selector’s
gaze shortly after they become visible. Gaze cross-recurrence is highest when
selectors accompany their selections with speech to produce a multimodal
reference.

[Oliveira2020] Edson Oliveira, Eduardo Fernandes, Igor Steinmacher, Marco
Cristo, Tayana Conte, and Alessandro Garcia. Code and commit
metrics of developer productivity: a study on team leaders percep-
tions. Empirical Software Engineering, 25(4):2519–2549, Apr 2020, DOI
10.1007/s10664-020-09820-z.
Abstract: Context Developer productivity is essential to the success of soft-
ware development organizations. Team leaders use developer productivity in-
formation for managing tasks in a software project. Developer productivity
metrics can be computed from software repositories data to support leaders’
decisions. We can classify these metrics in code-based metrics, which rely
on the amount of produced code, and commit-based metrics, which rely on
commit activity. Although metrics can assist a leader, organizations usually

106

neglect their usage and end up sticking to the leaders’ subjective perceptions
only. Objective We aim to understand whether productivity metrics can com-
plement the leaders’ perceptions. We also aim to capture leaders’ impressions
about relevance and adoption of productivity metrics in practice. Method
This paper presents a multi-case empirical study performed in two organi-
zations active for more than 18 years. Eight leaders of nine projects have
ranked the developers of their teams by productivity. We quantitatively as-
sessed the correlation of leaders’ rankings versus metric-based rankings. As
a complement, we interviewed leaders for qualitatively understanding the
leaders’ impressions about relevance and adoption of productivity metrics
given the computed correlations. Results Our quantitative data suggest a
greater correlation of the leaders’ perceptions with code-based metrics when
compared to commit-based metrics. Our qualitative data reveal that leaders
have positive impressions of code-based metrics and potentially would adopt
them. Conclusions Data triangulation of productivity metrics and leaders’
perceptions can strengthen the organization conviction about productive de-
velopers and can reveal productive developers not yet perceived by team
leaders and probably underestimated in the organization.

[Olson2023] Lauren Olson, Emitzá Guzmán, and Florian Kunneman. Along
the margins: Marginalized communities’ ethical concerns about social plat-
forms, 2023.
Abstract: In this paper, we identified marginalized communities’ ethical
concerns about social platforms. We performed this identification because
recent platform malfeasance indicates that software teams prioritize share-
holder concerns over user concerns. Additionally, these platform shortcom-
ings often have devastating effects on marginalized populations. We first
scraped 586 marginalized communities’ subreddits, aggregated a dataset of
their social platform mentions and manually annotated mentions of ethical
concerns in these data. We subsequently analyzed trends in the manually
annotated data and tested the extent to which ethical concerns can be au-
tomatically classified by means of natural language processing (NLP). We
found that marginalized communities’ ethical concerns predominantly re-
volve around discrimination and misrepresentation, and reveal deficiencies
in current software development practices. As such, researchers and devel-
opers could use our work to further investigate these concerns and rectify
current software flaws.

[Overney2020] Cassandra Overney, Jens Meinicke, Christian Kästner, and
Bogdan Vasilescu. How to not get rich: an empirical study of donations
in open source. In Proc. International Conference on Software Engineering
(ICSE). ACM, Jun 2020, DOI 10.1145/3377811.3380410.
Abstract: Open source is ubiquitous and many projects act as critical in-
frastructure, yet funding and sustaining the whole ecosystem is challenging.
While there are many different funding models for open source and con-
certed efforts through foundations, donation platforms like PayPal, Patreon,
and OpenCollective are popular and low-bar platforms to raise funds for

107

open-source development. With a mixed-method study, we investigate the
emerging and largely unexplored phenomenon of donations in open source.
Specifically, we quantify how commonly open-source projects ask for dona-
tions, statistically model characteristics of projects that ask for and receive
donations, analyze for what the requested funds are needed and used, and
assess whether the received donations achieve the intended outcomes. We
find 25,885 projects asking for donations on GitHub, often to support en-
gineering activities; however, we also find no clear evidence that donations
influence the activity level of a project. In fact, we find that donations are
used in a multitude of ways, raising new research questions about effective
funding.

[Pan2008] Kai Pan, Sunghun Kim, and E. James Whitehead. Toward
an understanding of bug fix patterns. Empirical Software Engineering,
14(3):286–315, Aug 2008, DOI 10.1007/s10664-008-9077-5.
Abstract: Twenty-seven automatically extractable bug fix patterns are de-
fined using the syntax components and context of the source code involved
in bug fix changes. Bug fix patterns are extracted from the configuration
management repositories of seven open source projects, all written in Java
(Eclipse, Columba, JEdit, Scarab, ArgoUML, Lucene, and MegaMek). De-
fined bug fix patterns cover 45.7% to 63.3% of the total bug fix hunk pairs in
these projects. The frequency of occurrence of each bug fix pattern is com-
puted across all projects. The most common individual patterns are MC-
DAP (method call with different actual parameter values) at 14.9–25.5%,
IF-CC (change in if conditional) at 5.6–18.6%, and AS-CE (change of as-
signment expression) at 6.0–14.2%. A correlation analysis on the extracted
pattern instances on the seven projects shows that six have very similar bug
fix pattern frequencies. Analysis of if conditional bug fix sub-patterns shows
a trend towards increasing conditional complexity in if conditional fixes.
Analysis of five developers in the Eclipse projects shows overall consistency
with project-level bug fix pattern frequencies, as well as distinct variations
among developers in their rates of producing various bug patterns. Overall,
data in the paper suggest that developers have difficulty with specific code
situations at surprisingly consistent rates. There appear to be broad mecha-
nisms causing the injection of bugs that are largely independent of the type
of software being produced.

[Pankratius2012] Victor Pankratius, Felix Schmidt, and Gilda Garreton.
Combining functional and imperative programming for multicore soft-
ware: an empirical study evaluating Scala and Java. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, Jun 2012, DOI
10.1109/icse.2012.6227200.
Abstract: Recent multi-paradigm programming languages combine func-
tional and imperative programming styles to make software development
easier. Given today’s proliferation of multicore processors, parallel program-
mers are supposed to benefit from this combination, as many difficult prob-
lems can be expressed more easily in a functional style while others match an

108

imperative style. Due to a lack of empirical evidence from controlled studies,
however, important software engineering questions are largely unanswered.
Our paper is the first to provide thorough empirical results by using Scala
and Java as a vehicle in a controlled comparative study on multicore soft-
ware development. Scala combines functional and imperative programming
while Java focuses on imperative shared-memory programming. We study
thirteen programmers who worked on three projects, including an industrial
application, in both Scala and Java. In addition to the resulting 39 Scala
programs and 39 Java programs, we obtain data from an industry software
engineer who worked on the same project in Scala. We analyze key issues
such as effort, code, language usage, performance, and programmer satisfac-
tion. Contrary to popular belief, the functional style does not lead to bad
performance. Average Scala run-times are comparable to Java, lowest run-
times are sometimes better, but Java scales better on parallel hardware. We
confirm with statistical significance Scala’s claim that Scala code is more
compact than Java code, but clearly refute other claims of Scala on lower
programming effort and lower debugging effort. Our study also provides ex-
planations for these observations and shows directions on how to improve
multi-paradigm languages in the future.

[Paradis2023] Carlos Paradis and Rick Kazman. Building the
MSR tool Kaiaulu: Design principles and experiences, 2023, DOI
10.1007/978-3-031-15116-3_6.
Abstract: Since Alitheia Core was proposed and subsequently retired, tools
that support empirical studies of software projects continue to be proposed,
such as Codeface, Codeface4Smells, GrimoireLab and SmartSHARK, but
they all make different design choices and provide overlapping functionality.
Aims: We seek to understand the design decisions adopted by these
tools–the good and the bad–along with their consequences, to understand
why their authors reinvented functionality already present in other tools,
and to help inform the design of future tools. Method: We used action
research to evaluate the tools, and to determine a set of principles and
anti-patterns to motivate a new tool design. Results: We identified 7 major
design choices among the tools: 1) Abstraction Debt, 2) the use of Project
Configuration Files, 3) the choice of Batch or Interactive Mode, 4) Minimal
Paths to Data, 5) Familiar Software Abstractions, 6) Licensing and 7)
the Perils of Code Reuse. Building on the observed good and bad design
decisions, we created our own tool architecture and implemented it as an
R package. Conclusions: Tools should not require onerous setup for users
to obtain data. Authors should consider the conventions and abstractions
used by their chosen language and build upon these instead of redefining
them. Tools should encourage best practices in experiment reproducibility
by leveraging self-contained and readable schemas that are used for tool
automation, and reuse must be done with care to avoid depending on dead
code.

[Pardos2023] Zachary A. Pardos, Matthew Tang, Ioannis Anastasopoulos,

109

Shreya K. Sheel, and Ethan Zhang. OATutor: An open-source adaptive tu-
toring system and curated content library for learning sciences research. In
Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems. ACM, Apr 2023, DOI 10.1145/3544548.3581574.
Abstract: Despite decades long establishment of effective tutoring princi-
ples, no adaptive tutoring system has been developed and open-sourced to
the research community. The absence of such a system inhibits researchers
from replicating adaptive learning studies and extending and experiment-
ing with various tutoring system design directions. For this reason, adaptive
learning research is primarily conducted on a small number of proprietary
platforms. In this work, we aim to democratize adaptive learning research
with the introduction of the first open-source adaptive tutoring system based
on Intelligent Tutoring System principles. The system, we call Open Adap-
tive Tutor (OATutor), has been iteratively developed over three years with
field trials in classrooms drawing feedback from students, teachers, and re-
searchers. The MIT-licensed source code includes three creative commons
(CC BY) textbooks worth of algebra problems, with tutoring supports au-
thored by the OATutor project. Knowledge Tracing, an A/B testing frame-
work, and LTI support are included.

[Parnin2012] Chris Parnin and Spencer Rugaber. Programmer infor-
mation needs after memory failure. In Proc. International Con-
ference on Program Comprehension (ICPC). IEEE, Jun 2012, DOI
10.1109/icpc.2012.6240479.
Abstract: Despite its vast capacity and associative powers, the human
brain does not deal well with interruptions. Particularly in situations where
information density is high, such as during a programming task, recovering
from an interruption requires extensive time and effort. Although modern
program development environments have begun to recognize this problem,
none of these tools take into account the brain’s structure and limitations.
In this paper, we present a conceptual framework for understanding the
strengths and weaknesses of human memory, particularly with respect to it
ability to deal with work interruptions. The framework explains empirical
results obtained from experiments in which programmers were interrupted
while working. Based on the framework, we discuss programmer information
needs that development tools must satisfy and suggest several memory aids
such tools could provide. We also describe our prototype implementation of
these memory aids.

[Patitsas2016] Elizabeth Patitsas, Jesse Berlin, Michelle Craig, and Steve
Easterbrook. Evidence that computer science grades are not bimodal. In
Proc. Conference on International Computing Education Research (ICER).
ACM, Aug 2016, DOI 10.1145/2960310.2960312.
Abstract: It is commonly thought that CS grades are bimodal. We statis-
tically analyzed 778 distributions of final course grades from a large research
university, and found only 5.8% of the distributions passed tests of multi-
modality. We then devised a psychology experiment to understand why CS

110

educators believe their grades to be bimodal. We showed 53 CS professors a
series of histograms displaying ambiguous distributions and asked them to
categorize the distributions. A random half of participants were primed to
think about the fact that CS grades are commonly thought to be bimodal;
these participants were more likely to label ambiguous distributions as “bi-
modal”. Participants were also more likely to label distributions as bimodal
if they believed that some students are innately predisposed to do better at
CS. These results suggest that bimodal grades are instructional folklore in
CS, caused by confirmation bias and instructor beliefs about their students.

[Peng2021] Yun Peng, Yu Zhang, and Mingzhe Hu. An empirical study for
common language features used in Python projects. In Proc. International
Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, Mar 2021, DOI 10.1109/saner50967.2021.00012.
Abstract: As a dynamic programming language, Python is widely used in
many fields. For developers, various language features affect programming
experience. For researchers, they affect the difficulty of developing tasks such
as bug finding and compilation optimization. Former research has shown that
programs with Python dynamic features are more change-prone. However,
we know little about the use and impact of Python language features in
real-world Python projects. To resolve these issues, we systematically ana-
lyze Python language features and propose a tool named PYSCAN to auto-
matically identify the use of 22 kinds of common Python language features
in 6 categories in Python source code. We conduct an empirical study on
35 popular Python projects from eight application domains, covering over
4.3 million lines of code, to investigate the the usage of these language fea-
tures in the project. We find that single inheritance, decorator, keyword
argument, for loops and nested classes are top 5 used language features.
Meanwhile different domains of projects may prefer some certain language
features. For example, projects in DevOps use exception handling frequently.
We also conduct in-depth manual analysis to dig extensive using patterns
of frequently but differently used language features: exceptions, decorators
and nested classes/functions. We find that developers care most about Im-
portError when handling exceptions. With the empirical results and in-depth
analysis, we conclude with some suggestions and a discussion of implications
for three groups of persons in Python community: Python designers, Python
compiler designers and Python developers.

[PerezDeRosso2013] Santiago Perez De Rosso and Daniel Jackson. What’s
wrong with Git? In Proc. Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (ONWARD). ACM Press, 2013,
DOI 10.1145/2509578.2509584.
Abstract: It is commonly asserted that the success of a software develop-
ment project, and the usability of the final product, depend on the quality of
the concepts that underlie its design. Yet this hypothesis has not been sys-
tematically explored by researchers, and conceptual design has not played
the central role in the research and teaching of software engineering that

111

one might expect. As part of a new research project to explore conceptual
design, we are engaging in a series of case studies. This paper reports on the
early stages of our first study, on the Git version control system. Despite
its widespread adoption, Git puzzles even experienced developers and is not
regarded as easy to use. In an attempt to understand the root causes of its
complexity, we analyze its conceptual model and identify some undesirable
properties; we then propose a reworking of the conceptual model that forms
the basis of (the first version of) Gitless, an ongoing effort to redesign Git
and experiment with the effects of conceptual simplifications.

[PerezDeRosso2016] Santiago Perez De Rosso and Daniel Jackson. Purposes,
concepts, misfits, and a redesign of Git. In Proc. International Conference on
Object-Oriented Programming Systems Languages and Applications (OOP-
SLA). ACM, Oct 2016, DOI 10.1145/2983990.2984018.
Abstract: Git is a widely used version control system that is powerful but
complicated. Its complexity may not be an inevitable consequence of its
power but rather evidence of flaws in its design. To explore this hypothesis,
we analyzed the design of Git using a theory that identifies concepts, pur-
poses, and misfits. Some well-known difficulties with Git are described, and
explained as misfits in which underlying concepts fail to meet their intended
purpose. Based on this analysis, we designed a reworking of Git (called Git-
less) that attempts to remedy these flaws. To correlate misfits with issues
reported by users, we conducted a study of Stack Overflow questions. And
to determine whether users experienced fewer complications using Gitless in
place of Git, we conducted a small user study. Results suggest our approach
can be profitable in identifying, analyzing, and fixing design problems.

[Petre2013] Marian Petre. UML in practice. In Proc. International
Conference on Software Engineering (ICSE). IEEE, May 2013, DOI
10.1109/icse.2013.6606618.
Abstract: UML has been described by some as “the lingua franca of soft-
ware engineering”. Evidence from industry does not necessarily support such
endorsements. How exactly is UML being used in industry—if it is? This
paper presents a corpus of interviews with 50 professional software engineers
in 50 companies and identifies 5 patterns of UML use.

[Philip2012] Kavita Philip, Medha Umarji, Megha Agarwala, Susan Elliott
Sim, Rosalva Gallardo-Valencia, Cristina V. Lopes, and Sukanya Ratano-
tayanon. Software reuse through methodical component reuse and amethod-
ical snippet remixing. In Proc. Conference on Computer Supported Cooper-
ative Work (CSCW). ACM Press, 2012, DOI 10.1145/2145204.2145407.
Abstract: Every method for developing software is a prescriptive model.
Applying a deconstructionist analysis to methods reveals that there are two
texts, or sets of assumptions and ideals: a set that is privileged by the method
and a second set that is left out, or marginalized by the method. We apply
this analytical lens to software reuse, a technique in software development
that seeks to expedite one’s own project by using programming artifacts cre-

112

ated by others. By analyzing the methods prescribed by Component-Based
Software Engineering (CBSE), we arrive at two texts: Methodical CBSE and
Amethodical Remixing. Empirical data from four studies on code search on
the web draws attention to four key points of tension: status of component
boundaries; provenance of source code; planning and process; and evaluation
criteria for candidate code. We conclude the paper with a discussion of the
implications of this work for the limits of methods, structure of organizations
that reuse software, and the design of search engines for source code.

[Piantadosi2020] Valentina Piantadosi, Fabiana Fierro, Simone Scalabrino,
Alexander Serebrenik, and Rocco Oliveto. How does code readabil-
ity change during software evolution? Empirical Software Engineering,
25(6):5374–5412, Sep 2020, DOI 10.1007/s10664-020-09886-9.
Abstract: Code reading is one of the most frequent activities in software
maintenance. Such an activity aims at acquiring information from the code
and, thus, it is a prerequisite for program comprehension: developers need to
read the source code they are going to modify before implementing changes.
As the code changes, so does its readability; however, it is not clear yet
how code readability changes during software evolution. To understand how
code readability changes when software evolves, we studied the history of
25 open source systems. We modeled code readability evolution by defining
four states in which a file can be at a certain point of time (non-existing,
other-name, readable, and unreadable). We used the data gathered to infer
the probability of transitioning from one state to another one. In addition,
we also manually checked a significant sample of transitions to compute the
performance of the state-of-the-art readability prediction model we used to
calculate the transition probabilities. With this manual analysis, we found
that the tool correctly classifies all the transitions in the majority of the cases,
even if there is a loss of accuracy compared to the single-version readability
estimation. Our results show that most of the source code files are created
readable. Moreover, we observed that only a minority of the commits change
the readability state. Finally, we manually carried out qualitative analysis to
understand what makes code unreadable and what developers do to prevent
this. Using our results we propose some guidelines (i) to reduce the risk of
code readability erosion and (ii) to promote best practices that make code
readable.

[Pietri2019] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. The
software heritage graph dataset: public software development under one roof.
In Proc. International Conference on Mining Software Repositories (MSR).
IEEE, May 2019, DOI 10.1109/msr.2019.00030.
Abstract: Software Heritage is the largest existing public archive of soft-
ware source code and accompanying development history: it currently spans
more than five billion unique source code files and one billion unique com-
mits, coming from more than 80 million software projects. This paper in-
troduces the Software Heritage graph dataset: a fully-deduplicated Merkle

113

DAG representation of the Software Heritage archive. The dataset links to-
gether file content identifiers, source code directories, Version Control System
(VCS) commits tracking evolution over time, up to the full states of VCS
repositories as observed by Software Heritage during periodic crawls. The
dataset’s contents come from major development forges (including GitHub
and GitLab), FOSS distributions (e.g., Debian), and language-specific pack-
age managers (e.g., PyPI). Crawling information is also included, providing
timestamps about when and where all archived source code artifacts have
been observed in the wild. The Software Heritage graph dataset is available in
multiple formats, including downloadable CSV dumps and Apache Parquet
files for local use, as well as a public instance on Amazon Athena interactive
query service for ready-to-use powerful analytical processing. Source code
file contents are cross-referenced at the graph leaves, and can be retrieved
through individual requests using the Software Heritage archive API.

[Pohn2023] Daniela Pöhn and Wolfgang Hommel. IMC: A classification of
identity management approaches, 2023.
Abstract: This paper presents a comprehensive classification of identity
management approaches. The classification makes use of three axes: topol-
ogy, type of user, and type of environment. The analysis of existing ap-
proaches using the resulting identity management cube (IMC) highlights
the trade-off between user control and trust in attributes. A comparative
analysis of IMC and established models identifies missing links between the
approaches. The IMC is extended by a morphology of identity management,
describing characteristics of cooperation. The morphology is then mapped to
the life cycle of users and identity management in a further step. These clas-
sifications are practically underlined with current approaches. Both methods
combined provide a comprehensive characterization of identity management
approaches. The methods help to choose suited approaches and implement
needed tools.

[Pool2023] Jonathan Robert Pool. Accessibility metatesting: Comparing nine
testing tools, 2023, DOI 10.1145/3587281.3587282.
Abstract: Automated web accessibility testing tools have been found com-
plementary. The implication: To catch as many issues as possible, use mul-
tiple tools. Doing this efficiently entails integration costs. Is there a small
set of tools that, together, make additional tools redundant? I approach
this problem by comparing nine compre- hensive accessibility testing tools
that are amenable to integration: alfa, axe-core, Continuum, Equal Ac-
cess, HTML CodeSniffer, Nu Html Checker, QualWeb, Tenon, and WAVE.
I tested 121 web pages of interest to CVS Health with these tools. Each
tool only fraction- ally duplicated any other tool. Each discovered numerous
issue instances missed by all the others. Thus, testing with all nine tools was
substantially more informative than testing with any subset.

[Porter2013] Leo Porter, Cynthia Bailey Lee, and Beth Simon. Halv-
ing fail rates using peer instruction. In Proc. Technical Symposium

114

on Computer Science Education (SIGCSE). ACM Press, 2013, DOI
10.1145/2445196.2445250.
Abstract: Peer Instruction (PI) is a teaching method that supports
student-centric classrooms, where students construct their own understand-
ing through a structured approach featuring questions with peer discussions.
PI has been shown to increase learning in STEM disciplines such as physics
and biology. In this report we look at another indicator of student success
the rate at which students pass the course or, conversely, the rate at which
they fail. Evaluating 10 years of instruction of 4 different courses spanning
16 PI course instances, we find that adoption of the PI methodology in the
classroom reduces fail rates by a per-course average of 61% (20% reduced to
7%) compared to standard instruction (SI). Moreover, we also find statis-
tically significant improvements within-instructor. For the same instructor
teaching the same course, we find PI decreases the fail rate, on average,
by 67% (from 23% to 8%) compared to SI. As an in-situ study, we discuss
the various threats to the validity of this work and consider implications of
wide-spread adoption of PI in computing programs.

[Posnett2011] Daryl Posnett, Abram Hindle, and Premkumar Devanbu. Got
issues? do new features and code improvements affect defects? In Proc.
Working Conference on Reverse Engineering (WCRE). IEEE, Oct 2011,
DOI 10.1109/wcre.2011.33.
Abstract: There is a perception that when new features are added to a
system that those added and modified parts of the source-code are more
fault prone. Many have argued that new code and new features are defect
prone due to immaturity, lack of testing, as well unstable requirements.
Unfortunately most previous work does not investigate the link between a
concrete requirement or new feature and the defects it causes, in particular
the feature, the changed code and the subsequent defects are rarely investi-
gated. In this paper we investigate the relationship between improvements,
new features and defects recorded within an issue tracker. A manual case
study is performed to validate the accuracy of these issue types. We com-
bine defect issues and new feature issues with the code from version-control
systems that introduces these features, we then explore the relationship of
new features with the fault-proneness of their implementations. We describe
properties and produce models of the relationship between new features and
fault proneness, based on the analysis of issue trackers and version-control
systems. We find, surprisingly, that neither improvements nor new features
have any significant effect on later defect counts, when controlling for size
and total number of changes.

[Prabhu2011] Prakash Prabhu, Yun Zhang, Soumyadeep Ghosh, David I. Au-
gust, Jialu Huang, Stephen Beard, Hanjun Kim, Taewook Oh, Thomas B.
Jablin, Nick P. Johnson, Matthew Zoufaly, Arun Raman, Feng Liu, and
David Walker. A survey of the practice of computational science. In Proc.
Supercomputing. ACM Press, 2011, DOI 10.1145/2063348.2063374.
Abstract: Computing plays an indispensable role in scientific research.

115

Presently, researchers in science have different problems, needs, and beliefs
about computation than professional programmers. In order to accelerate
the progress of science, computer scientists must understand these problems,
needs, and beliefs. To this end, this paper presents a survey of scientists from
diverse disciplines, practicing computational science at a doctoral-granting
university with very high re search activity. The survey covers many things,
among them, prevalent programming practices within this scientific commu-
nity, the importance of computational power in different fields, use of tools
to enhance performance and soft ware productivity, computational resources
leveraged, and prevalence of parallel computation. The results reveal several
patterns that suggest interesting avenues to bridge the gap between scientific
researchers and programming tools developers.

[Prana2018] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung,
Thushari Atapattu, and David Lo. Categorizing the content of GitHub
README files. Empirical Software Engineering, 24(3):1296–1327, Oct 2018,
DOI 10.1007/s10664-018-9660-3.
Abstract: README files play an essential role in shaping a developer’s
first impression of a software repository and in documenting the software
project that the repository hosts. Yet, we lack a systematic understanding
of the content of a typical README file as well as tools that can process
these files automatically. To close this gap, we conduct a qualitative study
involving the manual annotation of 4,226 README file sections from 393
randomly sampled GitHub repositories and we design and evaluate a clas-
sifier and a set of features that can categorize these sections automatically.
We find that information discussing the ’What’ and ’How’ of a repository
is very common, while many README files lack information regarding the
purpose and status of a repository. Our multi-label classifier which can pre-
dict eight different categories achieves an F1 score of 0.746. To evaluate
the usefulness of the classification, we used the automatically determined
classes to label sections in GitHub README files using badges and showed
files with and without these badges to twenty software professionals. The
majority of participants perceived the automated labeling of sections based
on our classifier to ease information discovery. This work enables the owners
of software repositories to improve the quality of their documentation and it
has the potential to make it easier for the software development community
to discover relevant information in GitHub README files.

[Pritchard2015] David Pritchard. Frequency distribution of error messages.
In Proc. Workshop on Evaluation and Usability of Programming Languages
and Tools (PLATEAU). ACM, Oct 2015, DOI 10.1145/2846680.2846681.
Abstract: Which programming error messages are the most common? We
investigate this question, motivated by writing error explanations for novices.
We consider large data sets in Python and Java that include both syntax and
run-time errors. In both data sets, after grouping essentially identical mes-
sages, the error message frequencies empirically resemble Zipf-Mandelbrot
distributions. We use a maximum-likelihood approach to fit the distribution

116

parameters. This gives one possible way to contrast languages or compilers
quantitatively.

[Racheva2010] Zornitza Racheva, Maya Daneva, Klaas Sikkel, Andrea Her-
rmann, and Roel Wieringa. Do we know enough about requirements pri-
oritization in agile projects: insights from a case study. In Proc. Interna-
tional Requirements Engineering Conference (RE). IEEE, Sep 2010, DOI
10.1109/re.2010.27.
Abstract: Requirements prioritization is an essential mechanism of agile
software development approaches. It maximizes the value delivered to the
clients and accommodates changing requirements. This paper presents re-
sults of an exploratory cross-case study on agile prioritization and business
value delivery processes in eight software organizations. We found that some
explicit and fundamental assumptions of agile requirement prioritization ap-
proaches, as described in the agile literature on best practices, do not hold
in all agile project contexts in our study. These are (i) the driving role of the
client in the value creation process, (ii) the prevailing position of business
value as a main prioritization criterion, (iii) the role of the prioritization
process for project goal achievement. This implies that these assumptions
have to be reframed and that the approaches to requirements prioritization
for value creation need to be extended.

[Ragkhitwetsagul2021] Chaiyong Ragkhitwetsagul, Jens Krinke, Matheus
Paixao, Giuseppe Bianco, and Rocco Oliveto. Toxic code snippets on Stack
Overflow. IEEE Transactions on Software Engineering, 47(3):560–581, Mar
2021, DOI 10.1109/tse.2019.2900307.
Abstract: Online code clones are code fragments that are copied from soft-
ware projects or online sources to Stack Overflow as examples. Due to an
absence of a checking mechanism after the code has been copied to Stack
Overflow, they can become toxic code snippets, e.g., they suffer from be-
ing outdated or violating the original software license. We present a study
of online code clones on Stack Overflow and their toxicity by incorporating
two developer surveys and a large-scale code clone detection. A survey of 201
high-reputation Stack Overflow answerers (33 percent response rate) showed
that 131 participants (65 percent) have ever been notified of outdated code
and 26 of them (20 percent) rarely or never fix the code. 138 answerers (69
percent) never check for licensing conflicts between their copied code snip-
pets and Stack Overflow’s CC BY-SA 3.0. A survey of 87 Stack Overflow
visitors shows that they experienced several issues from Stack Overflow an-
swers: mismatched solutions, outdated solutions, incorrect solutions, and
buggy code. 85 percent of them are not aware of CC BY-SA 3.0 license en-
forced by Stack Overflow, and 66 percent never check for license conflicts
when reusing code snippets. Our clone detection found online clone pairs
between 72,365 Java code snippets on Stack Overflow and 111 open source
projects in the curated Qualitas corpus. We analysed 2,289 non-trivial online
clone candidates. Our investigation revealed strong evidence that 153 clones
have been copied from a Qualitas project to Stack Overflow. We found 100

117

of them (66 percent) to be outdated, of which 10 were buggy and harmful
for reuse. Furthermore, we found 214 code snippets that could potentially
violate the license of their original software and appear 7,112 times in 2,427
GitHub projects.

[Rahman2011] Foyzur Rahman and Premkumar Devanbu. Ownership, ex-
perience and defects: a fine-grained study of authorship. In Proc. Interna-
tional Conference on Software Engineering (ICSE). ACM, May 2011, DOI
10.1145/1985793.1985860.
Abstract: Recent research indicates that “people” factors such as owner-
ship, experience, organizational structure, and geographic distribution have
a big impact on software quality. Understanding these factors, and properly
deploying people resources can help managers improve quality outcomes.
This paper considers the impact of code ownership and developer experi-
ence on software quality. In a large project, a file might be entirely owned by
a single developer, or worked on by many. Some previous research indicates
that more developers working on a file might lead to more defects. Prior re-
search considered this phenomenon at the level of modules or files, and thus
does not tease apart and study the effect of contributions of different devel-
opers to each module or file. We exploit a modern version control system to
examine this issue at a fine-grained level. Using version history, we examine
contributions to code fragments that are actually repaired to fix bugs. Are
these code fragments “implicated” in bugs the result of contributions from
many? or from one? Does experience matter? What type of experience?
We find that implicated code is more strongly associated with a single de-
veloper’s contribution; our findings also indicate that an author’s specialized
experience in the target file is more important than general experience. Our
findings suggest that quality control efforts could be profitably targeted at
changes made by single developers with limited prior experience on that file.

[Rahman2013] Foyzur Rahman and Premkumar Devanbu. How, and why,
process metrics are better. In Proc. International Conference on Software
Engineering (ICSE). IEEE, May 2013, DOI 10.1109/icse.2013.6606589.
Abstract: Defect prediction techniques could potentially help us to focus
quality-assurance efforts on the most defect-prone files. Modern statistical
tools make it very easy to quickly build and deploy prediction models. Soft-
ware metrics are at the heart of prediction models; understanding how and
especially why different types of metrics are effective is very important for
successful model deployment. In this paper we analyze the applicability and
efficacy of process and code metrics from several different perspectives. We
build many prediction models across 85 releases of 12 large open source
projects to address the performance, stability, portability and stasis of differ-
ent sets of metrics. Our results suggest that code metrics, despite widespread
use in the defect prediction literature, are generally less useful than process
metrics for prediction. Second, we find that code metrics have high stasis;
they don’t change very much from release to release. This leads to stagnation
in the prediction models, leading to the same files being repeatedly predicted

118

as defective; unfortunately, these recurringly defective files turn out to be
comparatively less defect-dense.

[Rahman2019] Akond Rahman, Chris Parnin, and Laurie Williams. The
seven sins: Security smells in infrastructure as code scripts. In Proc. In-
ternational Conference on Software Engineering (ICSE). IEEE, May 2019,
DOI 10.1109/icse.2019.00033.
Abstract: Practitioners use infrastructure as code (IaC) scripts to provi-
sion servers and development environments. While developing IaC scripts,
practitioners may inadvertently introduce security smells. Security smells
are recurring coding patterns that are indicative of security weakness and
can potentially lead to security breaches. The goal of this paper is to help
practitioners avoid insecure coding practices while developing infrastructure
as code (IaC) scripts through an empirical study of security smells in IaC
scripts. We apply qualitative analysis on 1,726 IaC scripts to identify seven
security smells. Next, we implement and validate a static analysis tool called
Security Linter for Infrastructure as Code scripts (SLIC) to identify the oc-
currence of each smell in 15,232 IaC scripts collected from 293 open source
repositories. We identify 21,201 occurrences of security smells that include
1,326 occurrences of hard-coded passwords. We submitted bug reports for
1,000 randomly-selected security smell occurrences. We obtain 212 responses
to these bug reports, of which 148 occurrences were accepted by the develop-
ment teams to be fixed. We observe security smells can have a long lifetime,
e.g., a hard-coded secret can persist for as long as 98 months, with a median
lifetime of 20 months.

[Rahman2020a] Akond Rahman, Effat Farhana, Chris Parnin, and Laurie
Williams. Gang of eight: a defect taxonomy for infrastructure as code scripts.
In Proc. International Conference on Software Engineering (ICSE). ACM,
Jun 2020, DOI 10.1145/3377811.3380409.
Abstract: Defects in infrastructure as code (IaC) scripts can have serious
consequences, for example, creating large-scale system outages. A taxonomy
of IaC defects can be useful for understanding the nature of defects, and
identifying activities needed to fix and prevent defects in IaC scripts. The
goal of this paper is to help practitioners improve the quality of infrastruc-
ture as code (IaC) scripts by developing a defect taxonomy for IaC scripts
through qualitative analysis. We develop a taxonomy of IaC defects by ap-
plying qualitative analysis on 1,448 defect-related commits collected from
open source software (OSS) repositories of the Openstack organization. We
conduct a survey with 66 practitioners to assess if they agree with the iden-
tified defect categories included in our taxonomy. We quantify the frequency
of identified defect categories by analyzing 80,425 commits collected from
291 OSS repositories spanning across 2005 to 2019. Our defect taxonomy for
IaC consists of eight categories, including a category specific to IaC called
idempotency (i.e., defects that lead to incorrect system provisioning when
the same IaC script is executed multiple times). We observe the surveyed
66 practitioners to agree most with idempotency. The most frequent defect

119

category is configuration data i.e., providing erroneous configuration data
in IaC scripts. Our taxonomy and the quantified frequency of the defect
categories may help in advancing the science of IaC script quality.

[RakAmnouykit2020] Ingkarat Rak-amnouykit, Daniel McCrevan, Ana Mi-
lanova, Martin Hirzel, and Julian Dolby. Python 3 types in the wild: a tale
of two type systems. In Proc. International Symposium on Dynamic Lan-
guages (ISDL). ACM, Nov 2020, DOI 10.1145/3426422.3426981.
Abstract: Python 3 is a highly dynamic language, but it has introduced
a syntax for expressing types with PEP484. This paper explores how de-
velopers use these type annotations, the type system semantics provided by
type checking and inference tools, and the performance of these tools. We
evaluate the types and tools on a corpus of public GitHub repositories. We
review MyPy and PyType, two canonical static type checking and infer-
ence tools, and their distinct approaches to type analysis. We then address
three research questions: (i) How often and in what ways do developers
use Python 3 types? (ii) Which type errors do developers make? (iii) How
do type errors from different tools compare? Surprisingly, when developers
use static types, the code rarely type-checks with either of the tools. MyPy
and PyType exhibit false positives, due to their static nature, but also flag
many useful errors in our corpus. Lastly, MyPy and PyType embody two
distinct type systems, flagging different errors in many cases. Understanding
the usage of Python types can help guide tool-builders and researchers. Un-
derstanding the performance of popular tools can help increase the adoption
of static types and tools by practitioners, ultimately leading to more correct
and more robust Python code.

[Reichelt2023] David Georg Reichelt, Stefan Kühne, and Wilhelm Hassel-
bring. Towards solving the challenge of minimal overhead monitoring, 2023,
DOI 10.1145/3578245.3584851.
Abstract: The examination of performance changes or the performance be-
havior of a software requires the measurement of the performance. This is
done via probes, i.e., pieces of code which obtain and process measurement
data, and which are inserted into the examined application. The execution of
those probes in a singular method creates overhead, which deteriorates per-
formance measurements of calling methods and slows down the measurement
process. Therefore, an important challenge for performance measurement is
the reduction of the measurement overhead. To address this challenge, the
overhead should be minimized. Based on an analysis of the sources of per-
formance overhead, we derive the following four optimization options: (1)
Source instrumentation instead of AspectJ instrumentation, (2) reduction of
measurement data, (3) change of the queue and (4) aggregation of measure-
ment data. We evaluate the effect of these optimization options using the
MooBench benchmark. Thereby, we show that these optimizations options
reduce the monitoring overhead of the monitoring framework Kieker. For
MooBench, the execution duration could be reduced from 4.77 µs to 0.39 µs
per method invocation on average.

120

[Reimann2023] Lars Reimann and Günter Kniesel-Wünsche. An alternative
to cells for selective execution of data science pipelines, 2023.
Abstract: Data Scientists often use notebooks to develop Data Science
(DS) pipelines, particularly since they allow to selectively execute parts of
the pipeline. However, notebooks for DS have many well-known flaws. We
focus on the following ones in this paper: (1) Notebooks can become littered
with code cells that are not part of the main DS pipeline but exist solely
to make decisions (e.g. listing the columns of a tabular dataset). (2) While
users are allowed to execute cells in any order, not every ordering is correct,
because a cell can depend on declarations from other cells. (3) After making
changes to a cell, this cell and all cells that depend on changed declarations
must be rerun. (4) Changes to external values necessitate partial re-execution
of the notebook. (5) Since cells are the smallest unit of execution, code that
is unaffected by changes, can inadvertently be re-executed. To solve these
issues, we propose to replace cells as the basis for the selective execution of
DS pipelines. Instead, we suggest populating a context-menu for variables
with actions fitting their type (like listing columns if the variable is a tab-
ular dataset). These actions are executed based on a data-flow analysis to
ensure dependencies between variables are respected and results are updated
properly after changes. Our solution separates pipeline code from decision
making code and automates dependency management, thus reducing clutter
and the risk of making errors.

[Riccomini2021] Chris Riccomini and Dmitriy Ryaboy. The Missing
README: A Guide for the New Software Engineer. No Starch Press, 2021.
Abstract: For new software engineers, knowing how to program is only
half the battle. You’ll quickly find that many of the skills and processes
key to your success are not taught in any school or bootcamp. The Missing
README fills in that gap—a distillation of workplace lessons, best prac-
tices, and engineering fundamentals that the authors have taught rookie
developers at top companies for more than a decade.

[Rigby2011] Peter C. Rigby and Margaret-Anne Storey. Understanding
broadcast based peer review on open source software projects. In Proc. In-
ternational Conference on Software Engineering (ICSE). ACM, May 2011,
DOI 10.1145/1985793.1985867.
Abstract: Software peer review has proven to be a successful technique
in open source software (OSS) development. In contrast to industry, where
reviews are typically assigned to specific individuals, changes are broadcast
to hundreds of potentially interested stakeholders. Despite concerns that re-
views may be ignored, or that discussions will deadlock because too many
uninformed stakeholders are involved, we find that this approach works well
in practice. In this paper, we describe an empirical study to investigate the
mechanisms and behaviours that developers use to find code changes they
are competent to review. We also explore how stakeholders interact with
one another during the review process. We manually examine hundreds of
reviews across five high profile OSS projects. Our findings provide insights

121

into the simple, community-wide techniques that developers use to effectively
manage large quantities of reviews. The themes that emerge from our study
are enriched and validated by interviewing long-serving core developers.

[Rigby2016] Peter C. Rigby, Yue Cai Zhu, Samuel M. Donadelli, and Audris
Mockus. Quantifying and mitigating turnover-induced knowledge loss. In
Proc. International Conference on Software Engineering (ICSE). ACM, May
2016, DOI 10.1145/2884781.2884851.
Abstract: The utility of source code, as of other knowledge artifacts, is
predicated on the existence of individuals skilled enough to derive value
by using or improving it. Developers leaving a software project deprive the
project of the knowledge of the decisions they have made. Previous research
shows that the survivors and newcomers maintaining abandoned code have
reduced productivity and are more likely to make mistakes. We focus on
quantifying the extent of abandoned source files and adapt methods from
financial risk analysis to assess the susceptibility of the project to developer
turnover. In particular, we measure the historical loss distribution and find
(1) that projects are susceptible to losses that are more than three times
larger than the expected loss. Using historical simulations we find (2) that
projects are susceptible to large losses that are over five times larger than
the expected loss. We use Monte Carlo simulations of disaster loss scenar-
ios and find (3) that simplistic estimates of the “truck factor” exaggerate
the potential for loss. To mitigate loss from developer turnover, we mod-
ify Cataldo et al’s coordination requirements matrices. We find (4) that we
can recommend the correct successor 34% to 48% of the time. We also find
that having successors reduces the expected loss by as much as 15%. Our
approach helps large projects assess the risk of turnover thereby making risk
more transparent and manageable.

[Rigger2020] Manuel Rigger and Zhendong Su. Finding bugs in database
systems via query partitioning. Proceedings of the ACM on Programming
Languages, 4, Nov 2020, DOI 10.1145/3428279.
Abstract: Logic bugs in Database Management Systems (DBMSs) are bugs
that cause an incorrect result for a given query, for example, by omitting a
row that should be fetched. These bugs are critical, since they are likely to go
unnoticed by users. We propose Query Partitioning, a general and effective
approach for finding logic bugs in DBMSs. The core idea of Query Partition-
ing is to, starting from a given original query, derive multiple, more complex
queries (called partitioning queries), each of which computes a partition of
the result. The individual partitions are then composed to compute a result
set that must be equivalent to the original query’s result set. A bug in the
DBMS is detected when these result sets differ. Our intuition is that due to
the increased complexity, the partitioning queries are more likely to stress
the DBMS and trigger a logic bug than the original query. As a concrete
instance of a partitioning strategy, we propose Ternary Logic Partitioning
(TLP), which is based on the observation that a boolean predicate p can
either evaluate to TRUE, FALSE, or NULL. Accordingly, a query can be

122

decomposed into three partitioning queries, each of which computes its re-
sult on rows or intermediate results for which p, NOT p, and p IS NULL hold.
This technique is versatile, and can be used to test WHERE, GROUP BY,
as well as HAVING clauses, aggregate functions, and DISTINCT queries.
As part of an extensive testing campaign, we found 175 bugs in widely-used
DBMSs such as MySQL, TiDB, SQLite, and CockroachDB, 125 of which
have been fixed. Notably, 77 of these were logic bugs, while the remaining
were error and crash bugs. We expect that the effectiveness and wide ap-
plicability of Query Partitioning will lead to its broad adoption in practice,
and the formulation of additional partitioning strategies.

[Rivers2016] Kelly Rivers, Erik Harpstead, and Ken Koedinger. Learn-
ing curve analysis for programming. In Proc. Conference on Interna-
tional Computing Education Research (ICER). ACM, Aug 2016, DOI
10.1145/2960310.2960333.
Abstract: The recent surge in interest in using educational data mining on
student written programs has led to discoveries about which compiler errors
students encounter while they are learning how to program. However, less
attention has been paid to the actual code that students produce. In this
paper, we investigate programming data by using learning curve analysis
to determine which programming elements students struggle with the most
when learning in Python. Our analysis extends the traditional use of learning
curve analysis to include less structured data, and also reveals new possibil-
ities for when to teach students new programming concepts. One particular
discovery is that while we find evidence of student learning in some cases (for
example, in function definitions and comparisons), there are other program-
ming elements which do not demonstrate typical learning. In those cases,
we discuss how further changes to the model could affect both demonstrated
learning and our understanding of the different concepts that students learn.

[Robillard2010] Martin P. Robillard and Rob DeLine. A field study of API
learning obstacles. Empirical Software Engineering, 16(6):703–732, Dec
2010, DOI 10.1007/s10664-010-9150-8.
Abstract: Large APIs can be hard to learn, and this can lead to decreased
programmer productivity. But what makes APIs hard to learn? We con-
ducted a mixed approach, multi-phased study of the obstacles faced by Mi-
crosoft developers learning a wide variety of new APIs. The study involved a
combination of surveys and in-person interviews, and collected the opinions
and experiences of over 440 professional developers. We found that some of
the most severe obstacles faced by developers learning new APIs pertained to
the documentation and other learning resources. We report on the obstacles
developers face when learning new APIs, with a special focus on obstacles
related to API documentation. Our qualitative analysis elicited five impor-
tant factors to consider when designing API documentation: documentation
of intent; code examples; matching APIs with scenarios; penetrability of the
API; and format and presentation. We analyzed how these factors can be
interpreted to prioritize API documentation development efforts

123

[Rodeghero2021] Paige Rodeghero, Thomas Zimmermann, Brian Houck,
and Denae Ford. Please turn your cameras on: Remote onboard-
ing of software developers during a pandemic. In Proc. International
Conference on Software Engineering (ICSE). IEEE, May 2021, DOI
10.1109/icse-seip52600.2021.00013.
Abstract: The COVID-19 pandemic has impacted the way that software
development teams onboard new hires. Previously, most software develop-
ers worked in physical offices and new hires onboarded to their teams in
the physical office, following a standard onboarding process. However, when
companies transitioned employees to work from home due to the pandemic,
there was little to no time to develop new onboarding procedures. In this
paper, we present a survey of 267 new hires at Microsoft that onboarded to
software development teams during the pandemic. We explored their remote
onboarding process, including the challenges that the new hires encountered
and their social connectedness with their teams. We found that most de-
velopers onboarded remotely and never had an opportunity to meet their
teammates in person. This leads to one of the biggest challenges faced by
these new hires, building a strong social connection with their team. We use
these results to provide recommendations for onboarding remote hires.

[RodriguezPerez2018] Gema Rodŕıguez-Pérez, Gregorio Robles, and
Jesús M. González-Barahona. Reproducibility and credibility in empirical
software engineering: A case study based on a systematic literature review
of the use of the SZZ algorithm. Information and Software Technology,
99:164–176, Jul 2018, DOI 10.1016/j.infsof.2018.03.009.
Abstract: When identifying the origin of software bugs, many studies as-
sume that “a bug was introduced by the lines of code that were modified to
fix it”. However, this assumption does not always hold and at least in some
cases, these modified lines are not responsible for introducing the bug. For
example, when the bug was caused by a change in an external API. The
lack of empirical evidence makes it impossible to assess how important these
cases are and therefore, to which extent the assumption is valid. To advance
in this direction, and better understand how bugs “are born”, we propose
a model for defining criteria to identify the first snapshot of an evolving
software system that exhibits a bug. This model, based on the perfect test
idea, decides whether a bug is observed after a change to the software. Fur-
thermore, we studied the model’s criteria by carefully analyzing how 116
bugs were introduced in two different open source software projects. The
manual analysis helped classify the root cause of those bugs and created
manually curated datasets with bug-introducing changes and with bugs that
were not introduced by any change in the source code. Finally, we used these
datasets to evaluate the performance of four existing SZZ-based algorithms
for detecting bug-introducing changes. We found that SZZ-based algorithms
are not very accurate, especially when multiple commits are found; the F-
Score varies from 0.44 to 0.77, while the percentage of true positives does
not exceed 63%. Our results show empirical evidence that the prevalent as-

124

sumption, “a bug was introduced by the lines of code that were modified
to fix it”, is just one case of how bugs are introduced in a software system.
Finding what introduced a bug is not trivial: bugs can be introduced by
the developers and be in the code, or be created irrespective of the code.
Thus, further research towards a better understanding of the origin of bugs
in software projects could help to improve design integration tests and to
design other procedures to make software development more robust.

[Rossbach2010] Christopher J. Rossbach, Owen S. Hofmann, and Emmett
Witchel. Is transactional programming actually easier? ACM SIGPLAN
Notices, 45(5):47–56, May 2010, DOI 10.1145/1837853.1693462.
Abstract: Chip multi-processors (CMPs) have become ubiquitous, while
tools that ease concurrent programming have not. The promise of increased
performance for all applications through ever more parallel hardware requires
good tools for concurrent programming, especially for average programmers.
Transactional memory (TM) has enjoyed recent interest as a tool that can
help programmers program concurrently. The transactional memory (TM)
research community is heavily invested in the claim that programming with
transactional memory is easier than alternatives (like locks), but evidence
for or against the veracity of this claim is scant. In this paper, we describe
a user-study in which 237 undergraduate students in an operating systems
course implement the same programs using coarse and fine-grain locks, mon-
itors, and transactions. We surveyed the students after the assignment, and
examined their code to determine the types and frequency of programming
errors for each synchronization technique. Inexperienced programmers found
baroque syntax a barrier to entry for transactional programming. On aver-
age, subjective evaluation showed that students found transactions harder
to use than coarse-grain locks, but slightly easier to use than fine-grained
locks. Detailed examination of synchronization errors in the students’ code
tells a rather different story. Overwhelmingly, the number and types of pro-
gramming errors the students made was much lower for transactions than for
locks. On a similar programming problem, over 70% of students made errors
with fine-grained locking, while less than 10% made errors with transactions.

[Runge2023] Tobias Runge, Tabea Bordis, Alex Potanin, Thomas Thüm, and
Ina Schaefer. Flexible correct-by-construction programming, 2022.
Abstract: Correctness-by-Construction (CbC) is an incremental program
construction process to construct functionally correct programs. The pro-
grams are constructed stepwise along with a specification that is inherently
guaranteed to be satisfied. CbC is complex to use without specialized tool
support, since it needs a set of predefined refinement rules of fixed granu-
larity which are additional rules on top of the programming language. Each
refinement rule introduces a specific programming statement and developers
cannot depart from these rules to construct programs. CbC allows to develop
software in a structured and incremental way to ensure correctness, but the
limited flexibility is a disadvantage of CbC. In this work, we compare clas-
sic CbC with CbC-Block and TraitCbC. Both approaches CbC-Block and

125

TraitCbC, are related to CbC, but they have new language constructs that
enable a more flexible software construction approach. We provide for both
approaches a programming guideline, which similar to CbC, leads to well-
structured programs. CbC-Block extends CbC by adding a refinement rule
to insert any block of statements. Therefore, we introduce CbC-Block as
an extension of CbC. TraitCbC implements correctness-by-construction on
the basis of traits with specified methods. We formally introduce TraitCbC
and prove soundness of the construction strategy. All three development
approaches are qualitatively compared regarding their programming con-
structs, tool support, and usability to assess which is best suited for certain
tasks and developers.

[Sadowski2019] Caitlin Sadowski and Thomas Zimmermann, editors. Re-
thinking Productivity in Software Engineering. Apress, 2019.
Abstract: This open access book collects the wisdom of the 2017 Dagstuhl
seminar on productivity in software engineering, a meeting of community
leaders, who came together with the goal of rethinking traditional defini-
tions and measures of productivity. The results of their work, Rethinking
Productivity in Software Engineering, includes chapters covering definitions
and core concepts related to productivity, guidelines for measuring produc-
tivity in specific contexts, best practices and pitfalls, and theories and open
questions on productivity. You’ll benefit from the many short chapters, each
offering a focused discussion on one aspect of productivity in software engi-
neering.

[Sajadi2023] Amirali Sajadi, Kostadin Damevski, and Preetha Chatterjee. In-
terpersonal Trust in OSS: Exploring Dimensions of Trust in GitHub Pull
Requests. In Proceedings of the 45th International Conference on Software
Engineering (NIER Track), ICSE ’23, 2023.
Abstract: Interpersonal trust plays a crucial role in facilitating collabora-
tive tasks, such as software development. While previous research recognizes
the significance of trust in an organizational setting, there is a lack of un-
derstanding in how trust is exhibited in OSS distributed teams, where there
is an absence of direct, in-person communications. To foster trust and col-
laboration in OSS teams, we need to understand what trust is and how it is
exhibited in written developer communications (e.g., pull requests, chats).
In this paper, we first investigate various dimensions of trust to identify the
ways trusting behavior can be observed in OSS. Next, we sample a set of
100 GitHub pull requests from Apache Software Foundation (ASF) projects,
to analyze and demonstrate how each dimension of trust can be exhibited.
Our findings provide preliminary insights into cues that might be helpful
to automatically assess team dynamics and establish interpersonal trust in
OSS teams, leading to successful and sustainable OSS.

[Salerno2023] Larissa Salerno, Simone de França Tonhão, Igor Steinmacher,
and Christoph Treude. Barriers and self-efficacy: A large-scale study on the
impact of OSS courses on student perceptions, 2023.

126

Abstract: Open source software (OSS) development offers a unique oppor-
tunity for students in Software Engineering to experience and participate
in large-scale software development, however, the impact of such courses
on students’ self-efficacy and the challenges faced by students are not well
understood. This paper aims to address this gap by analyzing data from
multiple instances of OSS development courses at universities in different
countries and reporting on how students’ self-efficacy changed as a result of
taking the course, as well as the barriers and challenges faced by students.

[SanchezRuiz2023] José Manuel Sánchez Ruiz, Francisco José Domı́nguez
Mayo, Xavier Oriol, José Francisco Crespo, David Benavides, and Ernest
Teniente. A benchmarking proposal for devops practices on open source
software projects, 2023.
Abstract: The popularity of open-source software (OSS) projects has grown
significantly over the last few years with more organizations relying on them.
As these projects become larger, the need for higher quality also increases.
DevOps practices have been shown to improve quality and performance. The
DORA benchmarking reports provide useful information to compare DevOps
practices performance between organizations, but they focus on continuous
deployment and delivery to production, while OSS projects focus on the con-
tinuous release of code and its impact on third parties. The DORA reports
mention the increasing presence of OSS projects as they are widely used in
the industry, but they have never been used to measure OSS projects perfor-
mance levels. This study reveals that the DORA benchmark cannot be ap-
plied to OSS projects and proposes benchmarking metrics for OSS projects,
being the first one that adapts the DORA metrics and applies them in OSS
projects. The metrics proposed in this study for benchmarking OSS projects
include Release Frequency and Lead Time For Released Changes to mea-
sure throughput, and Time To Repair Code and Bug Issues Rate to assess
stability. In contrast to the DORA reports, where data is collected through
manual surveys, in our proposal, data is collected automatically by a tool we
developed that retrieves information from public GitHub repositories. This
reduces the risk of survey-based data collection. Our study also shows the
benchmark feasibility by applying it to four popular OSS projects: Angular,
Kubernetes, Tensorflow, and VS Code. In addition, we proposed challenges
that address the topics and future works to expand the knowledge and find-
ings of this study. Overall, the findings of the study can help to improve
future research on OSS projects and provide a better understanding and
challenges of the role of DevOps practices in OSS projects.

[Scalabrino2018] Simone Scalabrino, Mario Linares-Vásquez, Rocco Oliveto,
and Denys Poshyvanyk. A comprehensive model for code readability.
Journal of Software: Evolution and Process, 30(6):e1958, Jun 2018, DOI
10.1002/smr.1958.
Abstract: Unreadable code could compromise program comprehension, and
it could cause the introduction of bugs. Code consists of mostly natural lan-
guage text, both in identifiers and comments, and it is a particular form of

127

text. Nevertheless, the models proposed to estimate code readability take
into account only structural aspects and visual nuances of source code, such
as line length and alignment of characters. In this paper, we extend our
previous work in which we use textual features to improve code readability
models. We introduce 2 new textual features, and we reassess the readabil-
ity prediction power of readability models on more than 600 code snippets
manually evaluated, in terms of readability, by 5K+ people. We also repli-
cate a study by Buse and Weimer on the correlation between readability
and FindBugs warnings, evaluating different models on 20 software systems,
for a total of 3M lines of code. The results demonstrate that (1) textual
features complement other features and (2) a model containing all the fea-
tures achieves a significantly higher accuracy as compared with all the other
state-of-the-art models. Also, readability estimation resulting from a more
accurate model, ie, the combined model, is able to predict more accurately
FindBugs warnings.

[Scalabrino2021] Simone Scalabrino, Gabriele Bavota, Christopher Vendome,
Mario Linares-Vasquez, Denys Poshyvanyk, and Rocco Oliveto. Automati-
cally assessing code understandability. IEEE Transactions on Software En-
gineering, 47(3):595–613, Mar 2021, DOI 10.1109/tse.2019.2901468.
Abstract: Understanding software is an inherent requirement for many
maintenance and evolution tasks. Without a thorough understanding of
the code, developers would not be able to fix bugs or add new features
timely. Measuring code understandability might be useful to guide devel-
opers in writing better code, and could also help in estimating the effort
required to modify code components. Unfortunately, there are no metrics
designed to assess the understandability of code snippets. In this work, we
perform an extensive evaluation of 121 existing as well as new code-related,
documentation-related, and developer-related metrics. We try to (i) correlate
each metric with understandability and (ii) build models combining metrics
to assess understandability. To do this, we use 444 human evaluations from
63 developers and we obtained a bold negative result: none of the 121 ex-
perimented metrics is able to capture code understandability, not even the
ones assumed to assess quality attributes apparently related, such as code
readability and complexity. While we observed some improvements while
combining metrics in models, their effectiveness is still far from making them
suitable for practical applications. Finally, we conducted interviews with five
professional developers to understand the factors that influence their ability
to understand code snippets, aiming at identifying possible new metrics.

[Scanniello2017] Giuseppe Scanniello, Michele Risi, Porfirio Tramontana,
and Simone Romano. Fixing faults in C and Java source code. ACM Trans-
actions on Software Engineering and Methodology, 26(2):1–43, Oct 2017,
DOI 10.1145/3104029.
Abstract: We carried out a family of controlled experiments to investigate
whether the use of abbreviated identifier names, with respect to full-word
identifier names, affects fault fixing in C and Java source code. This family

128

consists of an original (or baseline) controlled experiment and three replica-
tions. We involved 100 participants with different backgrounds and experi-
ences in total. Overall results suggested that there is no difference in terms
of effort, effectiveness, and efficiency to fix faults, when source code contains
either only abbreviated or only full-word identifier names. We also conducted
a qualitative study to understand the values, beliefs, and assumptions that
inform and shape fault fixing when identifier names are either abbreviated
or full-word. We involved in this qualitative study six professional developers
with 1–3 years of work experience. A number of insights emerged from this
qualitative study and can be considered a useful complement to the quan-
titative results from our family of experiments. One of the most interesting
insights is that developers, when working on source code with abbreviated
identifier names, adopt a more methodical approach to identify and fix faults
by extending their focus point and only in a few cases do they expand ab-
breviated identifiers.

[Scarsbrook2023] Joshua D. Scarsbrook, Mark Utting, and Ryan K. L. Ko.
Typescript’s evolution: An analysis of feature adoption over time, 2023.
Abstract: TypeScript is a quickly evolving superset of JavaScript with
active development of new features. Our paper seeks to understand how
quickly these features are adopted by the developer community. Existing
work in JavaScript shows the adoption of dynamic language features can
be a major hindrance to static analysis. As TypeScript evolves the addition
of features makes the underlying standard more and more difficult to keep
up with. In our work we present an analysis of 454 open source TypeScript
repositories and study the adoption of 13 language features over the past
three years. We show that while new versions of the TypeScript compiler
are aggressively adopted by the community, the same cannot be said for
language features. While some experience strong growth others are rarely
adopted by projects. Our work serves as a starting point for future study
of the adoption of features in TypeScript. We also release our analysis and
data gathering software as open source in the hope it helps the programming
languages community.

[Schweinsberg2021] Martin Schweinsberg et al. Same data, different
conclusions: Radical dispersion in empirical results when independent
analysts operationalize and test the same hypothesis. Organizational
Behavior and Human Decision Processes, 165:228–249, Jul 2021, DOI
10.1016/j.obhdp.2021.02.003.
Abstract: In this crowdsourced initiative, independent analysts used the
same dataset to test two hypotheses regarding the effects of scientists’ gen-
der and professional status on verbosity during group meetings. Not only the
analytic approach but also the operationalizations of key variables were left
unconstrained and up to individual analysts. For instance, analysts could
choose to operationalize status as job title, institutional ranking, citation
counts, or some combination. To maximize transparency regarding the pro-
cess by which analytic choices are made, the analysts used a platform we

129

developed called DataExplained to justify both preferred and rejected ana-
lytic paths in real time. Analyses lacking sufficient detail, reproducible code,
or with statistical errors were excluded, resulting in 29 analyses in the fi-
nal sample. Researchers reported radically different analyses and dispersed
empirical outcomes, in a number of cases obtaining significant effects in op-
posite directions for the same research question. A Boba multiverse analysis
demonstrates that decisions about how to operationalize variables explain
variability in outcomes above and beyond statistical choices (e.g., covariates).
Subjective researcher decisions play a critical role in driving the reported em-
pirical results, underscoring the need for open data, systematic robustness
checks, and transparency regarding both analytic paths taken and not taken.
Implications for organizations and leaders, whose decision making relies in
part on scientific findings, consulting reports, and internal analyses by data
scientists, are discussed.

[Sedano2017] Todd Sedano, Paul Ralph, and Cecile Peraire. Software devel-
opment waste. In Proc. International Conference on Software Engineering
(ICSE). IEEE, May 2017, DOI 10.1109/icse.2017.20.
Abstract: Context: Since software development is a complex socio-
technical activity that involves coordinating different disciplines and skill
sets, it provides ample opportunities for waste to emerge. Waste is any
activity that produces no value for the customer or user. Objective: The
purpose of this paper is to identify and describe different types of waste in
software development. Method: Following Constructivist Grounded Theory,
we conducted a two-year five-month participant-observation study of eight
software development projects at Pivotal, a software development consul-
tancy. We also interviewed 33 software engineers, interaction designers, and
product managers, and analyzed one year of retrospection topics. We iter-
ated between analysis and theoretical sampling until achieving theoretical
saturation. Results: This paper introduces the first empirical waste taxon-
omy. It identifies nine wastes and explores their causes, underlying tensions,
and overall relationship to the waste taxonomy found in Lean Software De-
velopment. Limitations: Grounded Theory does not support statistical gen-
eralization. While the proposed taxonomy appears widely applicable, orga-
nizations with different software development cultures may experience differ-
ent waste types. Conclusion: Software development projects manifest nine
types of waste: building the wrong feature or product, mismanaging the
backlog, rework, unnecessarily complex solutions, extraneous cognitive load,
psychological distress, waiting/multitasking, knowledge loss, and ineffective
communication.

[Sellitto2022] Giulia Sellitto, Emanuele Iannone, Zadia Codabux, Valentina
Lenarduzzi, Andrea De Lucia, Fabio Palomba, and Filomena Ferrucci.
Toward understanding the impact of refactoring on program compre-
hension. In 2022 IEEE International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER). IEEE, Mar 2022, DOI
10.1109/saner53432.2022.00090.

130

Abstract: Software refactoring is the activity associated with developers
changing the internal structure of source code without modifying its exter-
nal behavior. The literature argues that refactoring might have beneficial
and harmful implications for software maintainability, primarily when per-
formed without the support of automated tools. This paper continues the
narrative on the effects of refactoring by exploring the dimension of program
comprehension, namely the property that describes how easy it is for devel-
opers to understand source code. We start our investigation by assessing the
basic unit of program comprehension, namely program readability. Next, we
set up a large-scale empirical investigation—conducted on 156 open-source
projects—to quantify the impact of refactoring on program readability. First,
we mine refactoring data and, for each commit involving a refactoring, we
compute (i) the amount and type(s) of refactoring actions performed and (ii)
eight state-of-the-art program comprehension metrics. Afterwards, we build
statistical models relating the various refactoring operations to each of the
readability metrics considered to quantify the extent to which each refac-
toring impacts the metrics in either a positive or negative manner. The key
results are that refactoring has a notable impact on most of the readability
metrics considered.

[Shao2020] Shudi Shao, Zhengyi Qiu, Xiao Yu, Wei Yang, Guoliang Jin,
Tao Xie, and Xintao Wu. Database-access performance antipatterns in
database-backed web applications. In Proc. International Conference on
Software Maintenance and Evolution (ICSME). IEEE, Sep 2020, DOI
10.1109/icsme46990.2020.00016.
Abstract: Database-backed web applications are prone to performance
bugs related to database accesses. While much work has been conducted
on database-access antipatterns with some recent work focusing on perfor-
mance impact, there still lacks a comprehensive view of database-access per-
formance antipatterns in database-backed web applications. To date, no ex-
isting work systematically reports known antipatterns in the literature, and
no existing work has studied database-access performance bugs in major
types of web applications that access databases differently.To address this
issue, we first summarize all known database-access performance antipat-
terns found through our literature survey, and we report all of them in this
paper. We further collect database-access performance bugs from web ap-
plications that access databases through language-provided SQL interfaces,
which have been largely ignored by recent work, to check how extensively
the known antipatterns can cover these bugs. For bugs not covered by the
known antipatterns, we extract new database-access performance antipat-
terns based on real-world performance bugs from such web applications.
Our study in total reports 24 known and 10 new database-access perfor-
mance antipatterns. Our results can guide future work to develop effective
tool support for different types of web applications.

[Sharma2021] Pankajeshwara Nand Sharma, Bastin Tony Roy Savarimuthu,
and Nigel Stanger. Extracting rationale for open source software devel-

131

opment decisions—a study of python email archives. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, May 2021, DOI
10.1109/icse43902.2021.00095.
Abstract: A sound Decision-Making (DM) process is key to the successful
governance of software projects. In many Open Source Software Develop-
ment (OSSD) communities, DM processes lie buried amongst vast amounts
of publicly available data. Hidden within this data lie the rationale for deci-
sions that led to the evolution and maintenance of software products. While
there have been some efforts to extract DM processes from publicly available
data, the rationale behind ’how’ the decisions are made have seldom been
explored. Extracting the rationale for these decisions can facilitate trans-
parency (by making them known), and also promote accountability on the
part of decision-makers. This work bridges this gap by means of a large-
scale study that unearths the rationale behind decisions from Python de-
velopment email archives comprising about 1.5 million emails. This paper
makes two main contributions. First, it makes a knowledge contribution by
unearthing and presenting the rationale behind decisions made. Second, it
makes a methodological contribution by presenting a heuristics-based ratio-
nale extraction system called Rationale Miner that employs multiple heuris-
tics, and follows a data-driven, bottom-up approach to infer the rationale
behind specific decisions (e.g., whether a new module is implemented based
on core developer consensus or benevolent dictator’s pronouncement). Our
approach can be applied to extract rationale in other OSSD communities
that have similar governance structures.

[Sharp2016] Helen Sharp, Yvonne Dittrich, and Cleidson R. B. de Souza.
The role of ethnographic studies in empirical software engineering. IEEE
Transactions on Software Engineering, 42(8):786–804, Aug 2016, DOI
10.1109/tse.2016.2519887.
Abstract: Ethnography is a qualitative research method used to study
people and cultures. It is largely adopted in disciplines outside software en-
gineering, including different areas of computer science. Ethnography can
provide an in-depth understanding of the socio-technological realities sur-
rounding everyday software development practice, i.e., it can help to un-
cover not only what practitioners do, but also why they do it. Despite its
potential, ethnography has not been widely adopted by empirical software
engineering researchers, and receives little attention in the related literature.
The main goal of this paper is to explain how empirical software engineering
researchers would benefit from adopting ethnography. This is achieved by
explicating four roles that ethnography can play in furthering the goals of
empirical software engineering: to strengthen investigations into the social
and human aspects of software engineering; to inform the design of soft-
ware engineering tools; to improve method and process development; and to
inform research programmes. This article introduces ethnography, explains
its origin, context, strengths and weaknesses, and presents a set of dimen-
sions that position ethnography as a useful and usable approach to empirical

132

software engineering research. Throughout the paper, relevant examples of
ethnographic studies of software practice are used to illustrate the points
being made.

[Sholler2019] Dan Sholler, Igor Steinmacher, Denae Ford, Mara Averick, Mike
Hoye, and Greg Wilson. Ten simple rules for helping newcomers become con-
tributors to open projects. PLOS Computational Biology, 15(9):e1007296,
Sep 2019, DOI 10.1371/journal.pcbi.1007296.
Abstract: To survive and thrive, a community must attract new members,
retain them, and help them be productive. As openness becomes the norm in
research, software development, and education, knowing how to do this has
become a essential skill for principal investigators and community managers
alike. A growing body of knowledge in sociology, anthropology, education,
and software engineering can guide decisions about how to facilitate this.

[Sliwerski2005] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller.
When do changes induce fixes? In Proc. International Confer-
ence on Mining Software Repositories (MSR). ACM Press, 2005, DOI
10.1145/1083142.1083147.
Abstract: As a software system evolves, programmers make changes
that sometimes cause problems. We analyze CVS archives for fix-inducing
changes—changes that lead to problems, indicated by fixes. We show how to
automatically locate fix-inducing changes by linking a version archive (such
as CVS) to a bug database (such as Bugzilla). In a first investigation of
the Mozilla and Eclipse history, it turns out that fix-inducing changes show
distinct patterns with respect to their size and the day of week they were
applied.

[Soremekun2021] Ezekiel Soremekun, Lukas Kirschner, Marcel Böhme,
and Andreas Zeller. Locating faults with program slicing: an empir-
ical analysis. Empirical Software Engineering, 26(3), Apr 2021, DOI
10.1007/s10664-020-09931-7.
Abstract: Statistical fault localization is an easily deployed technique for
quickly determining candidates for faulty code locations. If a human pro-
grammer has to search the fault beyond the top candidate locations, though,
more traditional techniques of following dependencies along dynamic slices
may be better suited. In a large study of 457 bugs (369 single faults and
88 multiple faults) in 46 open source C programs, we compare the effec-
tiveness of statistical fault localization against dynamic slicing. For single
faults, we find that dynamic slicing was eight percentage points more effec-
tive than the best performing statistical debugging formula; for 66% of the
bugs, dynamic slicing finds the fault earlier than the best performing statis-
tical debugging formula. In our evaluation, dynamic slicing is more effective
for programs with single fault, but statistical debugging performs better on
multiple faults. Best results, however, are obtained by a hybrid approach :
If programmers first examine at most the top five most suspicious locations
from statistical debugging, and then switch to dynamic slices, on average,

133

they will need to examine 15% (30 lines) of the code. These findings hold
for 18 most effective statistical debugging formulas and our results are in-
dependent of the number of faults (i.e. single or multiple faults) and error
type (i.e. artificial or real errors).

[Spinellis2016] Diomidis Spinellis, Panos Louridas, and Maria Kechagia.
The evolution of c programming practices. In Proc. International
Conference on Software Engineering (ICSE). ACM, May 2016, DOI
10.1145/2884781.2884799.
Abstract: Tracking long-term progress in engineering and applied science
allows us to take stock of things we have achieved, appreciate the factors
that led to them, and set realistic goals for where we want to go. We for-
mulate seven hypotheses associated with the long term evolution of C pro-
gramming in the Unix operating system, and examine them by extracting,
aggregating, and synthesising metrics from 66 snapshots obtained from a
synthetic software configuration management repository covering a period
of four decades. We found that over the years developers of the Unix op-
erating system appear to have evolved their coding style in tandem with
advancements in hardware technology, promoted modularity to tame rising
complexity, adopted valuable new language features, allowed compilers to al-
locate registers on their behalf, and reached broad agreement regarding code
formatting. The progress we have observed appears to be slowing or even
reversing prompting the need for new sources of innovation to be discovered
and followed.

[Spinellis2021] Diomidis Spinellis and Paris Avgeriou. Evolution of the
unix system architecture: An exploratory case study. IEEE Trans-
actions on Software Engineering, 47(6):1134–1163, Jun 2021, DOI
10.1109/tse.2019.2892149.
Abstract: Unix has evolved for almost five decades, shaping modern operat-
ing systems, key software technologies, and development practices. Studying
the evolution of this remarkable system from an architectural perspective can
provide insights on how to manage the growth of large, complex, and long-
lived software systems. Along main Unix releases leading to the FreeBSD
lineage we examine core architectural design decisions, the number of fea-
tures, and code complexity, based on the analysis of source code, reference
documentation, and related publications. We report that the growth in size
has been uniform, with some notable outliers, while cyclomatic complexity
has been religiously safeguarded. A large number of Unix-defining design
decisions were implemented right from the very early beginning, with most
of them still playing a major role. Unix continues to evolve from an ar-
chitectural perspective, but the rate of architectural innovation has slowed
down over the system’s lifetime. Architectural technical debt has accrued in
the forms of functionality duplication and unused facilities, but in terms of
cyclomatic complexity it is systematically being paid back through what ap-
pears to be a self-correcting process. Some unsung architectural forces that
shaped Unix are the emphasis on conventions over rigid enforcement, the

134

drive for portability, a sophisticated ecosystem of other operating systems
and development organizations, and the emergence of a federated architec-
ture, often through the adoption of third-party subsystems. These findings
have led us to form an initial theory on the architecture evolution of large,
complex operating system software.

[Staples2013] Mark Staples, Rafal Kolanski, Gerwin Klein, Corey Lewis,
June Andronick, Toby Murray, Ross Jeffery, and Len Bass. Formal spec-
ifications better than function points for code sizing. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, May 2013, DOI
10.1109/icse.2013.6606692.
Abstract: Size and effort estimation is a significant challenge for the man-
agement of large-scale formal verification projects. We report on an initial
study of relationships between the sizes of artefacts from the development of
seL4, a formally-verified embedded systems microkernel. For each API func-
tion we first determined its COSMIC Function Point (CFP) count (based
on the seL4 user manual), then sliced the formal specifications and source
code, and performed a normalised line count on these artefact slices. We
found strong and significant relationships between the sizes of the artefact
slices, but no significant relationships between them and the CFP counts.
Our finding that CFP is poorly correlated with lines of code is based on
just one system, but is largely consistent with prior literature. We find CFP
is also poorly correlated with the size of formal specifications. Nonetheless,
lines of formal specification correlate with lines of source code, and this may
provide a basis for size prediction in future formal verification projects. In
future work we will investigate proof sizing.

[Stefik2011] Andreas Stefik, Susanna Siebert, Melissa Stefik, and Kim Slat-
tery. An empirical comparison of the accuracy rates of novices using the
Quorum, Perl, and Randomo programming languages. In Proc. Work-
shop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU). ACM Press, 2011, DOI 10.1145/2089155.2089159.
Abstract: We present here an empirical study comparing the accuracy rates
of novices writing software in three programming languages: Quorum, Perl,
and Randomo. The first language, Quorum, we call an evidence-based pro-
gramming language, where the syntax, semantics, and API designs change
in correspondence to the latest academic research and literature on program-
ming language usability. Second, while Perl is well known, we call Randomo
a Placebo-language, where some of the syntax was chosen with a random
number generator and the ASCII table. We compared novices that were
programming for the first time using each of these languages, testing how
accurately they could write simple programs using common program con-
structs (e.g., loops, conditionals, functions, variables, parameters). Results
showed that while Quorum users were afforded significantly greater accuracy
compared to those using Perl and Randomo, Perl users were unable to write
programs more accurately than those using a language designed by chance.

135

[Stefik2013] Andreas Stefik and Susanna Siebert. An empirical investigation
into programming language syntax. ACM Transactions on Computing Edu-
cation, 13(4):1–40, Nov 2013, DOI 10.1145/2534973.
Abstract: Recent studies in the literature have shown that syntax remains
a significant barrier to novice computer science students in the field. While
this syntax barrier is known to exist, whether and how it varies across pro-
gramming languages has not been carefully investigated. For this article, we
conducted four empirical studies on programming language syntax as part
of a larger analysis into the, so called, programming language wars. We first
present two surveys conducted with students on the intuitiveness of syn-
tax, which we used to garner formative clues on what words and symbols
might be easy for novices to understand. We followed up with two studies
on the accuracy rates of novices using a total of six programming languages:
Ruby, Java, Perl, Python, Randomo, and Quorum. Randomo was designed
by randomly choosing some keywords from the ASCII table (a metaphorical
placebo). To our surprise, we found that languages using a more traditional
C-style syntax (both Perl and Java) did not afford accuracy rates signifi-
cantly higher than a language with randomly generated keywords, but that
languages which deviate (Quorum, Python, and Ruby) did. These results,
including the specifics of syntax that are particularly problematic for novices,
may help teachers of introductory programming courses in choosing appro-
priate first languages and in helping students to overcome the challenges
they face with syntax.

[Stolee2011] Kathryn T. Stolee and Sebastian Elbaum. Refactoring
pipe-like mashups for end-user programmers. In Proc. International
Conference on Software Engineering (ICSE). ACM, May 2011, DOI
10.1145/1985793.1985805.
Abstract: Mashups are becoming increasingly popular as end users are able
to easily access, manipulate, and compose data from many web sources. We
have observed, however, that mashups tend to suffer from deficiencies that
propagate as mashups are reused. To address these deficiencies, we would
like to bring some of the benefits of software engineering techniques to the
end users creating these programs. In this work, we focus on identifying code
smells indicative of the deficiencies we observed in web mashups programmed
in the popular Yahoo! Pipes environment. Through an empirical study, we
explore the impact of those smells on end-user programmers and observe that
users generally prefer mashups without smells. We then introduce refactor-
ings targeting those smells, reducing the complexity of the mashup programs,
increasing their abstraction, updating broken data sources and dated compo-
nents, and standardizing their structures to fit the community development
patterns. Our assessment of a large sample of mashups shows that smells are
present in 81% of them and that the proposed refactorings can reduce the
number of smelly mashups to 16%, illustrating the potential of refactoring
to support the thousands of end users programming mashups.

[Stylos2007] Jeffrey Stylos and Steven Clarke. Usability implications of

136

requiring parameters in objects’ constructors. In Proc. International
Conference on Software Engineering (ICSE). IEEE, May 2007, DOI
10.1109/icse.2007.92.
Abstract: The usability of APIs is increasingly important to programmer
productivity. Based on experience with usability studies of specific APIs,
techniques were explored for studying the usability of design choices common
to many APIs. A comparative study was performed to assess how professional
programmers use APIs with required parameters in objects’ constructors as
opposed to parameterless “default” constructors. It was hypothesized that
required parameters would create more usable and self-documenting APIs
by guiding programmers toward the correct use of objects and preventing er-
rors. However, in the study, it was found that, contrary to expectations, pro-
grammers strongly preferred and were more effective with APIs that did not
require constructor parameters. Participants’ behavior was analyzed using
the cognitive dimensions framework, and revealing that required constructor
parameters interfere with common learning strategies, causing undesirable
premature commitment.

[Sven2019] Amann Sven, Hoan Anh Nguyen, Sarah Nadi, Tien N. Nguyen,
and Mira Mezini. Investigating next steps in static API-misuse detection.
In Proc. International Conference on Mining Software Repositories (MSR).
IEEE, May 2019, DOI 10.1109/msr.2019.00053.
Abstract: Application Programming Interfaces (APIs) often impose con-
straints such as call order or preconditions. API misuses, i.e., usages violating
these constraints, may cause software crashes, data-loss, and vulnerabilities.
Researchers developed several approaches to detect API misuses, typically
still resulting in low recall and precision. In this work, we investigate ways
to improve API-misuse detection. We design MUDetect, an API-misuse de-
tector that builds on the strengths of existing detectors and tries to mitigate
their weaknesses. MUDetect uses a new graph representation of API usages
that captures different types of API misuses and a systematically designed
ranking strategy that effectively improves precision. Evaluation shows that
MUDetect identifies real-world API misuses with twice the recall of previ-
ous detectors and 2.5x higher precision. It even achieves almost 4x higher
precision and recall, when mining patterns across projects, rather than from
only the target project.

[Swillus2023] Mark Swillus and Andy Zaidman. Deconstructing sentimental
Stack Overflow posts through interviews: Exploring the case of software
testing. CHASE 2023 Registered Reports, 2023.
Abstract: The analysis of sentimental posts about software testing on Stack
Overflow reveals that motivation and commitment of developers to use soft-
ware testing methods is not only influenced by tools and technology. Rather,
attitudes are also influenced by socio-technical factors. No prior studies have
attempted to talk with Stack Overflow users about the sentimental posts
that they write, yet, this is crucial to understand their experiences of which

137

their post is only one fragment. As such, this study explores the precur-
sors that make developers write sentimental posts about software testing
on Stack Overflow. Through semi-structured interviews, we reconstruct the
individual experiences of Stack Overflow users leading to sentimental posts
about testing. We use the post as an anchor point to explore the events that
lead to it and how users moved on in the meantime. Using strategies from
socio-technical grounded theory (STGT), we derive hypotheses about the
socio-technical factors that cause sentiment towards software testing.

[Taipalus2018] Toni Taipalus, Mikko Siponen, and Tero Vartiainen. Errors
and complications in SQL query formulation. ACM Transactions on Com-
puting Education, 18(3):1–29, Sep 2018, DOI 10.1145/3231712.
Abstract: SQL is taught in almost all university level database courses, yet
SQL has received relatively little attention in educational research. In this
study, we present a database management system independent categoriza-
tion of SQL query errors that students make in an introductory database
course. We base the categorization on previous literature, present a class of
logical errors that has not been studied in detail, and review and complement
these findings by analyzing over 33,000 SQL queries submitted by students.
Our analysis verifies error findings presented in previous literature and re-
veals new types of errors, namely logical errors recurring in similar manners
among different students. We present a listing of fundamental SQL query
concepts we have identified and based our exercises on, a categorization of
different errors and complications, and an operational model for designing
SQL exercises.

[Taipalus2021] Toni Taipalus, Hilkka Grahn, and Hadi Ghanbari. Error mes-
sages in relational database management systems: A comparison of effec-
tiveness, usefulness, and user confidence. Journal of Systems and Software,
181:111034, Nov 2021, DOI 10.1016/j.jss.2021.111034.
Abstract: The database and the database management system (DBMS) are
two of the main components of any information system. Structured Query
Language (SQL) is the most popular query language for retrieving data from
the database, as well as for many other data management tasks. During sys-
tem development and maintenance, software developers use a considerable
amount of time to interpret compiler error messages. The quality of these
error messages has been demonstrated to affect software development effec-
tiveness, and correctly formulating queries and fixing them when needed is
an important task for many software developers. In this study, we set out
to investigate how participants (N = 152) experienced the qualities of error
messages of four popular DBMSs in terms of error message effectiveness,
perceived usefulness for finding and fixing errors, and error recovery con-
fidence. Our results show differences between the DBMSs by three of the
four metrics, and indicate a discrepancy between objective effectiveness and
subjective usefulness. The results suggest that although error messages have
perceived differences in terms of usefulness for finding and fixing errors, these

138

differences may not necessarily result in differences in query fixing success
rates.

[Tamburri2020] Damian Andrew Tamburri, Kelly Blincoe, Fabio Palomba,
and Rick Kazman. ”the canary in the coal mine. . . ” a cautionary tale
from the decline of SourceForge. Software: Practice and Experience,
50(10):1930–1951, Jul 2020, DOI 10.1002/spe.2874.
Abstract: Forges are online collaborative platforms to support the de-
velopment of distributed open source software. While once mighty keep-
ers of open source vitality, software forges are rapidly becoming less and
less relevant. For example, of the top 10 forges in 2011, only one survives
today—SourceForge—the biggest of them all, but its numbers are drop-
ping and its community is tenuous at best. Through mixed-methods re-
search, this article chronicles and analyze the software practice and expe-
riences of the project’s history—in particular its architectural and commu-
nity/organizational decisions. We discovered a number of suboptimal social
and architectural decisions and circumstances that, may have led to Source-
Forge’s demise. In addition, we found evidence suggesting that the impact
of such decisions could have been monitored, reduced, and possibly avoided
altogether. The use of sociotechnical insights needs to become a basic set of
design and software/organization monitoring principles that tell a caution-
ary tale on what to measure and what not to do in the context of large-scale
software forge and community design and management.

[Tan2023] Xin Tan, Yiran Chen, Haohua Wu, Minghui Zhou, and Li Zhang.
Is it enough to recommend tasks to newcomers? Understanding mentoring
on good first issues. ICSE 2023, 2023.
Abstract: Newcomers are critical for the success and continuity of open
source software (OSS) projects. To attract newcomers and facilitate their
onboarding, many OSS projects recommend tasks for newcomers, such as
good first issues (GFIs). Previous studies have preliminarily investigated
the effects of GFIs and techniques to identify suitable GFIs. However, it is
still unclear whether just recommending tasks is enough and how significant
mentoring is for newcomers. To better understand mentoring in OSS commu-
nities, we analyze the resolution process of 48,402 GFIs from 964 repositories
through a mix-method approach. We investigate the extent, the mentorship
structures, the discussed topics, and the relevance of expert involvement. We
find that 7̃0% of GFIs have expert participation, with each GFI usually hav-
ing one expert who makes two comments. Half of GFIs will receive their first
expert comment within 8.5 hours after a newcomer comment. Through analy-
sis of the collaboration networks of newcomers and experts, we observe that
community mentorship presents four types of structure: centralized men-
toring, decentralized mentoring, collaborative mentoring, and distributed
mentoring. As for discussed topics, we identify 14 newcomer challenges and
18 expert mentoring content. By fitting the generalized linear models, we
find that expert involvement positively correlates with newcomers’ success-
ful contributions but negatively correlates with newcomers’ retention. Our

139

study manifests the status and significance of mentoring in the OSS projects,
which provides rich practical implications for optimizing the mentoring pro-
cess and helping newcomers contribute smoothly and successfully.

[Tang2021] Henry Tang and Sarah Nadi. On using stack overflow comment-
edit pairs to recommend code maintenance changes. Empirical Software
Engineering, 26(4), May 2021, DOI 10.1007/s10664-021-09954-8.
Abstract: Code maintenance data sets typically consist of a before version
of the code and an after version that contains the improvement or fix. Such
data sets are important for various software engineering support tools related
to code maintenance, such as program repair, code recommender systems,
or Application Programming Interface (API) misuse detection. Most of the
current data sets are typically constructed from mining commit history in
versioncontrol systems or issues in issue-tracking systems. In this paper, we
investigate whether Stack Overflow can be used as an additional source for
building code maintenance data sets. Comments on Stack Overflow provide
an effective way for developers to point out problems with existing answers,
alternative solutions, or pitfalls. Given its crowd-sourced nature, answers are
then updated to incorporate these suggestions. In this paper, we mine com-
mentedit pairs from Stack Overflow and investigate their potential useful-
ness for constructing the above data sets. These comment-edit pairs have the
added benefit of having concrete descriptions/explanations of why the change
is needed as well as potentially having less tangled changes to deal with. We
first design a technique to extract related comment-edit pairs and then qual-
itatively and quantitatively investigate the nature of these pairs. We find
that the majority of comment-edit pairs are not tangled, but find that only
27% of the studied pairs are potentially useful for the above applications. We
categorize the types of mined pairs and find that the highest ratio of useful
pairs come from those categorized as Correction, Obsolete, Flaw, and Exten-
sion. These categories can provide data for both corrective and preventative
maintenance activities. To demonstrate the effectiveness of our extracted
pairs, we submitted 15 pull requests to popular GitHub repositories, 10 of
which have been accepted to widely used repositories such as Apache Beam
(https://beam.apache.org/) and NLTK (https://www.nltk.org/). Our work
is the first to investigate Stack Overflow commentedit pairs and opens the
door for future work in this direction. Based on our findings and observa-
tions, we provide concrete suggestions on how to potentially identify a larger
set of useful comment-edit pairs, which can also be facilitated by our shared
data.

[Tao2021] Yida Tao, Zhihui Chen, Yepang Liu, Jifeng Xuan, Zhiwu Xu, and
Shengchao Qin. Demystifying ”bad” error messages in data science libraries.
In Proc. European Software Engineering Conference/International Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE). ACM, Aug
2021, DOI 10.1145/3468264.3468560.
Abstract: Error messages are critical starting points for debugging. Unfor-
tunately, they seem to be notoriously cryptic, confusing, and uninformative.

140

Yet, it still remains a mystery why error messages receive such bad rep-
utations, especially given that they are merely very short pieces of natural
language text. In this paper, we empirically demystify the causes and fixes of
“bad” error messages, by qualitatively studying 201 Stack Overflow threads
and 335 GitHub issues. We specifically focus on error messages encountered
in data science development, which is an increasingly important but not well
studied domain. We found that the causes of “bad” error messages are far
more complicated than poor phrasing or flawed articulation of error mes-
sage content. Many error messages are inherently and inevitably misleading
or uninformative, since libraries do not know user intentions and cannot
“see” external errors. Fixes to error-message-related issues mostly involve
source code changes, while exclusive message content updates only take up
a small portion. In addition, whether an error message is informative or help-
ful is not always clear-cut; even error messages that clearly pinpoint faults
and resolutions can still cause confusion for certain users. These findings
thus call for a more in-depth investigation on how error messages should be
evaluated and improved in the future.

[Tew2011] Allison Elliott Tew and Mark Guzdial. The FCS1: a language
independent assessment of CS1 knowledge. In Proc. Technical Sympo-
sium on Computer Science Education (SIGCSE). ACM Press, 2011, DOI
10.1145/1953163.1953200.
Abstract: A primary goal of many CS education projects is to determine
the extent to which a given intervention has had an impact on student
learning. However, computing lacks valid assessments for pedagogical or re-
search purposes. Without such valid assessments, it is difficult to accurately
measure student learning or establish a relationship between the instruc-
tional setting and learning outcomes. We developed the Foundational CS1
(FCS1) Assessment instrument, the first assessment instrument for introduc-
tory computer science concepts that is applicable across a variety of current
pedagogies and programming languages. We applied methods from educa-
tional and psychological test development, adapting them as necessary to
fit the disciplinary context. We conducted a large scale empirical study to
demonstrate that pseudo-code was an appropriate mechanism for achieving
programming language independence. Finally, we established the validity of
the assessment using a multi-faceted argument, combining interview data,
statistical analysis of results on the assessment, and CS1 exam scores.

[Thongtanunam2016] Patanamon Thongtanunam, Shane McIntosh,
Ahmed E. Hassan, and Hajimu Iida. Revisiting code ownership and its
relationship with software quality in the scope of modern code review. In
Proc. International Conference on Software Engineering (ICSE). ACM,
May 2016, DOI 10.1145/2884781.2884852.
Abstract: Code ownership establishes a chain of responsibility for modules
in large software systems. Although prior work uncovers a link between
code ownership heuristics and software quality, these heuristics rely solely
on the authorship of code changes. In addition to authoring code changes,

141

developers also make important contributions to a module by reviewing
code changes. Indeed, recent work shows that reviewers are highly active
in modern code review processes, often suggesting alternative solutions
or providing updates to the code changes. In this paper, we complement
traditional code ownership heuristics using code review activity. Through
a case study of six releases of the large Qt and OpenStack systems, we
find that: (1) 67%-86% of developers did not author any code changes
for a module, but still actively contributed by reviewing 21%-39% of the
code changes, (2) code ownership heuristics that are aware of reviewing
activity share a relationship with software quality, and (3) the proportion of
reviewers without expertise shares a strong, increasing relationship with the
likelihood of having post-release defects. Our results suggest that reviewing
activity captures an important aspect of code ownership, and should be
included in approximations of it in future studies.

[Tigina2023] Maria Tigina, Anastasiia Birillo, Yaroslav Golubev, Hieke Ke-
uning, Nikolay Vyahhi, and Timofey Bryksin. Analyzing the quality of sub-
missions in online programming courses, 2023.
Abstract: Programming education should aim to provide students with
a broad range of skills that they will later use while developing software.
An important aspect in this is their ability to write code that is not only
correct but also of high quality. Unfortunately, this is difficult to control
in the setting of a massive open online course. In this paper, we carry out
an analysis of the code quality of submissions from JetBrains Academy —
a platform for studying programming in an industry-like project-based set-
ting with an embedded code quality assessment tool called Hyperstyle. We
analyzed more than a million Java submissions and more than 1.3 million
Python submissions, studied the most prevalent types of code quality issues
and the dynamics of how students fix them. We provide several case studies
of different issues, as well as an analysis of why certain issues remain unfixed
even after several attempts. Also, we studied abnormally long sequences of
submissions, in which students attempted to fix code quality issues after
passing the task. Our results point the way towards the improvement of on-
line courses, such as making sure that the task itself does not incentivize
students to write code poorly.

[Tomasdottir2020] Krist́ın Fjóla Tómasdóttir, Mauŕıcio Aniche, and Arie van
Deursen. The adoption of JavaScript linters in practice: A case study on
ESLint. IEEE Transactions on Software Engineering, 46(8):863–891, Aug
2020, DOI 10.1109/tse.2018.2871058.
Abstract: A linter is a static analysis tool that warns software developers
about possible code errors or violations to coding standards. By using such
a tool, errors can be surfaced early in the development process when they
are cheaper to fix. For a linter to be successful, it is important to understand
the needs and challenges of developers when using a linter. In this paper, we
examine developers’ perceptions on JavaScript linters. We study why and
how developers use linters along with the challenges they face while using

142

such tools. For this purpose we perform a case study on ESLint, the most
popular JavaScript linter. We collect data with three different methods where
we interviewed 15 developers from well-known open source projects, analyzed
over 9,500 ESLint configuration files, and surveyed 337 developers from the
JavaScript community. Our results provide practitioners with reasons for
using linters in their JavaScript projects as well as several configuration
strategies and their advantages. We also provide a list of linter rules that are
often enabled and disabled, which can be interpreted as the most important
rules to reason about when configuring linters. Finally, we propose several
feature suggestions for tool makers and future work for researchers.

[Tomassi2019] David Tomassi, Naji Dmeiri, Yichen Wang, Antara Bhowmick,
Yen-Chuan Liu, Premkumar Devanbu, Bogdan Vasilescu, and Cindy Rubio-
Gonzalez. BugSwarm: Mining and continuously growing a dataset of re-
producible failures and fixes. In Proc. International Conference on Software
Engineering (ICSE). IEEE, May 2019, DOI 10.1109/icse.2019.00048.
Abstract: Fault-detection, localization, and repair methods are vital to
software quality; but it is difficult to evaluate their generality, applicabil-
ity, and current effectiveness. Large, diverse, realistic datasets of durably-
reproducible faults and fixes are vital to good experimental evaluation of
approaches to software quality, but they are difficult and expensive to assem-
ble and keep current. Modern continuous-integration (CI) approaches, like
TRAVIS-CI, which are widely used, fully configurable, and executed within
custom-built containers, promise a path toward much larger defect datasets.
If we can identify and archive failing and subsequent passing runs, the con-
tainers will provide a substantial assurance of durable future reproducibility
of build and test. Several obstacles, however, must be overcome to make
this a practical reality. We describe BUGSWARM, a toolset that navigates
these obstacles to enable the creation of a scalable, diverse, realistic, con-
tinuously growing set of durably reproducible failing and passing versions
of real-world, open-source systems. The BUGSWARM toolkit has already
gathered 3,091 fail-pass pairs, in Java and Python, all packaged within fully
reproducible containers. Furthermore, the toolkit can be run periodically to
detect fail-pass activities, thus growing the dataset continually.

[Torres2023] Adriano Torres, Sebastian Baltes, Christoph Treude, and
Markus Wagner. Applying information theory to software evolution, 2023.
Abstract: Although information theory has found success in disciplines,
the literature on its applications to software evolution is limit. We are still
missing artifacts that leverage the data and tooling available to measure
how the information content of a project can be a proxy for its complex-
ity. In this work, we explore two definitions of entropy, one structural and
one textual, and apply it to the historical progression of the commit his-
tory of 25 open source projects. We produce evidence that they generally
are highly correlated. We also observed that they display weak and unstable
correlations with other complexity metrics. Our preliminary investigation of

143

outliers shows an unexpected high frequency of events where there is con-
siderable change in the information content of the project, suggesting that
such outliers may inform a definition of surprisal.

[Tourani2017] Parastou Tourani, Bram Adams, and Alexander Serebrenik.
Code of conduct in open source projects. In Proc. International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, Feb
2017, DOI 10.1109/saner.2017.7884606.
Abstract: Open source projects rely on collaboration of members from
all around the world using web technologies like GitHub and Gerrit. This
mixture of people with a wide range of backgrounds including minorities like
women, ethnic minorities, and people with disabilities may increase the risk
of offensive and destroying behaviours in the community, potentially leading
affected project members to leave towards a more welcoming and friendly
environment. To counter these effects, open source projects increasingly are
turning to codes of conduct, in an attempt to promote their expectations
and standards of ethical behaviour. In this first of its kind empirical study of
codes of conduct in open source software projects, we investigated the role,
scope and influence of codes of conduct through a mixture of quantitative and
qualitative analysis, supported by interviews with practitioners. We found
that the top codes of conduct are adopted by hundreds to thousands of
projects, while all of them share 5 common dimensions.

[Trang2021] Simon Trang and Welf H. Weiger. The perils of gamification:
Does engaging with gamified services increase users’ willingness to disclose
personal information? Computers in Human Behavior, 116:106644, Mar
2021, DOI 10.1016/j.chb.2020.106644.
Abstract: The increasing use of gamification in the digital service landscape
has caught the attention of practitioners and marketers alike. Alarmingly,
most of the empirical research has attested to the benefits of such gami-
fied service (e.g. apps) use while neglecting to address potential drawbacks.
This research suggests that users of gamified apps end up being more likely
to share private information with firms, thus threatening their own per-
sonal information privacy. Against this background, the present study links
gamification to information disclosure and demonstrates that if a gamified
service conveys experiences of, for instance, social comparison, it can indeed
lead to greater willingness to disclose personal information. This relationship
can be explained by the users’ increased resource depletion through cogni-
tive absorption (i.e. the concentration of one’s entire affective, cognitive,
and physical resources on the task at hand). The results further indicate
that engaging with gamified apps indeed affects the situational processing
of privacy-related decisions (i.e. calculating benefits vs. risks) and the role
of dispositional antecedents: In states of deep cognitive absorption, users
disclose even more information when they perceive privacy benefits (i.e.,
situational) and even less when they have high privacy concerns (i.e., dispo-
sitional).

144

[Tregubov2017] Alexey Tregubov, Barry Boehm, Natalia Rodchenko, and
Jo Ann Lane. Impact of task switching and work interruptions on software
development processes. In Proc. International Conference on Software and
System Process (ICSSP). ACM, Jul 2017, DOI 10.1145/3084100.3084116.
Abstract: Software developers often work on multiple projects and tasks
throughout a work day, which may affect their productivity and quality of
work. Knowing how working on several projects at a time affects productiv-
ity can improve cost and schedule estimations. It also can provide additional
insights for better work scheduling and the development process. We want
to achieve a better productivity without losing the benefits of work interrup-
tions and multitasking for developers involved in the process. To understand
how the development process can be improved, first, we identify work in-
terruptions that mostly have a negative effect on productivity, second, we
need to quantitatively evaluate impact of multitasking (task switching, work
context switching) and work interruptions on productivity. In this research
we study cross-project multitasking among the developers working on mul-
tiple projects in an educational setting. We propose a way to evaluate the
number of cross-project interruptions among software developers using self-
reported work logs. This paper describes the research that found: a) software
developers involved in two or more projects on average spend 17% of their
development effort on cross-project interruptions, b) the amount of effort
spent on interruptions is overestimated by the G. Weinberg’s heuristic, c)
the correlation between the number of projects and effort spent by develop-
ers on cross-project interruptions is relatively weak, and d) there is strong
correlation between the number of projects and the number of interruptions
developers reported.

[Tshukudu2023] Ethel Tshukudu, Sue Sentance, Oluwatoyin Adelakun-
Adeyemo, Brenda Nyaringita, Keith Quille, and Ziling Zhong. Investigating
K-12 computing education in four African countries (Botswana, Kenya, Nige-
ria, and Uganda). ACM Transactions on Computing Education, 23(1):1–29,
Jan 2023, DOI 10.1145/3554924.
Abstract: Motivation. As K-12 computing education becomes more estab-
lished throughout the world, there is an increasing focus on accessibility for
all, whether in a particular country or setting or in areas of the world that
may not yet have computing established. This is primarily articulated as an
equity issue. The recently developed capacity for, access to, participation
in, and experience of computer science education (CAPE) Framework is one
way of demonstrating stages and dependencies and understanding relative
equity, taking into consideration the disparities between sub-populations.
While there is existing research that covers the state of computing educa-
tion and equity issues, it is mostly in high-income countries; there is minimal
research in the context of low-middle-income countries like the sub-Saharan
African countries. Objectives. The objective of the article is therefore to re-
port on a pilot study investigating the capacity (one of the equity issues),
for delivering computing education in four sub-Saharan African countries:

145

Botswana, Kenya, Nigeria and Uganda, countries that are in different geo-
graphic regions as well as in different income brackets (low-middle income).
Method. In addition to reviewing the capacity issues of curriculum and policy
around computing education in each country, we surveyed 58 teachers about
the infrastructure, resources, professional development, and curriculum for
computing in their country. We used a localized version of the MEasuring
TeacheR Enacted Computing Curriculum (METRECC) instrument for this
purpose. Results. We analyzed the results through the lens of the CAPE
framework at the capacity level. We identified similarities and differences in
the data from teachers who completed the original METRECC survey, all
of whom were from high-income countries and African teachers. The data
revealed statistically significant differences between the two datasets in re-
lation to access to resources and professional development opportunities in
computer studies/computer science, with the African teachers experienc-
ing more barriers. Results further showed that African teachers focus less
on teaching algorithms and programming than teachers from high-income
countries. In addition, we found differences between African countries in the
study, reflecting their relative access to IT infrastructure and resources.

[Turcotte2020] Alexi Turcotte, Aviral Goel, Filip Křikava, and Jan Vitek.
Designing types for R, empirically. Proceedings of the ACM on Programming
Languages, 4(OOPSLA):1–25, Nov 2020, DOI 10.1145/3428249.
Abstract: The R programming language is widely used in a variety of
domains. It was designed to favor an interactive style of programming with
minimal syntactic and conceptual overhead. This design is well suited to
data analysis, but a bad fit for tools such as compilers or program analyzers.
In particular, R has no type annotations, and all operations are dynamically
checked at run-time. The starting point for our work are the two questions:
what expressive power is needed to accurately type R code? and which type
system is the R community willing to adopt? Both questions are difficult
to answer without actually experimenting with a type system. The goal of
this paper is to provide data that can feed into that design process. To this
end, we perform a large corpus analysis to gain insights in the degree of
polymorphism exhibited by idiomatic R code and explore potential benefits
that the R community could accrue from a simple type system. As a starting
point, we infer type signatures for 25,215 functions from 412 packages among
the most widely used open source R libraries. We then conduct an evaluation
on 8,694 clients of these packages, as well as on end-user code from the Kaggle
data science competition website.

[Vanhanen2007] Jari Vanhanen and Harri Korpi. Experiences of using pair
programming in an agile project. In Proc. Hawaii International Conference
on System Sciences (HICSS). IEEE, 2007, DOI 10.1109/hicss.2007.218.
Abstract: The interest in pair programming (PP) has increased recently,
e.g. by the popularization of agile software development. However, many
practicalities of PP are poorly understood. We present experiences of using

146

PP extensively in an industrial project. The fact that the team had a lim-
ited number of high-end workstations forced it in a positive way to quick
deployment and rigorous use of PP. The developers liked PP and learned
it easily. Initially, the pairs were not rotated frequently but adopting daily,
random rotation improved the situation. Frequent rotation seemed to im-
prove knowledge transfer. The driver/navigator roles were switched seldom,
but still the partners communicated actively. The navigator rarely spotted
defects during coding, but the released code contained almost no defects.
Test-driven development and design in pairs possibly decreased defects. The
developers considered that PP improved quality and knowledge transfer, and
was better suited for complex tasks than for easy tasks

[Vargovich2023] Joseph Vargovich, Fabio Santos, Jacob Penney, Marco A.
Gerosa, and Igor Steinmacher. GiveMeLabeledIssues: An open source issue
recommendation system, 2023.
Abstract: Developers often struggle to navigate an Open Source Software
(OSS) project’s issue-tracking system and find a suitable task. Proper is-
sue labeling can aid task selection, but current tools are limited to clas-
sifying the issues according to their type (e.g., bug, question, good first
issue, feature, etc.). In contrast, this paper presents a tool (GiveMeLa-
beledIssues) that mines project repositories and labels issues based on the
skills required to solve them. We leverage the domain of the APIs involved
in the solution (e.g., User Interface (UI), Test, Databases (DB), etc.) as a
proxy for the required skills. GiveMeLabeledIssues facilitates matching de-
velopers’ skills to tasks, reducing the burden on project maintainers. The
tool obtained a precision of 83.9% when predicting the API domains in-
volved in the issues. The replication package contains instructions on exe-
cuting the tool and including new projects. A demo video is available at
https://www.youtube.com/watch?v=ic2quUue7i8

[Vrandecic2023] Denny Vrandečić, Lydia Pintscher, and Markus Krötzsch.
Wikidata: The Making Of. In Companion Proceedings of the ACM Web
Conference 2023. ACM, Apr 2023, DOI 10.1145/3543873.3585579.
Abstract: Wikidata, now a decade old, is the largest public knowledge
graph, with data on more than 100 million concepts contributed by over
560,000 editors. It is widely used in applications and research. At its launch
in late 2012, however, it was little more than a hopeful new Wikimedia
project, with no content, almost no community, and a severely restricted
platform. Seven years earlier still, in 2005, it was merely a rough idea of
a few PhD students, a conceptual nucleus that had yet to pick up many
important infuences from others to turn into what is now called Wikidata.
In this paper, we try to recount this remarkable journey, and we review what
has been accomplished, what has been given up on, and what is yet left to
do for the future.

[Vu2023] Duc-Ly Vu, Zachary Newman, and John Speed Meyers. Bad snakes:
Understanding and improving python package index malware scanning. In

147

Proc. International Conference on Software Engineering (ICSE), 2023.
Abstract: While attackers often distribute malware to victims via open-
source, community-driven package repositories, these repositories do not cur-
rently run automated malware detection systems. In this work, we explore
the security goals of the repository administrators and the requirements for
deployments of such malware scanners via a case study of the Python ecosys-
tem and PyPI repository, which includes interviews with administrators and
maintainers. Further, we evaluate existing malware detection techniques for
deployment in this setting by creating a benchmark dataset and comparing
several existing tools, including the malware checks implemented in PyPI,
Bandit4Mal, and OSSGadget’s OSS Detect Backdoor. We find that reposi-
tory administrators have exacting technical demands for such malware de-
tection tools. Specifically, they consider a false positive rate of even 0.01% to
be unacceptably high, given the large number of package releases that might
trigger false alerts. Measured tools have false positive rates between 15% and
97%; increasing thresholds for detection rules to reduce this rate renders the
true positive rate useless. In some cases, these checks emitted alerts more of-
ten for benign packages than malicious ones. However, we also find a success-
ful socio-technical malware detection system: external security researchers
also perform repository malware scans and report the results to repository
administrators. These parties face different incentives and constraints on
their time and tooling. We conclude with recommendations for improving
detection capabilities and strengthening the collaboration between security
researchers and software repository administrators.

[Wang2016] Xinyu Wang, Sumit Gulwani, and Rishabh Singh. FIDEX: filter-
ing spreadsheet data using examples. In Proc. International Conference on
Object-Oriented Programming Systems Languages and Applications (OOP-
SLA). ACM, Oct 2016, DOI 10.1145/2983990.2984030.
Abstract: Data filtering in spreadsheets is a common problem faced by
millions of end-users. The task of data filtering requires a computational
model that can separate intended positive and negative string instances.
We present a system, FIDEX, that can efficiently learn desired data filter-
ing expressions from a small set of positive and negative string examples.
There are two key ideas of our approach. First, we design an expressive DSL
to represent disjunctive filter expressions needed for several real-world data
filtering tasks. Second, we develop an efficient synthesis algorithm for in-
crementally learning consistent filter expressions in the DSL from very few
positive and negative examples. A DAG-based data structure is used to suc-
cinctly represent a large number of filter expressions, and two corresponding
operators are defined for algorithmically handling positive and negative ex-
amples, namely, the intersection and subtraction operators. FIDEX is able
to learn data filters for 452 out of 460 real-world data filtering tasks in real
time (0.22s), using only 2.2 positive string instances and 2.7 negative string
instances on average.

[Wang2020a] Peipei Wang, Chris Brown, Jamie A. Jennings, and Kathryn T.

148

Stolee. An empirical study on regular expression bugs. In Proc. Interna-
tional Conference on Mining Software Repositories (MSR). ACM, Jun 2020,
DOI 10.1145/3379597.3387464.
Abstract: Understanding the nature of regular expression (regex) issues
is important to tackle practical issues developers face in regular expression
usage. Knowledge about the nature and frequency of various types of regu-
lar expression issues, such as those related to performance, API misuse, and
code smells, can guide testing, inform documentation writers, and motivate
refactoring efforts. However, beyond ReDoS (Regular expression Denial of
Service), little is known about to what extent regular expression issues af-
fect software development and how these issues are addressed in practice.
This paper presents a comprehensive empirical study of 350 merged regex-
related pull requests from Apache, Mozilla, Facebook, and Google GitHub
repositories. Through classifying the root causes and manifestations of those
bugs, we show that incorrect regular expression behavior is the dominant
root cause of regular expression bugs (165/356, 46.3%). The remaining root
causes are incorrect API usage (9.3%) and other code issues that require
regular expression changes in the fix (29.5%). By studying the code changes
of regex-related pull requests, we observe that fixing regular expression bugs
is nontrivial as it takes more time and more lines of code to fix them com-
pared to the general pull requests. The results of this study contribute to a
broader understanding of the practical problems faced by developers when
using regular expressions.

[Wang2021] Jiawei Wang, Li Li, and Andreas Zeller. Restoring execution en-
vironments of Jupyter notebooks, 2021.
Abstract: More than ninety percent of published Jupyter notebooks do not
state dependencies on external packages. This makes them non-executable
and thus hinders reproducibility of scientific results. We present SnifferDog,
an approach that 1) collects the APIs of Python packages and versions, cre-
ating a database of APIs; 2) analyzes notebooks to determine candidates for
required packages and versions; and 3) checks which packages are required
to make the notebook executable (and ideally, reproduce its stored results).
In its evaluation, we show that SnifferDog precisely restores execution envi-
ronments for the largest majority of notebooks, making them immediately
executable for end users.

[Washburn2016] Michael Washburn, Pavithra Sathiyanarayanan, Meiyappan
Nagappan, Thomas Zimmermann, and Christian Bird. What went right and
what went wrong: an analysis of 155 postmortems from game development.
In Proc. International Conference on Software Engineering (ICSE). ACM,
May 2016, DOI 10.1145/2889160.2889253.
Abstract: In game development, software teams often conduct post-
mortems to reflect on what went well and what went wrong in a project.
The postmortems are shared publicly on gaming sites or at developer con-
ferences. In this paper, we present an analysis of 155 postmortems published

149

on the gaming site Gamasutra.com. We identify characteristics of game de-
velopment, link the characteristics to positive and negative experiences in
the postmortems and distill a set of best practices and pitfalls for game
development.

[WeillTessier2021] Pierre Weill-Tessier, Alexandra Lucia Costache, and Neil
C. C. Brown. Usage of the Java language by novices over time: im-
plications for tool and language design. In Proc. Technical Sympo-
sium on Computer Science Education (SIGCSE). ACM, Mar 2021, DOI
10.1145/3408877.3432408.
Abstract: Java is a popular programming language for teaching at univer-
sity level. BlueJ is a popular tool for teaching Java to beginners. We provide
several analyses of Java use in BlueJ to answer three questions: what use is
made of different parts of Java by beginners when learning to program; how
has this pattern of use changed between 2013 and 2019 in a longstanding
language such as Java; and to what extent do beginners follow the specific
style that BlueJ is designed to guide them into? These analyses allow us
to see what features are important in object-oriented introductory program-
ming languages, which could inform language and tool designers—and see
to what extent the design of these programming tools can have an effect
on the way the language is used. We find that many beginners disobey the
guidelines that BlueJ promotes, and that patterns of Java use are generally
stable over time—but we do see decreased exception use and a change in
target application domains away from GUI programming towards text pro-
cessing. We conclude that programming languages for novices could have
fewer built-in types but should retain rich libraries.

[Wessel2020] Mairieli Wessel, Alexander Serebrenik, Igor Wiese, Igor Stein-
macher, and Marco A. Gerosa. Effects of adopting code review bots
on pull requests to OSS projects. In Proc. International Conference
on Software Maintenance and Evolution (ICSME). IEEE, Sep 2020, DOI
10.1109/icsme46990.2020.00011.
Abstract: Software bots, which are widely adopted by Open Source Soft-
ware (OSS) projects, support developers on several activities, including code
review. However, as with any new technology adoption, bots may impact
group dynamics. Since understanding and anticipating such effects is im-
portant for planning and management, we investigate how several activity
indicators change after the adoption of a code review bot. We employed a
regression discontinuity design on 1,194 software projects from GitHub. Our
results indicate that the adoption of code review bots increases the num-
ber of monthly merged pull requests, decreases monthly non-merged pull
requests, and decreases communication among developers. Practitioners and
maintainers may leverage our results to understand, or even predict, bot
effects on their projects’ social interactions.

[Wicherts2011] Jelte M. Wicherts, Marjan Bakker, and Dylan Molenaar.
Willingness to share research data is related to the strength of the evidence

150

and the quality of reporting of statistical results. PLoS ONE, 6(11):e26828,
Nov 2011, DOI 10.1371/journal.pone.0026828.
Abstract: Background The widespread reluctance to share published re-
search data is often hypothesized to be due to the authors’ fear that re-
analysis may expose errors in their work or may produce conclusions that
contradict their own. However, these hypotheses have not previously been
studied systematically. Methods and Findings We related the reluctance to
share research data for reanalysis to 1148 statistically significant results re-
ported in 49 papers published in two major psychology journals. We found
the reluctance to share data to be associated with weaker evidence (against
the null hypothesis of no effect) and a higher prevalence of apparent errors
in the reporting of statistical results. The unwillingness to share data was
particularly clear when reporting errors had a bearing on statistical signifi-
cance. Conclusions Our findings on the basis of psychological papers suggest
that statistical results are particularly hard to verify when reanalysis is more
likely to lead to contrasting conclusions. This highlights the importance of
establishing mandatory data archiving policies.

[Wilkerson2012] Jerod W. Wilkerson, Jay F. Nunamaker, and Rick Mercer.
Comparing the defect reduction benefits of code inspection and test-driven
development. IEEE Transactions on Software Engineering, 38(3):547–560,
May 2012, DOI 10.1109/tse.2011.46.
Abstract: This study is a quasi experiment comparing the software defect
rates and implementation costs of two methods of software defect reduction:
code inspection and test-driven development. We divided participants, con-
sisting of junior and senior computer science students at a large Southwestern
university, into four groups using a two-by-two, between-subjects, factorial
design and asked them to complete the same programming assignment using
either test-driven development, code inspection, both, or neither. We com-
pared resulting defect counts and implementation costs across groups. We
found that code inspection is more effective than test-driven development at
reducing defects, but that code inspection is also more expensive. We also
found that test-driven development was no more effective at reducing defects
than traditional programming methods.

[Xu2015] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pa-
supathy, and Rukma Talwadker. Hey, you have given me too many knobs!:
understanding and dealing with over-designed configuration in system soft-
ware. In Proc. International Symposium on the Foundations of Software
Engineering (FSE). ACM, Aug 2015, DOI 10.1145/2786805.2786852.
Abstract: Configuration problems are not only prevalent, but also severely
impair the reliability of today’s system software. One fundamental reason is
the ever-increasing complexity of configuration, reflected by the large number
of configuration parameters (“knobs”). With hundreds of knobs, configur-
ing system software to ensure high reliability and performance becomes a
daunting, error-prone task. This paper makes a first step in understanding a
fundamental question of configuration design: “do users really need so many

151

knobs?” To provide the quantitatively answer, we study the configuration
settings of real-world users, including thousands of customers of a commer-
cial storage system (Storage-A), and hundreds of users of two widely-used
open-source system software projects. Our study reveals a series of inter-
esting findings to motivate software architects and developers to be more
cautious and disciplined in configuration design. Motivated by these find-
ings, we provide a few concrete, practical guidelines which can significantly
reduce the configuration space. Take Storage-A as an example, the guidelines
can remove 51.9% of its parameters and simplify 19.7% of the remaining ones
with little impact on existing users. Also, we study the existing configuration
navigation methods in the context of “too many knobs” to understand their
effectiveness in dealing with the over-designed configuration, and to provide
practices for building navigation support in system software.

[Yan2023] Yutian Yan, Yunhui Zheng, Xinyue Liu, Nenad Medvidović, and
Weihang Wang. AdHere: Automated detection and repair of intrusive ads.
In Proc. ICSE’23, 2023.
Abstract: Today, more than 3 million websites rely on online advertis-
ing revenue. Despite the monetary incentives, ads often frustrate users by
disrupting their experience, interrupting content, and slowing browsing. To
improve ad experiences, leading media associations define Better Ads Stan-
dards for ads that are below user expectations. However, little is known
about how well websites comply with these standards and whether existing
approaches are sufficient for developers to quickly resolve such issues. In this
paper, we propose AdHere, a technique that can detect intrusive ads that
do not comply with Better Ads Standards and suggest repair proposals. Ad-
Here works by first parsing the initial web page to a DOM tree to search
for potential static ads, and then using mutation observers to monitor and
detect intrusive (dynamic/static) ads on the fly. To handle ads’ volatile na-
ture, AdHere includes two detection algorithms for desktop and mobile ads
to identify different ad violations during three phases of page load events.
It recursively applies the detection algorithms to resolve nested layers of
DOM elements inserted by ad delegations. We evaluate AdHere on Alexa
Top 1 Million Websites. The results show that AdHere is effective in detect-
ing violating ads and suggesting repair proposals. Comparing to the current
available alternative, AdHere detected intrusive ads on 4,656 more mobile
websites and 3,911 more desktop websites, and improved recall by 16.6%
and accuracy by 4.2%.

[Yang2022] Wenhua Yang, Chong Zhang, Minxue Pan, Chang Xu, Yu Zhou,
and Zhiqiu Huang. Do developers really know how to use git commands? a
large-scale study using stack overflow. ACM Transactions on Software En-
gineering and Methodology, 31(3):1–29, Jul 2022, DOI 10.1145/3494518.
Abstract: Git, a cross-platform and open-source distributed version control
tool, provides strong support for non-linear development and is capable of
handling everything from small to large projects with speed and efficiency. It
has become an indispensable tool for millions of software developers and is

152

the de facto standard of version control in software development nowadays.
However, despite its widespread use, developers still frequently face difficul-
ties when using various Git commands to manage projects and collaborate.
To better help developers use Git, it is necessary to understand the issues
and difficulties that they may encounter when using Git. Unfortunately, this
problem has not yet been comprehensively studied. To fill this knowledge
gap, in this paper, we conduct a large-scale study on Stack Overflow, a
popular Q&A forum for developers. We extracted and analyzed 80,370 rele-
vant questions from Stack Overflow, and reported the increasing popularity
of the Git command questions. By analyzing the questions, we identified
the Git commands that are frequently asked and those that are associated
with difficult questions on Stack Overflow to help understand the difficul-
ties developers may encounter when using Git commands. In addition, we
conducted a survey to understand how developers learn Git commands in
practice, showing that self-learning is the primary learning approach. These
findings provide a range of actionable implications for researchers, educators,
and developers.

[Yasmin2020] Jerin Yasmin, Yuan Tian, and Jinqiu Yang. A first look at the
deprecation of RESTful APIs: An empirical study. In Proc. International
Conference on Software Maintenance and Evolution (ICSME). IEEE, Sep
2020, DOI 10.1109/icsme46990.2020.00024.
Abstract: REpresentational State Transfer (REST) is considered as one
standard software architectural style to build web APIs that can integrate
software systems over the internet. However, while connecting systems,
RESTful APIs might also break the dependent applications that rely on
their services when they introduce breaking changes, e.g., an older version
of the API is no longer supported. To warn developers promptly and thus
prevent critical impact on downstream applications, a deprecated-removed
model should be followed, and deprecation-related information such as al-
ternative approaches should also be listed. While API deprecation analysis
as a theme is not new, most existing work focuses on non-web APIs, such
as the ones provided by Java and Android.To investigate RESTful API dep-
recation, we propose a framework called RADA (RESTful API Deprecation
Analyzer). RADA is capable of automatically identifying deprecated API el-
ements and analyzing impacted operations from an OpenAPI specification,
a machine-readable profile for describing RESTful web service. We apply
RADA on 2,224 OpenAPI specifications of 1,368 RESTful APIs collected
from APIs.guru, the largest directory of OpenAPI specifications. Based on
the data mined by RADA, we perform an empirical study to investigate how
the deprecated-removed protocol is followed in RESTful APIs and charac-
terize practices in RESTful API deprecation. The results of our study reveal
several severe deprecation-related problems in existing RESTful APIs. Our
implementation of RADA and detailed empirical results are publicly avail-
able for future intelligent tools that could automatically identify and migrate
usage of deprecated RESTful API operations in client code.

153

[Yelam2021] Anil Yelam, Shibani Subbareddy, Keerthana Ganesan, Stefan
Savage, and Ariana Mirian. CoResident evil: Covert communication in the
cloud with lambdas. In Proceedings of the Web Conference 2021. ACM, Apr
2021, DOI 10.1145/3442381.3450100.
Abstract: ”Serverless” cloud services, such as AWS lambdas, are one of
the fastest growing segments of the cloud services market. These services are
popular in part due to their light-weight nature and flexibility in scheduling
and cost, however the security issues associated with serverless computing
are not well understood. In this work, we explore the feasibility of con-
structing a practical covert channel from lambdas. We establish that a fast
co-residence detection for lambdas is key to enabling such a covert channel,
and proceed to develop a reliable and scalable co-residence detector based
on the memory bus hardware. Our technique enables dynamic discovery for
co-resident lambdas and is incredibly fast, executing in a matter of seconds.
We evaluate our approach for correctness and scalability, and use it to estab-
lish covert channels and perform data transfer on AWS lambdas. We show
that we can establish hundreds of individual covert channels for every 1000
lambdas deployed, and each of those channels can send data at a rate of 200
bits per second, thus demonstrating that covert communication via lambdas
is entirely feasible.

[Yin2011] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and
Lakshmi Bairavasundaram. How do fixes become bugs? In Proc. Inter-
national Symposium on Foundations of Software Engineering/International
Symposium on the Foundations of Software Engineering (SIGSOFT/FSE).
ACM Press, 2011, DOI 10.1145/2025113.2025121.
Abstract: Software bugs affect system reliability. When a bug is exposed
in the field, developers need to fix them. Unfortunately, the bug-fixing pro-
cess can also introduce errors, which leads to buggy patches that further
aggravate the damage to end users and erode software vendors’ reputation.
This paper presents a comprehensive characteristic study on incorrect bug-
fixes from large operating system code bases including Linux, OpenSolaris,
FreeBSD and also a mature commercial OS developed and evolved over the
last 12 years, investigating not only themistake patterns during bug-fixing
but also the possible human reasons in the development process when these
incorrect bug-fixes were introduced. Our major findings include: (1) at least
14.8%–24.4% of sampled fixes for post-release bugs in these large OSes are
incorrect and have made impacts to end users. (2) Among several common
bug types, concurrency bugs are the most difficult to fix correctly: 39% of
concurrency bug fixes are incorrect. (3) Developers and reviewers for incor-
rect fixes usually do not have enough knowledge about the involved code. For
example, 27% of the incorrect fixes are made by developers who have never
touched the source code files associated with the fix. Our results provide
useful guidelines to design new tools and also to improve the development
process. Based on our findings, the commercial software vendor whose OS
code we evaluated is building a tool to improve the bug fixing and code

154

reviewing process.

[Yuan2014] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues,
Xu Zhao, Pranay U. Jain, and Michael Stumm. Simple testing can prevent
most critical failures—an analysis of production failures in distributed data-
intensive systems. In Proc. Symposium on Operating System Design and
Implementation (OSDI), 2014, DOI 10.13140/2.1.2044.2889.
Abstract: Large, production quality distributed systems still fail periodi-
cally, and do so sometimes catastrophically, where most or all users experi-
ence an outage or data loss. We present the result of a comprehensive study
investigating 198 randomly selected, user-reported failures that occurred
on Cassandra, HBase, Hadoop Distributed File System (HDFS), Hadoop
MapReduce, and Redis, with the goal of understanding how one or multiple
faults eventually evolve into a user-visible failures. We found that from a
testing point of view, almost all failures require only 3 or fewer nodes to
reproduce, which is good news considering that these services typically run
on a very large number of nodes. However, multiple inputs are needed to
trigger the failures with the order between them being important. Finally,
we found the error logs of these systems typically contain sufficient data
on both the errors and the input events that triggered the failure, enabling
the diagnose and the reproduction of the production failures—often with
unit tests. We found the majority of catastrophic failures could easily have
been prevented by performing simple testing on error handling code—the
last line of defense—even without an understanding of the software design.
We extracted three simple rules from the bugs that have lead to some of the
catastrophic failures, and developed a static checker, Aspirator, capable of
locating these bugs. Over 30% of the catastrophic failures would have been
prevented had Aspirator been used and the identified bugs fixed. Running
Aspirator on the code of 9 distributed systems located 143 bugs and bad
practices that have been fixed or confirmed by the developers.

[Zampetti2020] Fiorella Zampetti, Carmine Vassallo, Sebastiano Panichella,
Gerardo Canfora, Harald Gall, and Massimiliano Di Penta. An
empirical characterization of bad practices in continuous integra-
tion. Empirical Software Engineering, 25(2):1095–1135, Jan 2020, DOI
10.1007/s10664-019-09785-8.
Abstract: Continuous Integration (CI) has been claimed to introduce sev-
eral benefits in software development, including high software quality and
reliability. However, recent work pointed out challenges, barriers and bad
practices characterizing its adoption. This paper empirically investigates
what are the bad practices experienced by developers applying CI. The in-
vestigation has been conducted by leveraging semi-structured interviews of
13 experts and mining more than 2,300 Stack Overflow posts. As a result, we
compiled a catalog of 79 CI bad smells belonging to 7 categories related to
different dimensions of a CI pipeline management and process. We have also
investigated the perceived importance of the identified bad smells through a
survey involving 26 professional developers, and discussed how the results of

155

our study relate to existing knowledge about CI bad practices. Whilst some
results, such as the poor usage of branches, confirm existing literature, the
study also highlights uncovered bad practices, e.g., related to static analysis
tools or the abuse of shell scripts, and contradict knowledge from existing
literature, e.g., about avoiding nightly builds. We discuss the implications of
our catalog of CI bad smells for (i) practitioners, e.g., favor specific, portable
tools over hacking, and do not ignore nor hide build failures, (ii) educators,
e.g., teach CI culture, not just technology, and teach CI by providing ex-
amples of what not to do, and (iii) researchers, e.g., developing support for
failure analysis, as well as automated CI bad smell detectors.

[Zampetti2021] Fiorella Zampetti, Gianmarco Fucci, Alexander Serebrenik,
and Massimiliano Di Penta. Self-admitted technical debt practices: a com-
parison between industry and open-source. Empirical Software Engineering,
26(6), Sep 2021, DOI 10.1007/s10664-021-10031-3.
Abstract: Self-admitted technical debt (SATD) consists of annotations, left
by developers as comments in the source code or elsewhere, as a reminder
about pieces of software manifesting technical debt (TD), i.e., “not being
ready yet”. While previous studies have investigated SATD management
and its relationship with software quality, there is little understanding of
the extent and circumstances to which developers admit TD. This paper
reports the results of a study in which we asked developers from industry
and opensource about their practices in annotating source code and other
artifacts for self-admitting TD. The study consists of two phases. First, we
conducted 10 interviews to gather a first understanding of the phenomenon
and to prepare a survey questionnaire. Then, we surveyed 52 industrial de-
velopers as well as 49 contributors to open-source projects. Results of the
study show how the TD annotation practices, as well as the typical content
of SATD comments, are very similar between open-source and industry. At
the same time, our results highlight how, while open-source code is spread
of comments admitting the need for improvements, SATD in industry may
be dictated by organizational guidelines but, at the same time, implicitly
discouraged by the fear of admitting responsibilities. Results also highlight
the need for tools helping developers to achieve a better TD awareness.

[Zavgorodniaia2021] Albina Zavgorodniaia, Raj Shrestha, Juho Leinonen,
Arto Hellas, and John Edwards. Morning or evening? an exami-
nation of circadian rhythms of CS1 students. In Proc. International
Conference on Software Engineering (ICSE). IEEE, May 2021, DOI
10.1109/icse-seet52601.2021.00036.
Abstract: Circadian rhythms are the cycles of our internal clock that play
a key role in governing when we sleep and when we are active. A related con-
cept is chronotype, which is a person’s natural tendency toward activity at
certain times of day and typically governs when the individual is most alert
and productive. In this work we investigate chronotypes in the setting of an
Introductory Computer Programming (CS1) course. Using keystroke data
collected from students we investigate the existence of chronotypes through

156

unsupervised learning. The chronotypes we find align with those of typical
populations reported in the literature and our results support correlations of
certain chronotypes to academic achievement. We also find a lack of support
for the still-popular stereotype of a computer programmer as a night owl.
The analyses are conducted on data from two universities, one in the US and
one in Europe, that use different teaching methods. In comparison of the two
contexts, we look into programming assignment design and administration
that may promote better programming practices among students in terms
of procrastination and effort.

[Zeller2009] Andreas Zeller. Why Programs Fail: A Guide to Systematic De-
bugging. Morgan Kaufmann, second edition, 2009.
Abstract: Proof that debugging has graduated from a black art to a sys-
tematic discipline. It demystifies one of the toughest aspects of software pro-
gramming, showing clearly how to discover what caused software failures,
and fix them with minimal muss and fuss.

[Zeller2021] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser,
and Christian Holler. The Fuzzing Book. CISPA Helmholtz Center for In-
formation Security, 2021.
Abstract: A live book explaining how to automate software testing by
generating tests automatically.

[Zhang2020] Haoxiang Zhang, Shaowei Wang, Tse-Hsun Chen, and Ahmed E.
Hassan. Reading answers on stack overflow: Not enough! IEEE Transactions
on Software Engineering, page 1–1, 2020, DOI 10.1109/tse.2019.2954319.
Abstract: Stack Overflow is one of the most active communities for de-
velopers to share their programming knowledge. Answers posted on Stack
Overflow help developers solve issues during software development. In ad-
dition to posting answers, users can also post comments to further discuss
their associated answers. As of Aug 2017, there are 32.3 million comments
that are associated with answers, forming a large collection of crowdsourced
repository of knowledge on top of the commonly-studied Stack Overflow an-
swers. In this study, we wish to understand how the commenting activities
contribute to the crowdsourced knowledge. We investigate what users discuss
in comments, and analyze the characteristics of the commenting dynamics,
(i.e., the timing of commenting activities and the roles of commenters). We
find that: 1) the majority of comments are informative and thus can enhance
their associated answers from a diverse range of perspectives. However, some
comments contain content that is discouraged by Stack Overflow. 2) The ma-
jority of commenting activities occur after the acceptance of an answer. More
than half of the comments are fast responses occurring within one day of the
creation of an answer, while later comments tend to be more informative.
Most comments are rarely integrated back into their associated answers, even
though such comments are informative. 3) Insiders (i.e., users who posted
questions/answers before posting a comment in a question thread) post the
majority of comments within one month, and outsiders (i.e., users who never

157

posted any question/answer before posting a comment) post the majority of
comments after one month. Inexperienced users tend to raise limitations and
concerns while experienced users tend to enhance the answer through com-
menting. Our study provides insights into the commenting activities in terms
of their content, timing, and the individuals who perform the commenting.
For the purpose of long-term knowledge maintenance and effective informa-
tion retrieval for developers, we also provide actionable suggestions to en-
courage Stack Overflow users/engineers/moderators to leverage our insights
for enhancing the current Stack Overflow commenting system for improving
the maintenance and organization of the crowdsourced knowledge.

[Zhang2021a] Jingxuan Zhang, He Jiang, Zhilei Ren, Tao Zhang, and Zhiqiu
Huang. Enriching API documentation with code samples and usage sce-
narios from crowd knowledge. IEEE Transactions on Software Engineering,
47(6):1299–1314, Jun 2021, DOI 10.1109/tse.2019.2919304.
Abstract: As one key resource to learn Application Programming Interfaces
(APIs), a lot of API reference documentation lacks code samples with usage
scenarios, thus heavily hindering developers from programming with APIs.
Although researchers have investigated how to enrich API documentation
with code samples from general code search engines, two main challenges re-
main to be resolved, including the quality challenge of acquiring high-quality
code samples and the mapping challenge of matching code samples to us-
age scenarios. In this study, we propose a novel approach named ADECK
towards enriching API documentation with code samples and correspond-
ing usage scenarios by leveraging crowd knowledge from Stack Overflow, a
popular technical Question and Answer (Q&A) website attracting millions
of developers. Given an API related Q&A pair, a code sample in the an-
swer is extensively evaluated by developers and targeted towards resolving
the question under the specified usage scenario. Hence, ADECK can obtain
high-quality code samples and map them to corresponding usage scenar-
ios to address the above challenges. Extensive experiments on the Java SE
and Android API documentation show that the number of code-sample-
illustrated API types in the ADECK-enriched API documentation is 3.35
and 5.76 times as many as that in the raw API documentation. Meanwhile,
the quality of code samples obtained by ADECK is better than that of code
samples by the baseline approach eXoaDocs in terms of correctness, con-
ciseness, and usability, e.g., the average correctness values of representative
code samples obtained by ADECK and eXoaDocs are 4.26 and 3.28 on a
5-point scale in the enriched Java SE API documentation. In addition, an
empirical study investigating the impacts of different types of API documen-
tation on the productivity of developers shows that, compared against the
raw and the eXoaDocs-enriched API documentation, the ADECK-enriched
API documentation can help developers complete 23.81 and 14.29 percent
more programming tasks and reduce the average completion time by 9.43
and 11.03 percent.

[Zhang2021b] Haoxiang Zhang, Shaowei Wang, Tse-Hsun Chen, Ying Zou,

158

and Ahmed E. Hassan. An empirical study of obsolete answers on stack
overflow. IEEE Transactions on Software Engineering, 47(4):850–862, Apr
2021, DOI 10.1109/tse.2019.2906315.
Abstract: Stack Overflow accumulates an enormous amount of software en-
gineering knowledge. However, as time passes, certain knowledge in answers
may become obsolete. Such obsolete answers, if not identified or documented
clearly, may mislead answer seekers and cause unexpected problems (e.g., us-
ing an out-dated security protocol). In this paper, we investigate how the
knowledge in answers becomes obsolete and identify the characteristics of
such obsolete answers. We find that: 1) More than half of the obsolete an-
swers (58.4 percent) were probably already obsolete when they were first
posted. 2) When an obsolete answer is observed, only a small proportion
(20.5 percent) of such answers are ever updated. 3) Answers to questions
in certain tags (e.g., node.js, ajax, android, and objective-c) are more likely
to become obsolete. Our findings suggest that Stack Overflow should de-
velop mechanisms to encourage the whole community to maintain answers
(to avoid obsolete answers) and answer seekers are encouraged to carefully
go through all information (e.g., comments) in answer threads.

[Zhang2022a] Haiyin Zhang, Lúıs Cruz, and Arie van Deursen. Code smells
for machine learning applications. In Proceedings of the 1st International
Conference on AI Engineering: Software Engineering for AI. ACM, May
2022, DOI 10.1145/3522664.3528620.
Abstract: The popularity of machine learning has wildly expanded in recent
years. Machine learning techniques have been heatedly studied in academia
and applied in the industry to create business value. However, there is a lack
of guidelines for code quality in machine learning applications. In particu-
lar, code smells have rarely been studied in this domain. Although machine
learning code is usually integrated as a small part of an overarching system,
it usually plays an important role in its core functionality. Hence ensuring
code quality is quintessential to avoid issues in the long run. This paper pro-
poses and identifies a list of 22 machine learning-specific code smells collected
from various sources, including papers, grey literature, GitHub commits, and
Stack Overflow posts. We pinpoint each smell with a description of its con-
text, potential issues in the long run, and proposed solutions. In addition, we
link them to their respective pipeline stage and the evidence from both aca-
demic and grey literature. The code smell catalog helps data scientists and
developers produce and maintain high-quality machine learning application
code.

[Zhao2023] Dehai Zhao, Zhenchang Xing, Xin Xia, Deheng Ye, Xiwei Xu, and
Liming Zhu. Seehow: Workflow extraction from programming screencasts
through action-aware video analytics, 2023.
Abstract: Programming screencasts (e.g., video tutorials on Youtube or live
coding stream on Twitch) are important knowledge source for developers to
learn programming knowledge, especially the workflow of completing a pro-
gramming task. Nonetheless, the image nature of programming screencasts

159

limits the accessibility of screencast content and the workflow embedded in
it, resulting in a gap to access and interact with the content and workflow in
programming screencasts. Existing non-intrusive methods are limited to ex-
tract either primitive human-computer interaction (HCI) actions or coarse-
grained video this http URL this work, we leverage Computer Vision (CV)
techniques to build a programming screencast analysis tool which can au-
tomatically extract code-line editing steps (enter text, delete text, edit text
and select text) from screencasts. Given a programming screencast, our ap-
proach outputs a sequence of coding steps and code snippets involved in each
step, which we refer to as programming workflow. The proposed method is
evaluated on 41 hours of tutorial videos and live coding screencasts with
diverse programming environments. The results demonstrate our tool can
extract code-line editing steps accurately and the extracted workflow steps
can be intuitively understood by developers.

[Zhu2021] Wenhan Zhu and Michael W. Godfrey. Mea culpa: how developers
fix their own simple bugs differently from other developers. In Proc. Inter-
national Conference on Mining Software Repositories (MSR). IEEE, May
2021, DOI 10.1109/msr52588.2021.00065.
Abstract: In this work, we study how the authorship of code affects bug-
fixing commits using the SStuBs dataset, a collection of single-statement
bug fix changes in popular Java Maven projects. More specifically, we study
the differences in characteristics between simple bug fixes by the original au-
thor—that is, the developer who submitted the bug-inducing commit—and
by different developers (i.e., non-authors). Our study shows that nearly half
(i.e., 44.3%) of simple bugs are fixed by a different developer. We found that
bug fixes by the original author and by different developers differed quali-
tatively and quantitatively. We observed that bug-fixing time by authors is
much shorter than that of other developers. We also found that bug-fixing
commits by authors tended to be larger in size and scope, and address mul-
tiple issues, whereas bug-fixing commits by other developers tended to be
smaller and more focused on the bug itself. Future research can further study
the different patterns in bug-fixing and create more tailored tools based on
the developer’s needs.

160

