
It Will Never Work in Theory

http://neverworkintheory.org

October 18, 2021

References

[Abad2018] Zahra Shakeri Hossein Abad, Oliver Karras, Kurt Schneider, Ken
Barker, and Mike Bauer. Task interruption in software development projects.
In Proc. International Conference on Evaluation and Assessment in Software
Engineering (EASE). ACM, 6 2018, DOI 10.1145/3210459.3210471.
Abstract: Multitasking has always been an inherent part of software de-
velopment and is known as the primary source of interruptions due to task
switching in software development teams. Developing software involves a
mix of analytical and creative work, and requires a significant load on brain
functions, such as working memory and decision making. Thus, task switch-
ing in the context of software development imposes a cognitive load that
causes software developers to lose focus and concentration while working
thereby taking a toll on productivity. To investigate the disruptiveness of
task switching and interruptions in software development projects, and to
understand the reasons for and perceptions of the disruptiveness of task
switching we used a mixed-methods approach including a longitudinal data
analysis on 4,910 recorded tasks of 17 professional software developers, and a
survey of 132 software developers. We found that, compared to task-specific
factors (e.g. priority, level, and temporal stage), contextual factors such as
interruption type (e.g. self/external), time of day, and task type and context
are a more potent determinant of task switching disruptiveness in software
development tasks. Furthermore, while most survey respondents believe ex-
ternal interruptions are more disruptive than self-interruptions, the results of
our retrospective analysis reveals otherwise. We found that self-interruptions
(i.e. voluntary task switchings) are more disruptive than external interrup-
tions and have a negative effect on the performance of the interrupted tasks.
Finally, we use the results of both studies to provide a set of comparative
vulnerability and interaction patterns which can be used as a mean to guide
decision-making and forecasting the consequences of task switching in soft-
ware development teams.

[Abdalkareem2017] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi,
Suhaib Mujahid, and Emad Shihab. Why do developers use trivial packages?
an empirical case study on NPM. In Proc. European Software Engineering

1

Conference/International Symposium on the Foundations of Software Engi-
neering (ESEC/FSE). ACM, 8 2017, DOI 10.1145/3106237.3106267.
Abstract: Code reuse is traditionally seen as good practice. Recent trends
have pushed the concept of code reuse to an extreme, by using packages that
implement simple and trivial tasks, which we call ’trivial packages’. A recent
incident where a trivial package led to the breakdown of some of the most
popular web applications such as Facebook and Netflix made it imperative
to question the growing use of trivial packages. Therefore, in this paper, we
mine more than 230,000 npm packages and 38,000 JavaScript applications
in order to study the prevalence of trivial packages. We found that trivial
packages are common and are increasing in popularity, making up 16.8% of
the studied npm packages. We performed a survey with 88 Node.js devel-
opers who use trivial packages to understand the reasons and drawbacks of
their use. Our survey revealed that trivial packages are used because they
are perceived to be well implemented and tested pieces of code. However, de-
velopers are concerned about maintaining and the risks of breakages due to
the extra dependencies trivial packages introduce. To objectively verify the
survey results, we empirically validate the most cited reason and drawback
and find that, contrary to developers’ beliefs, only 45.2% of trivial packages
even have tests. However, trivial packages appear to be ’deployment tested’
and to have similar test, usage and community interest as non-trivial pack-
ages. On the other hand, we found that 11.5% of the studied trivial packages
have more than 20 dependencies. Hence, developers should be careful about
which trivial packages they decide to use.

[AbuHassan2020] Amjad AbuHassan, Mohammad Alshayeb, and Lahouari
Ghouti. Software smell detection techniques: A systematic literature re-
view. Journal of Software: Evolution and Process, 33(3), 10 2020, DOI
10.1002/smr.2320.
Abstract: Software smells indicate design or code issues that might degrade
the evolution and maintenance of software systems. Detecting and identify-
ing these issues are challenging tasks. This paper explores, identifies, and
analyzes the existing software smell detection techniques at design and code
levels. We carried out a systematic literature review (SLR) to identify and
collect 145 primary studies related to smell detection in software design and
code. Based on these studies, we address several questions related to the
analysis of the existing smell detection techniques in terms of abstraction
level (design or code), targeted smells, used metrics, implementation, and
validation. Our analysis identified several detection techniques categories.
We observed that 57% of the studies did not use any performance measures,
41% of them omitted details on the targeted programing language, and the
detection techniques were not validated in 14% of these studies. With respect
to the abstraction level, only 18% of the studies addressed bad smell detec-
tion at the design level. This low coverage urges for more focus on bad smell
detection at the design level to handle them at early stages. Finally, our SLR
brings to the attention of the research community several opportunities for

2

future research.

[Aghajani2019] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Marquez,
Mario Linares-Vasquez, Laura Moreno, Gabriele Bavota, and Michele
Lanza. Software documentation issues unveiled. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, 5 2019, DOI
10.1109/icse.2019.00122.
Abstract: (Good) Software documentation provides developers and users
with a description of what a software system does, how it operates, and how
it should be used. For example, technical documentation (e.g., an API ref-
erence guide) aids developers during evolution/maintenance activities, while
a user manual explains how users are to interact with a system. Despite
its intrinsic value, the creation and the maintenance of documentation is
often neglected, negatively impacting its quality and usefulness, ultimately
leading to a generally unfavourable take on documentation. Previous studies
investigating documentation issues have been based on surveying developers,
which naturally leads to a somewhat biased view of problems affecting doc-
umentation. We present a large scale empirical study, where we mined, an-
alyzed, and categorized 878 documentation-related artifacts stemming from
four different sources, namely mailing lists, Stack Overflow discussions, issue
repositories, and pull requests. The result is a detailed taxonomy of docu-
mentation issues from which we infer a series of actionable proposals both
for researchers and practitioners.

[Ajami2018] Shulamyt Ajami, Yonatan Woodbridge, and Dror G. Feit-
elson. Syntax, predicates, idioms—what really affects code complex-
ity? Empirical Software Engineering, 24(1):287–328, 6 2018, DOI
10.1007/s10664-018-9628-3.
Abstract: Program comprehension concerns the ability to understand code
written by others. But not all code is the same. We use an experimental plat-
form fashioned as an online game-like environment to measure how quickly
and accurately 220 professional programmers can interpret code snippets
with similar functionality but different structures; snippets that take longer
to understand or produce more errors are considered harder. The results in-
dicate, inter alia, that for loops are significantly harder than ifs, that some
but not all negations make a predicate harder, and that loops counting down
are slightly harder than loops counting up. This demonstrates how the effect
of syntactic structures, different ways to express predicates, and the use of
known idioms can be measured empirically, and that syntactic structures are
not necessarily the most important factor. We also found that the metrics of
time to understanding and errors made are not necessarily equivalent. Thus
loops counting down took slightly longer, but loops with unusual bounds
caused many more errors. By amassing many more empirical results like
these it may be possible to derive better code complexity metrics than we
have today, and also to better appreciate their limitations.

3

[Akerblom2016] Beatrice Åkerblom and Tobias Wrigstad. Measuring poly-
morphism in Python programs. ACM SIGPLAN Notices, 51(2):114–128, 5
2016, DOI 10.1145/2936313.2816717.
Abstract: Following the increased popularity of dynamic languages and
their increased use in critical software, there have been many proposals
to retrofit static type system to these languages to improve possibilities to
catch bugs and improve performance. A key question for any type system is
whether the types should be structural, for more expressiveness, or nominal,
to carry more meaning for the programmer. For retrofitted type systems,
it seems the current trend is using structural types. This paper attempts
to answer the question to what extent this extra expressiveness is needed,
and how the possible polymorphism in dynamic code is used in practise.
We study polymorphism in 36 real-world open source Python programs and
approximate to what extent nominal and structural types could be used to
type these programs. The study is based on collecting traces from multiple
runs of the programs and analysing the polymorphic degrees of targets at
more than 7 million call-sites. Our results show that while polymorphism
is used in all programs, the programs are to a great extent monomorphic.
The polymorphism found is evenly distributed across libraries and program-
specific code and occur both during program start-up and normal execution.
Most programs contain a few ’megamorphic’ call-sites where receiver types
vary widely. The non-monomorphic parts of the programs can to some ex-
tent be typed with nominal or structural types, but none of the approaches
can type entire programs.

[AlSubaihin2021] Afnan A. Al-Subaihin, Federica Sarro, Sue Black, Licia
Capra, and Mark Harman. App store effects on software engineering prac-
tices. IEEE Transactions on Software Engineering, 47(2):300–319, 2 2021,
DOI 10.1109/tse.2019.2891715.
Abstract: In this paper, we study the app store as a phenomenon from the
developers’ perspective to investigate the extent to which app stores affect
software engineering tasks. Through developer interviews and questionnaires,
we uncover findings that highlight and quantify the effects of three high-level
app store themes: bridging the gap between developers and users, increasing
market transparency and affecting mobile release management. Our findings
have implications for testing, requirements engineering and mining software
repositories research fields. These findings can help guide future research in
supporting mobile app developers through a deeper understanding of the
app store-developer interaction.

[AlencarDaCosta2017] Daniel Alencar da Costa, Shane McIntosh, Christoph
Treude, Uirá Kulesza, and Ahmed E. Hassan. The impact of rapid release
cycles on the integration delay of fixed issues. Empirical Software Engineer-
ing, 23(2):835–904, 11 2017, DOI 10.1007/s10664-017-9548-7.
Abstract: The release frequency of software projects has increased in re-
cent years. Adopters of so-called rapid releases—short release cycles, often
on the order of weeks, days, or even hours—claim that they can deliver fixed

4

issues (i.e., implemented bug fixes and new features) to users more quickly.
However, there is little empirical evidence to support these claims. In fact,
our prior work shows that code integration phases may introduce delays for
rapidly releasing projects—98% of the fixed issues in the rapidly releasing
Firefox project had their integration delayed by at least one release. To bet-
ter understand the impact that rapid release cycles have on the integration
delay of fixed issues, we perform a comparative study of traditional and
rapid release cycles. Our comparative study has two parts: (i) a quantita-
tive empirical analysis of 72,114 issue reports from the Firefox project, and
a (ii) qualitative study involving 37 participants, who are contributors of the
Firefox, Eclipse, and ArgoUML projects. Our study is divided into quantita-
tive and qualitative analyses. Quantitative analyses reveal that, surprisingly,
fixed issues take a median of 54% (57 days) longer to be integrated in rapid
Firefox releases than the traditional ones. To investigate the factors that are
related to integration delay in traditional and rapid release cycles, we train
regression models that model whether a fixed issue will have its integration
delayed or not. Our explanatory models achieve good discrimination (ROC
areas of 0.80–0.84) and calibration scores (Brier scores of 0.05–0.16) for rapid
and traditional releases. Our explanatory models indicate that (i) traditional
releases prioritize the integration of backlog issues, while (ii) rapid releases
prioritize issues that were fixed in the current release cycle. Complemen-
tary qualitative analyses reveal that participants’ perception about integra-
tion delay is tightly related to activities that involve decision making, risk
management, and team collaboration. Moreover, the allure of shipping fixed
issues faster is a main motivator for adopting rapid release cycles among
participants (although this motivation is not supported by our quantita-
tive analysis). Furthermore, to explain why traditional releases deliver fixed
issues more quickly, our participants point out the rush for integration in
traditional releases and the increased time that is invested on polishing is-
sues in rapid releases. Our results suggest that rapid release cycles may not
be a silver bullet for the rapid delivery of new content to users. Instead,
our results suggest that the benefits of rapid releases are increased software
stability and user feedback.

[Ali2020] Rao Hamza Ali, Chelsea Parlett-Pelleriti, and Erik Linstead. Cheat-
ing death: a statistical survival analysis of publicly available Python
projects. In Proc. International Conference on Mining Software Repositories
(MSR). ACM, 6 2020, DOI 10.1145/3379597.3387511.
Abstract: We apply survival analysis methods to a dataset of publicly-
available software projects in order to examine the attributes that might lead
to their inactivity over time. We ran a Kaplan-Meier analysis and fit a Cox
Proportional-Hazards model to a subset of Software Heritage Graph Dataset,
consisting of 3052 popular Python projects hosted on GitLab/GitHub, De-
bian, and PyPI, over a period of 165 months. We show that projects with
repositories on multiple hosting services, a timeline of publishing major re-
leases, and a good network of developers, remain healthy over time and

5

should be worthy of the effort put in by developers and contributors.

[Alkhabaz2021] Ridha Alkhabaz, Seth Poulsen, Mei Chen, and Abdussalam
Alawini. Insights from student solutions to MongoDB homework problems.
In Proc. Conference on Innovation and Technology in Computer Science Ed-
ucation (ITiCSE). ACM, 6 2021, DOI 10.1145/3430665.3456308.
Abstract: We analyze submissions for homework assignments of 527 stu-
dents in an upper-level database course offered at the University of Illinois
at Urbana-Champaign. The ability to query databases is becoming a crucial
skill for technology professionals and academics. Although we observe a large
demand for teaching database skills, there is little research on database edu-
cation. Also, despite the industry’s continued demand for NoSQL databases,
we have virtually no research on the matter of how students learn NoSQL
databases, such as MongoDB. In this paper, we offer an in-depth analysis
of errors committed by students working on MongoDB homework assign-
ments over the course of two semesters. We show that as students use more
advanced MongoDB operators, they make more Reference errors. Addition-
ally, when students face a new functionality of MongoDB operators, such as
$group operator, they usually take time to understand it but do not make
the same errors again in later problems. Finally, our analysis suggests that
students struggle with advanced concepts for a comparable amount of time.
Our results suggest that instructors should allocate more time and effort for
the discussed topics in our paper.

[Almeida2017] Daniel A. Almeida, Gail C. Murphy, Greg Wilson, and Mike
Hoye. do software developers understand open source licenses? In Proc. In-
ternational Conference on Program Comprehension (ICPC). IEEE, 5 2017,
DOI 10.1109/icpc.2017.7.
Abstract: Software provided under open source licenses is widely used,
from forming high-profile stand-alone applications (e.g., Mozilla Firefox) to
being embedded in commercial offerings (e.g., network routers). Despite the
high frequency of use of open source licenses, there has been little work
about whether software developers understand the open source licenses they
use. To our knowledge, only one survey has been conducted, which focused
on which licenses developers choose and when they encounter problems with
licensing open source software. To help fill the gap of whether or not devel-
opers understand the open source licenses they use, we conducted a survey
that posed development scenarios involving three popular open source li-
censes (GNU GPL 3.0, GNU LGPL 3.0 and MPL 2.0) both alone and in
combination. The 375 respondents to the survey, who were largely develop-
ers, gave answers consistent with those of a legal expert’s opinion in 62%
of 42 cases. Although developers clearly understood cases involving one li-
cense, they struggled when multiple licenses were involved. An analysis of
the quantitative and qualitative results of the study indicate a need for tool
support to help guide developers in understanding this critical information
attached to software components.

6

[Altadmri2015] Amjad Altadmri and Neil C.C. Brown. 37 million compila-
tions: investigating novice programming mistakes in large-scale student data.
In Proc. Technical Symposium on Computer Science Education (SIGCSE).
ACM, 2 2015, DOI 10.1145/2676723.2677258.
Abstract: Previous investigations of student errors have typically focused
on samples of hundreds of students at individual institutions. This work uses
a year’s worth of compilation events from over 250,000 students all over the
world, taken from the large Blackbox data set. We analyze the frequency,
time-to-fix, and spread of errors among users, showing how these factors
inter-relate, in addition to their development over the course of the year.
These results can inform the design of courses, textbooks and also tools to
target the most frequent (or hardest to fix) errors.

[Ameller2012] David Ameller, Claudia Ayala, Jordi Cabot, and Xavier
Franch. How do software architects consider non-functional requirements:
an exploratory study. In Proc. International Requirements Engineering Con-
ference (RE). IEEE, 9 2012, DOI 10.1109/re.2012.6345838.
Abstract: Dealing with non-functional requirements (NFRs) has posed a
challenge onto software engineers for many years. Over the years, many
methods and techniques have been proposed to improve their elicitation,
documentation, and validation. Knowing more about the state of the prac-
tice on these topics may benefit both practitioners’ and researchers’ daily
work. A few empirical studies have been conducted in the past, but none
under the perspective of software architects, in spite of the great influence
that NFRs have on daily architects’ practices. This paper presents some of
the findings of an empirical study based on 13 interviews with software archi-
tects. It addresses questions such as: who decides the NFRs, what types of
NFRs matter to architects, how are NFRs documented, and how are NFRs
validated. The results are contextualized with existing previous work.

[Ames2018] Morgan G. Ames. Hackers, computers, and cooperation: A
critical history of logo and constructionist learning. Proceedings of the
ACM on Human-Computer Interaction, 2(CSCW):1–19, 11 2018, DOI
10.1145/3274287.
Abstract: This paper examines the history of the learning theory “con-
structionism” and its most well-known implementation, Logo, to examine
beliefs involving both “C’s” in CSCW: computers and cooperation. Tracing
the tumultuous history of one of the first examples of computer-supported
cooperative learning (CSCL) allows us to question some present-day assump-
tions regarding the universal appeal of learning to program computers that
undergirds popular CSCL initiatives today, including the Scratch program-
ming environment and the “FabLab” makerspace movement. Furthermore,
teasing out the individualistic and anti-authority threads in this project
and its links to present day narratives of technology development exposes
the deeply atomized and even oppositional notions of collaboration in these
projects and others under the auspices of CSCW today that draw on early
notions of ’hacker culture.’ These notions tend to favor a limited view of

7

work, learning, and practice-an invisible constraint that continues to inform
how we build and evaluate CSCW technologies.

[Anda2009] B.C.D. Anda, D.I.K. Sjøberg, and Audris Mockus. Variability
and reproducibility in software engineering: a study of four companies that
developed the same system. IEEE Transactions on Software Engineering,
35(3):407–429, 5 2009, DOI 10.1109/tse.2008.89.
Abstract: The scientific study of a phenomenon requires it to be repro-
ducible. Mature engineering industries are recognized by projects and prod-
ucts that are, to some extent, reproducible. Yet, reproducibility in soft-
ware engineering (SE) has not been investigated thoroughly, despite the fact
that lack of reproducibility has both practical and scientific consequences.
We report a longitudinal multiple-case study of variations and reproducibil-
ity in software development, from bidding to deployment, on the basis of
the same requirement specification. In a call for tender to 81 companies,
35 responded. Four of them developed the system independently. The firm
price, planned schedule, and planned development process, had, respectively,
“low,” “low,” and “medium” reproducibilities. The contractor’s costs, actual
lead time, and schedule overrun of the projects had, respectively, “medium,”
“high,” and “low” reproducibilities. The quality dimensions of the delivered
products, reliability, usability, and maintainability had, respectively, “low,”
“high,” and “low” reproducibilities. Moreover, variability for predictable rea-
sons is also included in the notion of reproducibility. We found that the ob-
served outcome of the four development projects matched our expectations,
which were formulated partially on the basis of SE folklore. Nevertheless,
achieving more reproducibility in SE remains a great challenge for SE re-
search, education, and industry.

[Apel2011] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer,
and Christian Kästner. Semistructured merge: rethinking merge in re-
vision control systems. In Proc. European Software Engineering Confer-
ence/International Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM Press, 2011, DOI 10.1145/2025113.2025141.
Abstract: An ongoing problem in revision control systems is how to resolve
conflicts in a merge of independently developed revisions. Unstructured revi-
sion control systems are purely text-based and solve conflicts based on tex-
tual similarity. Structured revision control systems are tailored to specific
languages and use language-specific knowledge for conflict resolution. We
propose semistructured revision control systems that inherit the strengths of
both: the generality of unstructured systems and the expressiveness of struc-
tured systems. The idea is to provide structural information of the underly-
ing software artifacts — declaratively, in the form of annotated grammars.
This way, a wide variety of languages can be supported and the information
provided can assist in the automatic resolution of two classes of conflicts:
ordering conflicts and semantic conflicts. The former can be resolved inde-
pendently of the language and the latter using specific conflict handlers. We

8

have been developing a tool that supports semistructured merge and con-
ducted an empirical study on 24 software projects developed in Java, C#,
and Python comprising 180 merge scenarios. We found that semistructured
merge reduces the number of conflicts in 60% of the sample merge scenar-
ios by, on average, 34%, compared to unstructured merge. We found also
that renaming is challenging in that it can increase the number of conflicts
during semistructured merge, and that a combination of unstructured and
semistructured merge is a pragmatic way to go.

[Aranda2009] Jorge Aranda and Gina Venolia. The secret life of bugs: Go-
ing past the errors and omissions in software repositories. In Proc. In-
ternational Conference on Software Engineering (ICSE). IEEE, 2009, DOI
10.1109/icse.2009.5070530.
Abstract: Every bug has a story behind it. The people that discover and
resolve it need to coordinate, to get information from documents, tools, or
other people, and to navigate through issues of accountability, ownership,
and organizational structure. This paper reports on a field study of coordi-
nation activities around bug fixing that used a combination of case study
research and a survey of software professionals. Results show that the histo-
ries of even simple bugs are strongly dependent on social, organizational, and
technical knowledge that cannot be solely extracted through automation of
electronic repositories, and that such automation provides incomplete and
often erroneous accounts of coordination. The paper uses rich bug histories
and survey results to identify common bug fixing coordination patterns and
to provide implications for tool designers and researchers of coordination in
software development.

[Aurora2019] Valerie Aurora and Mary Gardiner. How to Respond to Code
of Conduct Reports. Frame Shift Consulting LLC, version 1.1 edition, 2019.
Abstract: A detailed, experience-based guide to handling what is often the
most difficult situation in any project.

[Bafatakis2019] Nikolaos Bafatakis, Niels Boecker, Wenjie Boon, Martin Ca-
bello Salazar, Jens Krinke, Gazi Oznacar, and Robert White. Python
coding style compliance on stack overflow. In Proc. International Con-
ference on Mining Software Repositories (MSR). IEEE, 5 2019, DOI
10.1109/msr.2019.00042.
Abstract: Software developers all over the world use Stack Overflow (SO)
to interact and exchange code snippets. Research also uses SO to harvest
code snippets for use with recommendation systems. However, previous work
has shown that code on SO may have quality issues, such as security or li-
cense problems. We analyse Python code on SO to determine its coding
style compliance. From 1,962,535 code snippets tagged with ’python’, we
extracted 407,097 snippets of at least 6 statements of Python code. Sur-
prisingly, 93.87% of the extracted snippets contain style violations, with an
average of 0.7 violations per statement and a huge number of snippets with
a considerably higher ratio. Researchers and developers should, therefore,

9

be aware that code snippets on SO may not representative of good coding
style. Furthermore, while user reputation seems to be unrelated to coding
style compliance, for posts with vote scores in the range between -10 and
20, we found a strong correlation (r = −0.87, p < 10−7) between the vote
score a post received and the average number of violations per statement for
snippets in such posts.

[Balachandran2013] Vipin Balachandran. Reducing human effort and im-
proving quality in peer code reviews using automatic static analysis and
reviewer recommendation. In Proc. International Conference on Software
Engineering (ICSE). IEEE, 5 2013, DOI 10.1109/icse.2013.6606642.
Abstract: Peer code review is a cost-effective software defect detection
technique. Tool assisted code review is a form of peer code review, which
can improve both quality and quantity of reviews. However, there is a signifi-
cant amount of human effort involved even in tool based code reviews. Using
static analysis tools, it is possible to reduce the human effort by automat-
ing the checks for coding standard violations and common defect patterns.
Towards this goal, we propose a tool called Review Bot for the integration
of automatic static analysis with the code review process. Review Bot uses
output of multiple static analysis tools to publish reviews automatically.
Through a user study, we show that integrating static analysis tools with
code review process can improve the quality of code review. The developer
feedback for a subset of comments from automatic reviews shows that the
developers agree to fix 93% of all the automatically generated comments.
There is only 14.71% of all the accepted comments which need improve-
ments in terms of priority, comment message, etc. Another problem with
tool assisted code review is the assignment of appropriate reviewers. Review
Bot solves this problem by generating reviewer recommendations based on
change history of source code lines. Our experimental results show that the
recommendation accuracy is in the range of 60%-92%, which is significantly
better than a comparable method based on file change history.

[Balali2018] Sogol Balali, Igor Steinmacher, Umayal Annamalai, Anita
Sarma, and Marco Aurelio Gerosa. Newcomers’ barriers. . . is that
all? an analysis of mentors’ and newcomers’ barriers in OSS projects.
Computer Supported Cooperative Work, 27(3-6):679–714, 4 2018, DOI
10.1007/s10606-018-9310-8.
Abstract: Newcomers’ seamless onboarding is important for open collabo-
ration communities, particularly those that leverage outsiders’ contributions
to remain sustainable. Nevertheless, previous work shows that OSS newcom-
ers often face several barriers to contribute, which lead them to lose motiva-
tion and even give up on contributing. A well-known way to help newcomers
overcome initial contribution barriers is mentoring. This strategy has proven
effective in offline and online communities, and to some extent has been em-
ployed in OSS projects. Studying mentors’ perspectives on the barriers that
newcomers face play a vital role in improving onboarding processes; yet,
OSS mentors face their own barriers, which hinder the effectiveness of the

10

strategy. Since little is known about the barriers mentors face, in this paper,
we investigate the barriers that affect mentors and their newcomer mentees.
We interviewed mentors from OSS projects and qualitatively analyzed their
answers. We found 44 barriers: 19 that affect mentors; and 34 that affect
newcomers (9 affect both newcomers and mentors). Interestingly, most of the
barriers we identified (66%) have a social nature. Additionally, we identified
10 strategies that mentors indicated to potentially alleviate some of the bar-
riers. Since gender-related challenges emerged in our analysis, we conducted
nine follow-up structured interviews to further explore this perspective. The
contributions of this paper include: identifying the barriers mentors face;
bringing the unique perspective of mentors on barriers faced by newcomers;
unveiling strategies that can be used by mentors to support newcomers; and
investigating gender-specific challenges in OSS mentorship. Mentors, new-
comers, online communities, and educators can leverage this knowledge to
foster new contributors to OSS projects.

[Baltes2020] Sebastian Baltes, George Park, and Alexander Serebrenik.
Is 40 the new 60? how popular media portrays the employability of
older software developers. IEEE Software, 37(6):26–31, 11 2020, DOI
10.1109/ms.2020.3014178.
Abstract: We studied the public discourse around age and software de-
velopment, focusing on the United States. This work was designed to build
awareness among decision makers in software projects to help them antici-
pate and mitigate challenges that their older employees may face.

[Bao2021] Lingfeng Bao, Xin Xia, David Lo, and Gail C. Murphy. A
large scale study of long-time contributor prediction for GitHub projects.
IEEE Transactions on Software Engineering, 47(6):1277–1298, 6 2021, DOI
10.1109/tse.2019.2918536.
Abstract: The continuous contributions made by long time contributors
(LTCs) are a key factor enabling open source software (OSS) projects to
be successful and survival. We study Github as it has a large number of
OSS projects and millions of contributors, which enables the study of the
transition from newcomers to LTCs. In this paper, we investigate whether
we can effectively predict newcomers in OSS projects to be LTCs based on
their activity data that is collected from Github. We collect Github data
from GHTorrent, a mirror of Github data. We select the most popular 917
projects, which contain 75,046 contributors. We determine a developer as
a LTC of a project if the time interval between his/her first and last com-
mit in the project is larger than a certain time T . In our experiment, we
use three different settings on the time interval: 1, 2, and 3 years. There
are 9,238, 3,968, and 1,577 contributors who become LTCs of a project in
three settings of time interval, respectively. To build a prediction model, we
extract many features from the activities of developers on Github, which
group into five dimensions: developer profile, repository profile, developer
monthly activity, repository monthly activity, and collaboration network. We
apply several classifiers including naive Bayes, SVM, decision tree, kNN and

11

random forest. We find that random forest classifier achieves the best per-
formance with AUCs of more than 0.75 in all three settings of time interval
for LTCs. We also investigate the most important features that differentiate
newcomers who become LTCs from newcomers who stay in the projects for
a short time. We find that the number of followers is the most important
feature in all three settings of the time interval studied. We also find that
the programming language and the average number of commits contributed
by other developers when a newcomer joins a project also belong to the top
10 most important features in all three settings of time interval for LTCs. Fi-
nally, we provide several implications for action based on our analysis results
to help OSS projects retain newcomers.

[Barbosa2014] Eiji Adachi Barbosa, Alessandro Garcia, and Simone Di-
niz Junqueira Barbosa. Categorizing faults in exception handling: a study
of open source projects. In Proc. Brazilian Symposium on Software Engi-
neering (BSSE). IEEE, 9 2014, DOI 10.1109/sbes.2014.19.
Abstract: Even though exception handling mechanisms have been proposed
as a means to improve software robustness, empirical evidence suggests that
exception handling code is still poorly implemented in industrial systems.
Moreover, it is often claimed that the poor quality of exception handling
code can be a source of faults in a software system. However, there is still a
gap in the literature in terms of better understanding exceptional faults, i.e.,
faults whose causes regard to exception handling. In particular, there is still
little empirical knowledge about what are the specific causes of exceptional
faults in software systems. In this paper we start to fill this gap by pre-
senting a categorization of the causes of exceptional faults observed in two
mainstream open source projects. We observed ten different categories of ex-
ceptional faults, most of which were never reported before in the literature.
Our results pinpoint that current verification and validation mechanisms for
exception handling code are still not properly addressing these categories of
exceptional faults.

[Barik2017] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing
Feng, Emerson Murphy-Hill, and Chris Parnin. Do developers read compiler
error messages? In Proc. International Conference on Software Engineering
(ICSE). IEEE, 5 2017, DOI 10.1109/icse.2017.59.
Abstract: In integrated development environments, developers receive com-
piler error messages through a variety of textual and visual mechanisms, such
as popups and wavy red underlines. Although error messages are the primary
means of communicating defects to developers, researchers have a limited
understanding on how developers actually use these messages to resolve de-
fects. To understand how developers use error messages, we conducted an
eye tracking study with 56 participants from undergraduate and graduate
software engineering courses at our university. The participants attempted
to resolve common, yet problematic defects in a Java code base within the
Eclipse development environment. We found that: 1) participants read error
messages and the difficulty of reading these messages is comparable to the

12

difficulty of reading source code, 2) difficulty reading error messages signifi-
cantly predicts participants’ task performance, and 3) participants allocate a
substantial portion of their total task to reading error messages (13%-25%).
The results of our study offer empirical justification for the need to improve
compiler error messages for developers.

[Barik2018] Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris
Parnin. How should compilers explain problems to developers? In Proc. Eu-
ropean Software Engineering Conference/International Symposium on the
Foundations of Software Engineering (ESEC/FSE). ACM, 10 2018, DOI
10.1145/3236024.3236040.
Abstract: Compilers primarily give feedback about problems to develop-
ers through the use of error messages. Unfortunately, developers routinely
find these messages to be confusing and unhelpful. In this paper, we pos-
tulate that because error messages present poor explanations, theories of
explanation—such as Toulmin’s model of argument—can be applied to im-
prove their quality. To understand how compilers should present explana-
tions to developers, we conducted a comparative evaluation with 68 profes-
sional software developers and an empirical study of compiler error messages
found in Stack Overflow questions across seven different programming lan-
guages. Our findings suggest that, given a pair of error messages, developers
significantly prefer the error message that employs proper argument struc-
ture over a deficient argument structure when neither offers a resolution—but
will accept a deficient argument structure if it provides a resolution to the
problem. Human-authored explanations on Stack Overflow converge to one
of the three argument structures: those that provide a resolution to the error,
simple arguments, and extended arguments that provide additional evidence
for the problem. Finally, we contribute three practical design principles to
inform the design and evaluation of compiler error messages.

[Barke2019] Helena Barke and Lutz Prechelt. Role clarity deficiencies
can wreck agile teams. PeerJ Computer Science, 5:e241, 12 2019, DOI
10.7717/peerj-cs.241.
Abstract: Background One of the twelve agile principles is to build projects
around motivated individuals and trust them to get the job done. Such agile
teams must self-organize, but this involves conflict, making self-organization
difficult. One area of difficulty is agreeing on everybody’s role. Background
What dynamics arise in a self-organizing team from the negotiation of ev-
erybody’s role? Method We conceptualize observations from five agile teams
(work observations, interviews) by Charmazian Grounded Theory Method-
ology. Results We define role as something transient and implicit, not fixed
and named. The roles are characterized by the responsibilities and expec-
tations of each team member. Every team member must understand and
accept their own roles (Local role clarity) and everbody else’s roles (Team-
wide role clarity). Role clarity allows a team to work smoothly and effectively
and to develop its members’ skills fast. Lack of role clarity creates friction
that not only hampers the day-to-day work, but also appears to lead to high

13

employee turnover. Agile coaches are critical to create and maintain role
clarity. Conclusions Agile teams should pay close attention to the levels of
Local role clarity of each member and Team-wide role clarity overall, because
role clarity deficits are highly detrimental.

[Barnett2011] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter
Müller, Wolfram Schulte, and Herman Venter. Specification and verification:
the Spec# experience. Communications of the ACM, 54(6):81–91, 6 2011,
DOI 10.1145/1953122.1953145.
Abstract: Can a programming language really help programmers write
better programs?

[Barr2012] Earl T. Barr, Christian Bird, Peter C. Rigby, Abram Hindle,
Daniel M. German, and Premkumar Devanbu. Cohesive and isolated devel-
opment with branches. In Proc. International Conference on Fundamental
Approaches to Software Engineering (FASE), pages 316–331. Springer Berlin
Heidelberg, 2012, DOI 10.1007/978-3-642-28872-2_22.
Abstract: The adoption of distributed version control (DVC), such as Git
and Mercurial, in open-source software (OSS) projects has been explosive.
Why is this and how are projects using DVC? This new generation of version
control supports two important new features: distributed repositories and
histories that preserve branches and merges. Through interviews with lead
developers in OSS projects and a quantitative analysis of mined data from
the histories of sixty project, we find that the vast majority of the projects
now using DVC continue to use a centralized model of code sharing, while
using branching much more extensively than before their transition to DVC.
We then examine the Linux history in depth in an effort to understand and
evaluate how branches are used and what benefits they provide. We find
that they enable natural collaborative processes: DVC branching allows de-
velopers to collaborate on tasks in highly cohesive branches, while enjoying
reduced interference from developers working on other tasks, even if those
tasks are strongly coupled to theirs.

[Barzilay2011] Ohad Barzilay. Example embedding. In Proc. Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software
(ONWARD). ACM Press, 2011, DOI 10.1145/2089131.2089135.
Abstract: Using code examples in professional software development is
like teenage sex. Those who say they do it all the time are probably lying.
Although it is natural, those who do it feel guilty. Finally, once they start
doing it, they are often not too concerned with safety, they discover that it
is going to take a while to get really good at it, and they realize they will
have to come up with a bunch of new ways of doing it before they really
figure it all out.

[Beck2011] Fabian Beck and Stephan Diehl. On the congruence of modu-
larity and code coupling. In Proc. European Software Engineering Confer-
ence/International Symposium on the Foundations of Software Engineering

14

(ESEC/FSE). ACM Press, 2011, DOI 10.1145/2025113.2025162.
Abstract: Software systems are modularized to make their inherent com-
plexity manageable. While there exists a set of well-known principles that
may guide software engineers to design the modules of a software system,
we do not know which principles are followed in practice. In a study based
on 16 open source projects, we look at different kinds of coupling concepts
between source code entities, including structural dependencies, fan-out sim-
ilarity, evolutionary coupling, code ownership, code clones, and semantic
similarity. The congruence between these coupling concepts and the modu-
larization of the system hints at the modularity principles used in practice.
Furthermore, the results provide insights on how to support developers to
modularize software systems.

[Becker2019] Brett A. Becker, Paul Denny, Raymond Pettit, Durell
Bouchard, Dennis J. Bouvier, Brian Harrington, Amir Kamil, Amey
Karkare, Chris McDonald, Peter-Michael Osera, Janice L. Pearce, and James
Prather. Compiler error messages considered unhelpful. In Proc. Conference
on Innovation and Technology in Computer Science Education (ITiCSE).
ACM, 12 2019, DOI 10.1145/3344429.3372508.
Abstract: Diagnostic messages generated by compilers and interpreters
such as syntax error messages have been researched for over half of a century.
Unfortunately, these messages which include error, warning, and run-time
messages, present substantial difficulty and could be more effective, particu-
larly for novices. Recent years have seen an increased number of papers in the
area including studies on the effectiveness of these messages, improving or
enhancing them, and their usefulness as a part of programming process data
that can be used to predict student performance, track student progress, and
tailor learning plans. Despite this increased interest, the long history of liter-
ature is quite scattered and has not been brought together in any digestible
form. In order to help the computing education community (and related
communities) to further advance work on programming error messages, we
present a comprehensive, historical and state-of-the-art report on research
in the area. In addition, we synthesise and present the existing evidence for
these messages including the difficulties they present and their effectiveness.
We finally present a set of guidelines, curated from the literature, classi-
fied on the type of evidence supporting each one (historical, anecdotal, and
empirical). This work can serve as a starting point for those who wish to
conduct research on compiler error messages, runtime errors, and warnings.
We also make the bibtex file of our 300+ reference corpus publicly available.
Collectively this report and the bibliography will be useful to those who wish
to design better messages or those that aim to measure their effectiveness,
more effectively.

[Begel2014] Andrew Begel and Thomas Zimmermann. Analyze this! 145
questions for data scientists in software engineering. In Proc. Interna-
tional Conference on Software Engineering (ICSE). ACM, 5 2014, DOI
10.1145/2568225.2568233.

15

Abstract: In this paper, we present the results from two surveys related
to data science applied to software engineering. The first survey solicited
questions that software engineers would like data scientists to investigate
about software, about software processes and practices, and about software
engineers. Our analyses resulted in a list of 145 questions grouped into 12
categories. The second survey asked a different pool of software engineers
to rate these 145 questions and identify the most important ones to work
on first. Respondents favored questions that focus on how customers typi-
cally use their applications. We also saw opposition to questions that assess
the performance of individual employees or compare them with one another.
Our categorization and catalog of 145 questions can help researchers, prac-
titioners, and educators to more easily focus their efforts on topics that are
important to the software industry.

[Behroozi2019] Mahnaz Behroozi, Chris Parnin, and Titus Barik. Hiring is
broken: What do developers say about technical interviews? In Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 10
2019, DOI 10.1109/vlhcc.2019.8818836.
Abstract: Technical interviews—a problem-solving form of interview in
which candidates write code—are commonplace in the software industry,
and are used by several well-known companies including Facebook, Google,
and Microsoft. These interviews are intended to objectively assess candidates
and determine fit within the company. But what do developers say about
them?To understand developer perceptions about technical interviews, we
conducted a qualitative study using the online social news website, Hacker
News—a venue for software practitioners. Hacker News posters report several
concerns and negative perceptions about interviews, including their lack of
real-world relevance, bias towards younger developers, and demanding time
commitment. Posters report that these interviews cause unnecessary anxi-
ety and frustration, requiring them to learn arbitrary, implicit, and obscure
norms. The findings from our study inform inclusive hiring guidelines for
technical interviews, such as collaborative problem-solving sessions.

[Behroozi2020] Mahnaz Behroozi, Shivani Shirolkar, Titus Barik, and Chris
Parnin. Debugging hiring: What went right and what went wrong in the
technical interview process. In Proc. International Conference on Software
Engineering (ICSE). ACM, 2020, DOI 10.1145/3377815.3381372.
Abstract: The typical hiring pipeline for software engineering occurs over
several stages—from phone screening and technical on-site interviews, to of-
fer and negotiation. When these hiring pipelines are “leaky,” otherwise qual-
ified candidates are lost at some stage of the pipeline. These leaky pipelines
impact companies in several ways, including hindering a company’s ability
to recruit competitive candidates and build diverse software teams.To under-
stand where candidates become disengaged in the hiring pipeline—and what
companies can do to prevent it—we conducted a qualitative study on over
10,000 reviews on 19 companies from Glassdoor, a website where candidates
can leave reviews about their hiring process experiences. We identified several

16

poor practices which prematurely sabotage the hiring process—for example,
not adequately communicating hiring criteria, conducting interviews with
inexperienced interviewers, and ghosting candidates. Our findings provide a
set of guidelines to help companies improve their hiring pipeline practices—
such as being deliberate about phrasing and language during initial contact
with the candidate, providing candidates with constructive feedback after
their interviews, and bringing salary transparency and long-term career dis-
cussions into offers and negotiations. Operationalizing these guidelines helps
make the hiring pipeline more transparent, fair, and inclusive.

[Beller2015] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy
Zaidman. When, how, and why developers (do not) test in their IDEs. In
Proc. European Software Engineering Conference/International Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM, 8 2015,
DOI 10.1145/2786805.2786843.
Abstract: The research community in Software Engineering and Software
Testing in particular builds many of its contributions on a set of mutually
shared expectations. Despite the fact that they form the basis of many pub-
lications as well as open-source and commercial testing applications, these
common expectations and beliefs are rarely ever questioned. For example,
Frederic Brooks’ statement that testing takes half of the development time
seems to have manifested itself within the community since he first made
it in the “Mythical Man Month” in 1975. With this paper, we report on
the surprising results of a large-scale field study with 416 software engineers
whose development activity we closely monitored over the course of five
months, resulting in over 13 years of recorded work time in their integrated
development environments (IDEs). Our findings question several commonly
shared assumptions and beliefs about testing and might be contributing fac-
tors to the observed bug proneness of software in practice: the majority of
developers in our study does not test; developers rarely run their tests in
the IDE; Test-Driven Development (TDD) is not widely practiced; and, last
but not least, software developers only spend a quarter of their work time
engineering tests, whereas they think they test half of their time.

[Beller2019] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian
Proksch, Sven Amann, and Andy Zaidman. Developer testing in the IDE:
Patterns, beliefs, and behavior. IEEE Transactions on Software Engineering,
45(3):261–284, 3 2019, DOI 10.1109/tse.2017.2776152.
Abstract: Software testing is one of the key activities to achieve software
quality in practice. Despite its importance, however, we have a remarkable
lack of knowledge on how developers test in real-world projects. In this paper,
we report on a large-scale field study with 2,443 software engineers whose
development activities we closely monitored over 2.5 years in four integrated
development environments (IDEs). Our findings, which largely generalized
across the studied IDEs and programming languages Java and C#, question
several commonly shared assumptions and beliefs about developer testing:
half of the developers in our study do not test; developers rarely run their

17

tests in the IDE; most programming sessions end without any test execution;
only once they start testing, do they do it extensively; a quarter of test cases
is responsible for three quarters of all test failures; 12 percent of tests show
flaky behavior; Test-Driven Development (TDD) is not widely practiced;
and software developers only spend a quarter of their time engineering tests,
whereas they think they test half of their time. We summarize these practices
of loosely guiding one’s development efforts with the help of testing in an
initial summary on Test-Guided Development (TGD), a behavior we argue
to be closer to the development reality of most developers than TDD.

[BenAri2011] Mordechai Ben-Ari, Roman Bednarik, Ronit Ben-Bassat Levy,
Gil Ebel, Andrés Moreno, Niko Myller, and Erkki Sutinen. A decade of
research and development on program animation: the Jeliot experience.
Journal of Visual Languages & Computing, 22(5):375–384, 10 2011, DOI
10.1016/j.jvlc.2011.04.004.
Abstract: Jeliot is a program animation system for teaching and learn-
ing elementary programming that has been developed over the past decade,
building on the Eliot animation system developed several years before. Ex-
tensive pedagogical research has been done on various aspects of the use of
Jeliot including improvements in learning, effects on attention, and accep-
tance by teachers. This paper surveys this research and development, and
summarizes the experience and the lessons learned.

[Beniamini2017] Gal Beniamini, Sarah Gingichashvili, Alon Klein Orbach,
and Dror G. Feitelson. Meaningful identifier names: the case of single-letter
variables. In Proc. International Conference on Program Comprehension
(ICPC). IEEE, 5 2017, DOI 10.1109/icpc.2017.18.
Abstract: It is widely accepted that variable names in computer programs
should be meaningful, and that this aids program comprehension. “Meaning-
ful” is commonly interpreted as favoring long descriptive names. However,
there is at least some use of short and even single-letter names: using i
in loops is very common, and we show (by extracting variable names from
1000 popular GitHub projects in 5 languages) that some other letters are
also widely used. In addition, controlled experiments with different versions
of the same functions (specifically, different variable names) failed to show
significant differences in ability to modify the code. Finally, an online survey
showed that certain letters are strongly associated with certain types and
meanings. This implies that a single letter can in fact convey meaning. The
conclusion from all this is that single letter variables can indeed be used
beneficially in certain cases, leading to more concise code.

[Bettenburg2008] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin
Weiss, Rahul Premraj, and Thomas Zimmermann. What makes a good bug
report? In Proc. International Symposium on Foundations of Software Engi-
neering/International Symposium on the Foundations of Software Engineer-
ing (SIGSOFT/FSE). ACM Press, 2008, DOI 10.1145/1453101.1453146.
Abstract: In software development, bug reports provide crucial informa-

18

tion to developers. However, these reports widely differ in their quality. We
conducted a survey among developers and users of Apache, Eclipse, and
Mozilla to find out what makes a good bug report. The analysis of the 466
responses revealed an information mismatch between what developers need
and what users supply. Most developers consider steps to reproduce, stack
traces, and test cases as helpful, which are, at the same time, most difficult
to provide for users. Such insight is helpful for designing new bug tracking
tools that guide users at collecting and providing more helpful information.
Our Cuezilla prototype is such a tool and measures the quality of new bug
reports; it also recommends which elements should be added to improve the
quality. We trained Cuezilla on a sample of 289 bug reports, rated by de-
velopers as part of the survey. The participants of our survey also provided
175 comments on hurdles in reporting and resolving bugs. Based on these
comments, we discuss several recommendations for better bug tracking sys-
tems, which should focus on engaging bug reporters, better tool support,
and improved handling of bug duplicates.

[Bi2021] Tingting Bi, Wei Ding, Peng Liang, and Antony Tang. Architec-
ture information communication in two OSS projects: The why, who, when,
and what. Journal of Systems and Software, 181:111035, 11 2021, DOI
10.1016/j.jss.2021.111035.
Abstract: Architecture information is vital for Open Source Software (OSS)
development, and mailing list is one of the widely used channels for devel-
opers to share and communicate architecture information. This work in-
vestigates the nature of architecture information communication (i.e., why,
who, when, and what) by OSS developers via developer mailing lists. We
employed a multiple case study approach to extract and analyze the ar-
chitecture information communication from the developer mailing lists of
two OSS projects, ArgoUML and Hibernate, during their development life-
cycle of over 18 years. Our main findings are: (a) architecture negotiation
and interpretation are the two main reasons (i.e., why) of architecture com-
munication; (b) the amount of architecture information communicated in
developer mailing lists decreases after the first stable release (i.e., when);
(c) architecture communications centered around a few core developers (i.e.,
who); (d) and the most frequently communicated architecture elements (i.e.,
what) are Architecture Rationale and Architecture Model. There are a few
similarities of architecture communication between the two OSS projects.
Such similarities point to how OSS developers naturally gravitate towards
the four aspects of architecture communication in OSS development.

[Bird2011] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald
Gall, and Premkumar Devanbu. Don't touch my code!: examining the ef-
fects of ownership on software quality. In Proc. International Symposium
on Foundations of Software Engineering/International Symposium on the
Foundations of Software Engineering (SIGSOFT/FSE). ACM Press, 2011,
DOI 10.1145/2025113.2025119.
Abstract: Ownership is a key aspect of large-scale software development.

19

We examine the relationship between different ownership measures and soft-
ware failures in two large software projects: Windows Vista and Windows
7. We find that in all cases, measures of ownership such as the number of
low-expertise developers, and the proportion of ownership for the top owner
have a relationship with both pre-release faults and post-release failures. We
also empirically identify reasons that low-expertise developers make changes
to components and show that the removal of low-expertise contributions
dramatically decreases the performance of contribution based defect predic-
tion. Finally we provide recommendations for source code change policies
and utilization of resources such as code inspections based on our results.

[Blackwell2019] Alan F. Blackwell, Marian Petre, and Luke Church.
Fifty years of the psychology of programming. International
Journal of Human-Computer Studies, 131:52–63, 11 2019, DOI
10.1016/j.ijhcs.2019.06.009.
Abstract: Abstract This paper reflects on the evolution (past, present and
future) of the ’psychology of programming’ over the 50 year period of this
anniversary issue. The International Journal of Human-Computer Studies
(IJHCS) has been a key venue for much seminal work in this field, including
its first foundations, and we review the changing research concerns seen
in publications over these five decades. We relate this thematic evolution
to research taking place over the same period within more specialist
communities, especially the Psychology of Programming Interest Group
(PPIG), the Empirical Studies of Programming series (ESP), and the
ongoing community in Visual Languages and Human-Centric Computing
(VL/HCC). Many other communities have interacted with psychology of
programming, both influenced by research published within the specialist
groups, and in turn influencing research priorities. We end with an overview
of the core theories that have been developed over this period, as an
introductory resource for new researchers, and also with the authors’ own
analysis of key priorities for future research.

[Bluedorn1999] Allen C. Bluedorn, Daniel B. Turban, and Mary Sue
Love. The effects of stand-up and sit-down meeting formats on meet-
ing outcomes. Journal of Applied Psychology, 84(2):277–285, 1999, DOI
10.1037/0021-9010.84.2.277.
Abstract: The effects of meeting format (standing or sitting) on meeting
length and the quality of group decision making were investigated by com-
paring meeting outcomes for 56 five-member groups that conducted meetings
in a standing format with 55 five-member groups that conducted meetings in
a seated format. Sit-down meetings were 34% longer than stand-up meetings,
but they produced no better decisions than stand-up meetings. Significant
differences were also obtained for satisfaction with the meeting and task in-
formation use during the meeting but not for synergy or commitment to
the group’s decision. The findings were generally congruent with meeting-
management recommendations in the time-management literature, although

20

the lack of a significant difference for decision quality was contrary to theo-
retical expectations. This contrary finding may have been due to differences
between the temporal context in which this study was conducted and those in
which other time constraint research has been conducted, thereby revealing
a potentially important contingency-temporal context.

[Bogart2021] Chris Bogart, Christian Kästner, James Herbsleb, and Fer-
dian Thung. When and how to make breaking changes. ACM Transac-
tions on Software Engineering and Methodology, 30(4):1–56, 7 2021, DOI
10.1145/3447245.
Abstract: Open source software projects often rely on package management
systems that help projects discover, incorporate, and maintain dependencies
on other packages, maintained by other people. Such systems save a great
deal of effort over ad hoc ways of advertising, packaging, and transmitting
useful libraries, but coordination among project teams is still needed when
one package makes a breaking change affecting other packages. Ecosystems
differ in their approaches to breaking changes, and there is no general the-
ory to explain the relationships between features, behavioral norms, ecosys-
tem outcomes, and motivating values. We address this through two em-
pirical studies. In an interview case study, we contrast Eclipse, NPM, and
CRAN, demonstrating that these different norms for coordination of break-
ing changes shift the costs of using and maintaining the software among
stakeholders, appropriate to each ecosystem’s mission. In a second study,
we combine a survey, repository mining, and document analysis to broaden
and systematize these observations across 18 ecosystems. We find that all
ecosystems share values such as stability and compatibility, but differ in
other values. Ecosystems’ practices often support their espoused values, but
in surprisingly diverse ways. The data provides counterevidence against easy
generalizations about why ecosystem communities do what they do.

[Bogomolov2021] Egor Bogomolov, Vladimir Kovalenko, Yurii Rebryk, Al-
berto Bacchelli, and Timofey Bryksin. Authorship attribution of source code:
a language-agnostic approach and applicability in software engineering. In
Proc. European Software Engineering Conference/International Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM, 8 2021,
DOI 10.1145/3468264.3468606.
Abstract: Authorship attribution (i.e., determining who is the author of a
piece of source code) is an established research topic. State-of-the-art results
for the authorship attribution problem look promising for the software en-
gineering field, where they could be applied to detect plagiarized code and
prevent legal issues. With this article, we first introduce a new language-
agnostic approach to authorship attribution of source code. Then, we dis-
cuss limitations of existing synthetic datasets for authorship attribution, and
propose a data collection approach that delivers datasets that better reflect
aspects important for potential practical use in software engineering. Finally,
we demonstrate that high accuracy of authorship attribution models on ex-
isting datasets drastically drops when they are evaluated on more realistic

21

data. We outline next steps for the design and evaluation of authorship at-
tribution models that could bring the research efforts closer to practical use
for software engineering.

[Borle2017] Neil C. Borle, Meysam Feghhi, Eleni Stroulia, Russell Greiner,
and Abram Hindle. Analyzing the effects of test driven development in
GitHub. Empirical Software Engineering, 23(4):1931–1958, 11 2017, DOI
10.1007/s10664-017-9576-3.
Abstract: Testing is an integral part of the software development lifecycle,
approached with varying degrees of rigor by different process models. Agile
process models recommend Test Driven Development (TDD) as a key prac-
tice for reducing costs and improving code quality. The objective of this work
is to perform a cost-benefit analysis of this practice. To that end, we have
conducted a comparative analysis of GitHub repositories that adopts TDD
to a lesser or greater extent, in order to determine how TDD affects software
development productivity and software quality. We classified GitHub repos-
itories archived in 2015 in terms of how rigorously they practiced TDD, thus
creating a TDD spectrum. We then matched and compared various subsets
of these repositories on this TDD spectrum with control sets of equal size.
The control sets were samples from all GitHub repositories that matched cer-
tain characteristics, and that contained at least one test file. We compared
how the TDD sets differed from the control sets on the following characteris-
tics: number of test files, average commit velocity, number of bug-referencing
commits, number of issues recorded, usage of continuous integration, num-
ber of pull requests, and distribution of commits per author. We found that
Java TDD projects were relatively rare. In addition, there were very few
significant differences in any of the metrics we used to compare TDD-like
and non-TDD projects; therefore, our results do not reveal any observable
benefits from using TDD.

[Brown2018] Neil C. C. Brown, Amjad Altadmri, Sue Sentance, and Michael
Kölling. Blackbox, five years on: an evaluation of a large-scale programming
data collection project. In Proc. Conference on International Computing Ed-
ucation Research (ICER). ACM, 8 2018, DOI 10.1145/3230977.3230991.
Abstract: The Blackbox project has been collecting programming activity
data from users of BlueJ (a novice-targeted Java development environment)
for nearly five years. The resulting dataset of more than two terabytes of
data has been made available to interested researchers from the outset. In
this paper, we assess the impact of the Blackbox project: we perform a
mapping study to assess eighteen publications which have made use of the
Blackbox data, and we report on the advantages and difficulties experienced
by researchers working with this data, collected via a survey. We find that
Blackbox has enabled pieces of research which otherwise would not have
been possible, but there remain technical challenges in the analysis. Some
of these—but not all—relate to the scale of the data. We provide sugges-
tions for the future use of Blackbox, and reflections on the role of such data
collection projects in programming research.

22

[Brown2020] Chris Brown and Chris Parnin. Understanding the impact of
GitHub suggested changes on recommendations between developers. In Proc.
European Software Engineering Conference/International Symposium on the
Foundations of Software Engineering (ESEC/FSE). ACM, 11 2020, DOI
10.1145/3368089.3409722.
Abstract: Recommendations between colleagues are effective for encourag-
ing developers to adopt better practices. Research shows these peer interac-
tions are useful for improving developer behaviors, or the adoption of activ-
ities to help software engineers complete programming tasks. However, in-
person recommendations between developers in the workplace are declining.
One form of online recommendations between developers are pull requests,
which allow users to propose code changes and provide feedback on contri-
butions. GitHub, a popular code hosting platform, recently introduced the
suggested changes feature, which allows users to recommend improvements
for pull requests. To better understand this feature and its impact on recom-
mendations between developers, we report an empirical study of this system,
measuring usage, effectiveness, and perception. Our results show that sug-
gested changes support code review activities and significantly impact the
timing and communication between developers on pull requests. This work
provides insight into the suggested changes feature and implications for im-
proving future systems for automated developer recommendations, such as
providing situated, concise, and actionable feedback.

[Brun2011] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin.
Proactive detection of collaboration conflicts. In Proc. International Sym-
posium on Foundations of Software Engineering/International Symposium
on the Foundations of Software Engineering (SIGSOFT/FSE). ACM Press,
2011, DOI 10.1145/2025113.2025139.
Abstract: Collaborative development can be hampered when conflicts arise
because developers have inconsistent copies of a shared project. We present
an approach to help developers identify and resolve conflicts early, before
those conflicts become severe and before relevant changes fade away in the
developers’ memories. This paper presents three results. First, a study of
open-source systems establishes that conflicts are frequent, persistent, and
appear not only as overlapping textual edits but also as subsequent build and
test failures. The study spans nine open-source systems totaling 3.4 million
lines of code; our conflict data is derived from 550,000 development versions
of the systems. Second, using previously-unexploited information, we pre-
cisely diagnose important classes of conflicts using the novel technique of
speculative analysis over version control operations. Third, we describe the
design of Crystal, a publicly-available tool that uses speculative analysis to
make concrete advice unobtrusively available to developers, helping them
identify, manage, and prevent conflicts.

[Butler2019] Simon Butler, Jonas Gamalielsson, Bjorn Lundell, Christoffer
Brax, Johan Sjoberg, Anders Mattsson, Tomas Gustavsson, Jonas Feist,
and Erik Lonroth. On company contributions to community open source

23

software projects. IEEE Transactions on Software Engineering, pages 1–1,
2019, DOI 10.1109/tse.2019.2919305.
Abstract: The majority of contributions to community open source soft-
ware (OSS) projects are made by practitioners acting on behalf of companies
and other organisations. Previous research has addressed the motivations of
both individuals and companies to engage with OSS projects. However, lim-
ited research has been undertaken that examines and explains the practical
mechanisms or work practices used by companies and their developers to
pursue their commercial and technical objectives when engaging with OSS
projects. This research investigates the variety of work practices used in
public communication channels by company contributors to engage with
and contribute to eight community OSS projects. Through interviews with
contributors to the eight projects we draw on their experiences and insights
to explore the motivations to use particular methods of contribution. We
find that companies utilise work practices for contributing to community
projects which are congruent with the circumstances and their capabilities
that support their short- and long-term needs. We also find that compa-
nies contribute to community OSS projects in ways that may not always
be apparent from public sources, such as employing core project developers,
making donations, and joining project steering committees in order to ad-
vance strategic interests. The factors influencing contributor work practices
can be complex and are often dynamic arising from considerations such as
company and project structure, as well as technical concerns and commer-
cial strategies. The business context in which software created by the OSS
project is deployed is also found to influence contributor work practices.

[Cabral2007] Bruno Cabral and Paulo Marques. Exception handling: A field
study in java and .NET. In Proc. European Conference on Object-Oriented
Programming (ECOOP), pages 151–175. Springer Berlin Heidelberg, 2007,
DOI 10.1007/978-3-540-73589-2_8.
Abstract: Most modern programming languages rely on exceptions for
dealing with abnormal situations. Although exception handling was a signif-
icant improvement over other mechanisms like checking return codes, it is
far from perfect. In fact, it can be argued that this mechanism is seriously
limited, if not, flawed. This paper aims to contribute to the discussion by
providing quantitative measures on how programmers are currently using ex-
ception handling. We examined 32 different applications, both for Java and
.NET. The major conclusion for this work is that exceptions are not being
correctly used as an error recovery mechanism. Exception handlers are not
specialized enough for allowing recovery and, typically, programmers just
do one of the following actions: logging, user notification and application
termination. To our knowledge, this is the most comprehensive study done
on exception handling to date, providing a quantitative measure useful for
guiding the development of new error handling mechanisms.

[Campos2017] Eduardo Cunha Campos and Marcelo de Almeida Maia. Com-
mon bug-fix patterns: a large-scale observational study. In Proc. Inter-

24

national Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, 11 2017, DOI 10.1109/esem.2017.55.
Abstract: [Background]: There are more bugs in real-world programs than
human programmers can realistically address. Several approaches have been
proposed to aid debugging. A recent research direction that has been in-
creasingly gaining interest to address the reduction of costs associated with
defect repair is automatic program repair. Recent work has shown that some
kind of bugs are more suitable for automatic repair techniques. [Aim]: The
detection and characterization of common bug-fix patterns in software repos-
itories play an important role in advancing the field of automatic program
repair. In this paper, we aim to characterize the occurrence of known bug-
fix patterns in Java repositories at an unprecedented large scale. [Method]:
The study was conducted for Java GitHub projects organized in two distinct
data sets: the first one (i.e., Boa data set) contains more than 4 million bug-
fix commits from 101,471 projects and the second one (i.e., Defects4J data
set) contains 369 real bug fixes from five open-source projects. We used a
domain-specific programming language called Boa in the first data set and
conducted a manual analysis on the second data set in order to confront the
results. [Results]: We characterized the prevalence of the five most common
bug-fix patterns (identified in the work of Pan et al.) in those bug fixes. The
combined results showed direct evidence that developers often forget to add
IF preconditions in the code. Moreover, 76% of bug-fix commits associated
with the IF-APC bug-fix pattern are isolated from the other four bug-fix
patterns analyzed. [Conclusion]: Targeting on bugs that miss preconditions
is a feasible alternative in automatic repair techniques that would produce
a relevant payback.

[Cates2021] Roee Cates, Nadav Yunik, and Dror G. Feitelson. Does code
structure affect comprehension? on using and naming intermediate vari-
ables. IEEE, 5 2021, DOI 10.1109/icpc52881.2021.00020.
Abstract: Intermediate variables can be used to break complex expressions
into more manageable smaller expressions, which may be easier to under-
stand. But it is unclear when and whether this actually helps. We conducted
an experiment in which subjects read 6 mathematical functions and were
supposed to give them meaningful names. 113 subjects participated, of which
58% had 3 or more years of programming work experience. Each function
had 3 versions: using a compound expression, using intermediate variables
with meaningless names, or using intermediate variables with meaningful
names. The results were that in only one case there was a significant differ-
ence between the two extreme versions, in favor of the one with intermediate
variables with meaningful names. This case was the function that was the
hardest to understand to begin with. In two additional cases using inter-
mediate variables with meaningless names appears to have caused a slight
decrease in understanding. In all other cases the code structure did not make
much of a difference. As it is hard to anticipate what others will find difficult
to understand, the conclusion is that using intermediate variables is gener-

25

ally desirable. However, this recommendation hinges on giving them good
names.

[Catolino2019] Gemma Catolino, Fabio Palomba, Damian A. Tamburri,
Alexander Serebrenik, and Filomena Ferrucci. Gender diversity and women
in software teams: How do they affect community smells? In Proc. Inter-
national Conference on Software Engineering (ICSE). IEEE, 5 2019, DOI
10.1109/icse-seis.2019.00010.
Abstract: As social as software engineers are, there is a known and es-
tablished gender imbalance in our community structures, regardless of their
open-or closed-source nature. To shed light on the actual benefits of achiev-
ing such balance, this empirical study looks into the relations between such
balance and the occurrence of community smells, that is, sub-optimal circum-
stances and patterns across the software organizational structure. Examples
of community smells are Organizational Silo effects (overly disconnected sub-
groups) or Lone Wolves (defiant community members). Results indicate that
the presence of women generally reduces the amount of community smells.
We conclude that women are instrumental to reducing community smells in
software development teams.

[Chatterjee2021] Preetha Chatterjee, Kostadin Damevski, Nicholas A. Kraft,
and Lori Pollock. Automatically identifying the quality of developer chats
for post hoc use. ACM Transactions on Software Engineering and Method-
ology, 30(4):1–28, 7 2021, DOI 10.1145/3450503.
Abstract: Software engineers are crowdsourcing answers to their everyday
challenges on Q&A forums (e.g., Stack Overflow) and more recently in pub-
lic chat communities such as Slack, IRC, and Gitter. Many software-related
chat conversations contain valuable expert knowledge that is useful for both
mining to improve programming support tools and for readers who did not
participate in the original chat conversations. However, most chat platforms
and communities do not contain built-in quality indicators (e.g., accepted
answers, vote counts). Therefore, it is difficult to identify conversations that
contain useful information for mining or reading, i.e., conversations of post
hoc quality. In this article, we investigate automatically detecting developer
conversations of post hoc quality from public chat channels. We first describe
an analysis of 400 developer conversations that indicate potential character-
istics of post hoc quality, followed by a machine learning-based approach for
automatically identifying conversations of post hoc quality. Our evaluation
of 2,000 annotated Slack conversations in four programming communities
(python, clojure, elm, and racket) indicates that our approach can achieve
precision of 0.82, recall of 0.90, F-measure of 0.86, and MCC of 0.57. To
our knowledge, this is the first automated technique for detecting developer
conversations of post hoc quality.

[Chattopadhyay2020] Souti Chattopadhyay, Nicholas Nelson, Audrey Au,
Natalia Morales, Christopher Sanchez, Rahul Pandita, and Anita Sarma. A
tale from the trenches: cognitive biases and software development. In Proc.

26

International Conference on Software Engineering (ICSE). ACM, 6 2020,
DOI 10.1145/3377811.3380330.
Abstract: Cognitive biases are hard-wired behaviors that influence devel-
oper actions and can set them on an incorrect course of action, necessitating
backtracking. While researchers have found that cognitive biases occur in
development tasks in controlled lab studies, we still don’t know how these
biases affect developers’ everyday behavior. Without such an understand-
ing, development tools and practices remain inadequate. To close this gap,
we conducted a 2-part field study to examine the extent to which cognitive
biases occur, the consequences of these biases on developer behavior, and
the practices and tools that developers use to deal with these biases. About
70% of observed actions that were reversed were associated with at least one
cognitive bias. Further, even though developers recognized that biases fre-
quently occur, they routinely are forced to deal with such issues with ad hoc
processes and sub-optimal tool support. As one participant (IP12) lamented:
There is no salvation!

[Chen2016] Tse-Hsun Chen, Weiyi Shang, Jinqiu Yang, Ahmed E. Hassan,
Michael W. Godfrey, Mohamed Nasser, and Parminder Flora. An empirical
study on the practice of maintaining object-relational mapping code in Java
systems. In Proc. International Conference on Mining Software Repositories
(MSR). ACM, 5 2016, DOI 10.1145/2901739.2901758.
Abstract: Databases have become one of the most important components
in modern software systems. For example, web services, cloud comput-
ing systems, and online transaction processing systems all rely heavily on
databases. To abstract the complexity of accessing a database, developers
make use of Object-Relational Mapping (ORM) frameworks. ORM frame-
works provide an abstraction layer between the application logic and the
underlying database. Such abstraction layer automatically maps objects in
Object-Oriented Languages to database records, which significantly reduces
the amount of boilerplate code that needs to be written. Despite the ad-
vantages of using ORM frameworks, we observe several difficulties in main-
taining ORM code (i.e., code that makes use of ORM frameworks) when
cooperating with our industrial partner. After conducting studies on other
open source systems, we find that such difficulties are common in other
Java systems. Our study finds that i) ORM cannot completely encapsulate
database accesses in objects or abstract the underlying database technology,
thus may cause ORM code changes more scattered; ii) ORM code changes
are more frequent than regular code, but there is a lack of tools that help
developers verify ORM code at compilation time; iii) we find that changes
to ORM code are more commonly due to performance or security reasons;
however, traditional static code analyzers need to be extended to capture
the peculiarities of ORM code in order to detect such problems. Our study
highlights the hidden maintenance costs of using ORM frameworks, and pro-
vides some initial insights about potential approaches to help maintain ORM
code. Future studies should carefully examine ORM code, especially given

27

the rising use of ORM in modern software systems.

[Cherubini2007] Mauro Cherubini, Gina Venolia, Rob DeLine, and Amy J.
Ko. Let's go to the whiteboard: how and why software developers use draw-
ings. In Proc. Conference on Human Factors in Computing Systems (HFCS).
ACM, 4 2007, DOI 10.1145/1240624.1240714.
Abstract: Software developers are rooted in the written form of their code,
yet they often draw diagrams representing their code. Unfortunately, we
still know little about how and why they create these diagrams, and so there
is little research to inform the design of visual tools to support develop-
ers’ work. This paper presents findings from semi-structured interviews that
have been validated with a structured survey. Results show that most of
the diagrams had a transient nature because of the high cost of changing
whiteboard sketches to electronic renderings. Diagrams that documented de-
sign decisions were often externalized in these temporary drawings and then
subsequently lost. Current visualization tools and the software development
practices that we observed do not solve these issues, but these results suggest
several directions for future research.

[Chong2007] Jan Chong and Tom Hurlbutt. The social dynamics of pair
programming. In Proc. International Conference on Software Engineering
(ICSE). IEEE, 5 2007, DOI 10.1109/icse.2007.87.
Abstract: This paper presents data from a four month ethnographic study
of professional pair programmers from two software development teams. Con-
trary to the current conception of pair programmers, the pairs in this study
did not hew to the separate roles of “driver” and “navigator”. Instead, the
observed programmers moved together through different phases of the task,
considering and discussing issues at the same strategic “range” or level of
abstraction and in largely the same role. This form of interaction was re-
inforced by frequent switches in keyboard control during pairing and the
use of dual keyboards. The distribution of expertise among the members
of a pair had a strong influence on the tenor of pair programming interac-
tion. Keyboard control had a consistent secondary effect on decisionmaking
within the pair. These findings have implications for software development
managers and practitioners as well as for the design of software development
tools.

[Cinneide2012] Mel Ó Cinnéide, Laurence Tratt, Mark Harman, Steve Coun-
sell, and Iman Hemati Moghadam. Experimental assessment of software
metrics using automated refactoring. In Proc. International Symposium
on Empirical Software Engineering and Measurement (ESEM). ACM Press,
2012, DOI 10.1145/2372251.2372260.
Abstract: A large number of software metrics have been proposed in the
literature, but there is little understanding of how these metrics relate to one
another. We propose a novel experimental technique, based on search-based
refactoring, to assess software metrics and to explore relationships between
them. Our goal is not to improve the program being refactored, but to assess

28

the software metrics that guide the automated refactoring through repeated
refactoring experiments. We apply our approach to five popular cohesion
metrics using eight real-world Java systems, involving 300,000 lines of code
and over 3,000 refactorings. Our results demonstrate that cohesion metrics
disagree with each other in 55% of cases, and show how our approach can be
used to reveal novel and surprising insights into the software metrics under
investigation.

[Coelho2016] Roberta Coelho, Lucas Almeida, Georgios Gousios, Arie van
Deursen, and Christoph Treude. Exception handling bug hazards in An-
droid. Empirical Software Engineering, 22(3):1264–1304, 8 2016, DOI
10.1007/s10664-016-9443-7.
Abstract: Adequate handling of exceptions has proven difficult for many
software engineers. Mobile app developers in particular, have to cope with
compatibility, middleware, memory constraints, and battery restrictions.
The goal of this paper is to obtain a thorough understanding of common
exception handling bug hazards that app developers face. To that end, we
first provide a detailed empirical study of over 6,000 Java exception stack
traces we extracted from over 600 open source Android projects. Key insights
from this study include common causes for system crashes, and common
chains of wrappings between checked and unchecked exceptions. Further-
more, we provide a survey with 71 developers involved in at least one of
the projects analyzed. The results corroborate the stack trace findings, and
indicate that developers are unaware of frequently occurring undocumented
exception handling behavior. Overall, the findings of our study call for tool
support to help developers understand their own and third party exception
handling and wrapping logic.

[Cogo2021] Filipe R. Cogo, Gustavo A. Oliva, Cor-Paul Bezemer, and
Ahmed E. Hassan. An empirical study of same-day releases of popular pack-
ages in the npm ecosystem. Empirical Software Engineering, 26(5), 7 2021,
DOI 10.1007/s10664-021-09980-6.
Abstract: Within a software ecosystem, client packages can reuse provider
packages as third-party libraries. The reuse relation between client and
provider packages is called a dependency. When a client package depends
on the code of a provider package, every change that is introduced in a re-
lease of the provider has the potential to impact the client package. Since
a large number of dependencies exist within a software ecosystem, releases
of a popular provider package can impact a large number of clients. Occa-
sionally, multiple releases of a popular package need to be published on the
same day, leading to a scenario in which the time available to revise, test,
build, and document the release is restricted compared to releases published
within a regular schedule. In this paper, our objective is to study the same-
day releases that are published by popular packages in the npm ecosystem.
We design an exploratory study to characterize the type of changes that are
introduced in same-day releases, the prevalence of same-day releases in the
npm ecosystem, and the adoption of same-day releases by client packages. A

29

preliminary manual analysis of the existing release notes suggests that same-
day releases introduce non-trivial changes (e.g., bug fixes). We then focus on
three RQs. First, we study how often same-day releases are published. We
found that the median proportion of regularly scheduled releases that are
interrupted by a same-day release (per popular package) is 22%, suggest-
ing the importance of having timely and systematic procedures to cope with
same-day releases. Second, we study the performed code changes in same-day
releases. We observe that 32% of the same-day releases have larger changes
compared with their prior release, thus showing that some same-day releases
can undergo significant maintenance activity despite their time-constrained
nature. In our third RQ, we study how client packages react to same-day re-
leases of their providers. We observe the vast majority of client packages that
adopt the release preceding the same-day release would also adopt the latter
without having to change their versioning statement (implicit updates). We
also note that explicit adoptions of same-day releases (i.e., adoptions that
require a change to the versioning statement of the provider in question) is
significantly faster than the explicit adoption of regular releases. Based on
our findings, we argue that (i) third-party tools that support the automation
of dependency management (e.g., Dependabot) should consider explicitly
flagging same-day releases, (ii) popular packages should strive for optimized
release pipelines that can properly handle same-day releases, and (iii) future
research should design scalable, ecosystem-ready tools that support provider
packages in assessing the impact of their code changes on client packages.

[Costa2019] Diego Elias Damasceno Costa, Cor-Paul Bezemer, Philip Leitner,
and Artur Andrzejak. What's wrong with my benchmark results? studying
bad practices in JMH benchmarks. IEEE Transactions on Software Engi-
neering, pages 1–1, 2019, DOI 10.1109/tse.2019.2925345.
Abstract: Microbenchmarking frameworks, such as Java’s Microbench-
mark Harness (JMH), allow developers to write fine-grained performance
test suites at the method or statement level. However, due to the complex-
ities of the Java Virtual Machine, developers often struggle with writing
expressive JMH benchmarks which accurately represent the performance of
such methods or statements. In this paper, we empirically study bad prac-
tices of JMH benchmarks. We present a tool that leverages static analysis
to identify 5 bad JMH practices. Our empirical study of 123 open source
Java-based systems shows that each of these 5 bad practices are prevalent
in open source software. Further, we conduct several experiments to quan-
tify the impact of each bad practice in multiple case studies, and find that
bad practices often significantly impact the benchmark results. To validate
our experimental results, we constructed seven patches that fix the identi-
fied bad practices for six of the studied open source projects, of which six
were merged into the main branch of the project. In this paper, we show that
developers struggle with accurate Java microbenchmarking, and provide sev-
eral recommendations to developers of microbenchmarking frameworks on
how to improve future versions of their framework.

30

[CruzLemus2009] José A. Cruz-Lemus, Marcela Genero, M. Esperanza
Manso, Sandro Morasca, and Mario Piattini. Assessing the understand-
ability of UML statechart diagrams with composite states—a family of em-
pirical studies. Empirical Software Engineering, 14(6):685–719, 2 2009, DOI
10.1007/s10664-009-9106-z.
Abstract: The main goal of this work is to present a family of empirical
studies that we have carried out to investigate whether the use of composite
states may improve the understandability of UML statechart diagrams de-
rived from class diagrams. Our hypotheses derive from conventional wisdom,
which says that hierarchical modeling mechanisms are helpful in mastering
the complexity of a software system. In our research, we have carried out
three empirical studies, consisting of five experiments in total. The studies
differed somewhat as regards the size of the UML statechart models, though
their size and the complexity of the models were chosen so that they could
be analyzed by the subjects within a limited time period. The studies also
differed with respect to the type of subjects (students vs. professionals), the
familiarity of the subjects with the domains of the diagrams, and other fac-
tors. To integrate the results obtained from each of the five experiments, we
performed a meta-analysis study which allowed us to take into account the
differences between studies and to obtain the overall effect that the use of
composite states has on the understandability of UML statechart diagrams
throughout all the experiments. The results obtained are not completely
conclusive. They cast doubts on the usefulness of composite states for a bet-
ter understanding and memorizing of UML statechart diagrams. Composite
states seem only to be helpful for acquiring knowledge from the diagrams. At
any rate, it should be noted that these results are affected by the previous
experience of the subjects on modeling, as well as by the size and complex-
ity of the UML statechart diagrams we used, so care should be taken when
generalizing our results.

[Dabbish2012] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herb-
sleb. Social coding in GitHub: transparency and collaboration in an open
software repository. In Proc. Conference on Computer Supported Coopera-
tive Work (CSCW). ACM Press, 2012, DOI 10.1145/2145204.2145396.
Abstract: Social applications on the web let users track and follow the ac-
tivities of a large number of others regardless of location or affiliation. There
is a potential for this transparency to radically improve collaboration and
learning in complex knowledge-based activities. Based on a series of in-depth
interviews with central and peripheral GitHub users, we examined the value
of transparency for large-scale distributed collaborations and communities
of practice. We find that people make a surprisingly rich set of social infer-
ences from the networked activity information in GitHub, such as inferring
someone else’s technical goals and vision when they edit code, or guessing
which of several similar projects has the best chance of thriving in the long
term. Users combine these inferences into effective strategies for coordinating
work, advancing technical skills and managing their reputation.

31

[Dagenais2010] Barthélémy Dagenais and Martin P. Robillard. Creating and
evolving developer documentation. In Proc. International Symposium on
the Foundations of Software Engineering (FSE). ACM Press, 2010, DOI
10.1145/1882291.1882312.
Abstract: Developer documentation helps developers learn frameworks and
libraries. To better understand how documentation in open source projects
is created and maintained, we performed a qualitative study in which we
interviewed core contributors who wrote developer documentation and de-
velopers who read documentation. In addition, we studied the evolution of 19
documents by analyzing more than 1500 document revisions. We identified
the decisions that contributors make, the factors influencing these decisions
and the consequences for the project. Among many findings, we observed
how working on the documentation could improve the code quality and how
constant interaction with the projects’ community positively impacted the
documentation.

[Dang2012] Yingnong Dang, Rongxin Wu, Hongyu Zhang, Dongmei Zhang,
and Peter Nobel. ReBucket: a method for clustering duplicate crash reports
based on call stack similarity. In Proc. International Conference on Software
Engineering (ICSE). IEEE, 6 2012, DOI 10.1109/icse.2012.6227111.
Abstract: Software often crashes. Once a crash happens, a crash report
could be sent to software developers for investigation upon user permis-
sion. To facilitate efficient handling of crashes, crash reports received by Mi-
crosoft’s Windows Error Reporting (WER) system are organized into a set
of “buckets”. Each bucket contains duplicate crash reports that are deemed
as manifestations of the same bug. The bucket information is important
for prioritizing efforts to resolve crashing bugs. To improve the accuracy of
bucketing, we propose ReBucket, a method for clustering crash reports based
on call stack matching. ReBucket measures the similarities of call stacks in
crash reports and then assigns the reports to appropriate buckets based
on the similarity values. We evaluate ReBucket using crash data collected
from five widely-used Microsoft products. The results show that ReBucket
achieves better overall performance than the existing methods. On average,
the F-measure obtained by ReBucket is about 0.88.

[Danilova2021] Anastasia Danilova, Alena Naiakshina, Stefan Horstmann,
and Matthew Smith. Do you really code? designing and evaluating
screening questions for online surveys with programmers. In Proc. Inter-
national Conference on Software Engineering (ICSE). IEEE, 5 2021, DOI
10.1109/icse43902.2021.00057.
Abstract: Recruiting professional programmers in sufficient numbers for re-
search studies can be challenging because they often cannot spare the time,
or due to their geographical distribution and potentially the cost involved.
Online platforms such as Clickworker or Qualtrics do provide options to re-
cruit participants with programming skill; however, misunderstandings and
fraud can be an issue. This can result in participants without programming
skill taking part in studies and surveys. If these participants are not detected,

32

they can cause detrimental noise in the survey data. In this paper, we develop
screener questions that are easy and quick to answer for people with pro-
gramming skill but difficult to answer correctly for those without. In order
to evaluate our questionnaire for efficacy and efficiency, we recruited several
batches of participants with and without programming skill and tested the
questions. In our batch 42% of Clickworkers stating that they have program-
ming skill did not meet our criteria and we would recommend filtering these
from studies. We also evaluated the questions in an adversarial setting. We
conclude with a set of recommended questions which researchers can use to
recruit participants with programming skill from online platforms.

[Davis2019] James C. Davis, Louis G. Michael IV, Christy A. Coghlan, Fran-
cisco Servant, and Dongyoon Lee. Why aren’t regular expressions a lingua
franca? An empirical study on the re-use and portability of regular expres-
sions. In Proc. European Software Engineering Conference/International
Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 8 2019, DOI 10.1145/3338906.3338909.
Abstract: This paper explores the extent to which regular expressions
(regexes) are portable across programming languages. Many languages offer
similar regex syntaxes, and it would be natural to assume that regexes can be
ported across language boundaries. But can regexes be copy/pasted across
language boundaries while retaining their semantic and performance char-
acteristics? In our survey of 158 professional software developers, most indi-
cated that they re-use regexes across language boundaries and about half re-
ported that they believe regexes are a universal language. We experimentally
evaluated the riskiness of this practice using a novel regex corpus—537,806
regexes from 193,524 projects written in JavaScript, Java, PHP, Python,
Ruby, Go, Perl, and Rust. Using our polyglot regex corpus, we explored the
hitherto-unstudied regex portability problems: logic errors due to seman-
tic differences, and security vulnerabilities due to performance differences.
We report that developers’ belief in a regex lingua franca is understandable
but unfounded. Though most regexes compile across language boundaries,
15% exhibit semantic differences across languages and 10% exhibit perfor-
mance differences across languages. We explained these differences using
regex documentation, and further illuminate our findings by investigating
regex engine implementations. Along the way we found bugs in the regex
engines of JavaScript-V8, Python, Ruby, and Rust, and potential semantic
and performance regex bugs in thousands of modules.

[DeLucia2009] Andrea De Lucia, Carmine Gravino, Rocco Oliveto, and Gen-
oveffa Tortora. An experimental comparison of ER and UML class diagrams
for data modelling. Empirical Software Engineering, 15(5):455–492, 12 2009,
DOI 10.1007/s10664-009-9127-7.
Abstract: We present the results of three sets of controlled experiments
aimed at analysing whether UML class diagrams are more comprehensible
than ER diagrams during data models maintenance. In particular, we con-
sidered the support given by the two notations in the comprehension and

33

interpretation of data models, comprehension of the change to perform to
meet a change request, and detection of defects contained in a data model.
The experiments involved university students with different levels of abil-
ity and experience. The results demonstrate that using UML class diagrams
subjects achieved better comprehension levels. With regard to the support
given by the two notations during maintenance activities the results demon-
strate that the two notations give the same support, while in general UML
class diagrams provide a better support with respect to ER diagrams during
verification activities.

[DeOliveiraNeto2019] Francisco Gomes de Oliveira Neto, Richard Torkar,
Robert Feldt, Lucas Gren, Carlo A. Furia, and Ziwei Huang. Evolution of
statistical analysis in empirical software engineering research: Current state
and steps forward. Journal of Systems and Software, 156:246–267, 10 2019,
DOI 10.1016/j.jss.2019.07.002.
Abstract: Software engineering research is evolving and papers are increas-
ingly based on empirical data from a multitude of sources, using statistical
tests to determine if and to what degree empirical evidence supports their
hypotheses. To investigate the practices and trends of statistical analysis
in empirical software engineering (ESE), this paper presents a review of a
large pool of papers from top-ranked software engineering journals. First, we
manually reviewed 161 papers and in the second phase of our method, we
conducted a more extensive semi-automatic classification of papers spanning
the years 2001–2015 and 5,196 papers. Results from both review steps was
used to: i) identify and analyze the predominant practices in ESE (e.g., using
t-test or ANOVA), as well as relevant trends in usage of specific statistical
methods (e.g., nonparametric tests and effect size measures) and, ii) develop
a conceptual model for a statistical analysis workflow with suggestions on
how to apply different statistical methods as well as guidelines to avoid pit-
falls. Lastly, we confirm existing claims that current ESE practices lack a
standard to report practical significance of results. We illustrate how practi-
cal significance can be discussed in terms of both the statistical analysis and
in the practitioner’s context.

[DePadua2018] Guilherme B. de Pádua and Weiyi Shang. Studying the re-
lationship between exception handling practices and post-release defects.
In Proc. International Conference on Mining Software Repositories (MSR).
ACM, 5 2018, DOI 10.1145/3196398.3196435.
Abstract: Modern programming languages, such as Java and C#, typi-
cally provide features that handle exceptions. These features separate error-
handling code from regular source code and aim to assist in the practice
of software comprehension and maintenance. Nevertheless, their misuse can
still cause reliability degradation or even catastrophic software failures. Prior
studies on exception handling revealed the suboptimal practices of the ex-
ception handling flows and the prevalence of their anti-patterns. However,
little is known about the relationship between exception handling practices
and software quality. In this work, we investigate the relationship between

34

software quality (measured by the probability of having post-release de-
fects) and: (i) exception flow characteristics and (ii) 17 exception handling
anti-patterns. We perform a case study on three Java and C# open-source
projects. By building statistical models of the probability of post-release de-
fects using traditional software metrics and metrics that are associated with
exception handling practice, we study whether exception flow characteristics
and exception handling anti-patterns have a statistically significant relation-
ship with post-release defects. We find that exception flow characteristics in
Java projects have a significant relationship with post-release defects. In ad-
dition, although the majority of the exception handing anti-patterns are not
significant in the models, there exist anti-patterns that can provide signifi-
cant explanatory power to the probability of post-release defects. Therefore,
development teams should consider allocating more resources to improving
their exception handling practices and avoid the anti-patterns that are found
to have a relationship with post-release defects. Our findings also highlight
the need for techniques that assist in handling exceptions in the software
development practice.

[Decan2021] Alexandre Decan and Tom Mens. What do package dependen-
cies tell us about semantic versioning? IEEE Transactions on Software
Engineering, 47(6):1226–1240, 6 2021, DOI 10.1109/tse.2019.2918315.
Abstract: The semantic versioning (semver) policy is commonly accepted
by open source package management systems to inform whether new releases
of software packages introduce possibly backward incompatible changes.
Maintainers depending on such packages can use this information to avoid
or reduce the risk of breaking changes in their own packages by specifying
version constraints on their dependencies. Depending on the amount of con-
trol a package maintainer desires to have over her package dependencies,
these constraints can range from very permissive to very restrictive. This
article empirically compares semver compliance of four software packaging
ecosystems (Cargo, npm, Packagist and Rubygems), and studies how this
compliance evolves over time. We explore to what extent ecosystem-specific
characteristics or policies influence the degree of compliance. We also pro-
pose an evaluation based on the “wisdom of the crowds” principle to help
package maintainers decide which type of version constraints they should
impose on their dependencies.

[Devanbu2016] Prem Devanbu, Thomas Zimmermann, and Christian Bird.
Belief & evidence in empirical software engineering. In Proc. Interna-
tional Conference on Software Engineering (ICSE). ACM, 5 2016, DOI
10.1145/2884781.2884812.
Abstract: Empirical software engineering has produced a steady stream
of evidence-based results concerning the factors that affect important out-
comes such as cost, quality, and interval. However, programmers often also
have strongly-held a priori opinions about these issues. These opinions are
important, since developers are highly trained professionals whose beliefs

35

would doubtless affect their practice. As in evidence-based medicine, dis-
seminating empirical findings to developers is a key step in ensuring that
the findings impact practice. In this paper, we describe a case study, on the
prior beliefs of developers at Microsoft, and the relationship of these beliefs
to actual empirical data on the projects in which these developers work.
Our findings are that a) programmers do indeed have very strong beliefs on
certain topics b) their beliefs are primarily formed based on personal expe-
rience, rather than on findings in empirical research and c) beliefs can vary
with each project, but do not necessarily correspond with actual evidence
in that project. Our findings suggest that more effort should be taken to
disseminate empirical findings to developers and that more in-depth study
the interplay of belief and evidence in software practice is needed.

[Dias2021] Edson Dias, Paulo Meirelles, Fernando Castor, Igor Steinmacher,
Igor Wiese, and Gustavo Pinto. What makes a great maintainer of open
source projects? In Proc. International Conference on Software Engineering
(ICSE). IEEE, 5 2021, DOI 10.1109/icse43902.2021.00093.
Abstract: Although Open Source Software (OSS) maintainers devote a
significant proportion of their work to coding tasks, great maintainers must
excel in many other activities beyond coding. Maintainers should care about
fostering a community, helping new members to find their place, while also
saying “no” to patches that although are well-coded and well-tested, do not
contribute to the goal of the project. To perform all these activities master-
fully, maintainers should exercise attributes that software engineers (working
on closed source projects) do not always need to master. This paper aims to
uncover, relate, and prioritize the unique attributes that great OSS main-
tainers might have. To achieve this goal, we conducted 33 semi-structured
interviews with well-experienced maintainers that are the gatekeepers of no-
table projects such as the Linux Kernel, the Debian operating system, and
the GitLab coding platform. After we analyzed the interviews and curated
a list of attributes, we created a conceptual framework to explain how these
attributes are connected. We then conducted a rating survey with 90 OSS
contributors. We noted that “technical excellence” and “communication” are
the most recurring attributes. When grouped, these attributes fit into four
broad categories: management, social, technical, and personality. While we
noted that “sustain a long term vision of the project” and being “extremely
careful” seem to form the basis of our framework, we noted through our sur-
vey that the communication attribute was perceived as the most essential
one.

[Ding2021] Zhen Yu Ding and Claire Le Goues. An empirical study of OSS-
fuzz bugs. In Proc. International Conference on Mining Software Reposito-
ries (MSR). IEEE, 5 2021, DOI 10.1109/msr52588.2021.00026.
Abstract: Continuous fuzzing is an increasingly popular technique for auto-
mated quality and security assurance. Google maintains OSS-Fuzz: a contin-
uous fuzzing service for open source software. We conduct the first empirical

36

study of OSS-Fuzz, analyzing 23,907 bugs found in 316 projects. We exam-
ine the characteristics of fuzzer-found faults, the lifecycles of such faults,
and the evolution of fuzzing campaigns over time. We find that OSS-Fuzz
is often effective at quickly finding bugs, and developers are often quick to
patch them. However, flaky bugs, timeouts, and out of memory errors are
problematic, people rarely file CVEs for security vulnerabilities, and fuzzing
campaigns often exhibit punctuated equilibria, where developers might be
surprised by large spikes in bugs found. Our findings have implications on
future fuzzing research and practice.

[Durieux2020] Thomas Durieux, Claire Le Goues, Michael Hilton, and Rui
Abreu. Empirical study of restarted and flaky builds on travis CI. In Proc.
International Conference on Mining Software Repositories (MSR). ACM, 6
2020, DOI 10.1145/3379597.3387460.
Abstract: Continuous Integration (CI) is a development practice where
developers frequently integrate code into a common codebase. After the code
is integrated, the CI server runs a test suite and other tools to produce a
set of reports (e.g., the output of linters and tests). If the result of a CI
test run is unexpected, developers have the option to manually restart the
build, re-running the same test suite on the same code; this can reveal build
flakiness, if the restarted build outcome differs from the original build. In
this study, we analyze restarted builds, flaky builds, and their impact on the
development workflow. We observe that developers restart at least 1.72%
of builds, amounting to 56,522 restarted builds in our Travis CI dataset.
We observe that more mature and more complex projects are more likely
to include restarted builds. The restarted builds are mostly builds that are
initially failing due to a test, network problem, or a Travis CI limitations
such as execution timeout. Finally, we observe that restarted builds have an
impact on development workflow. Indeed, in 54.42% of the restarted builds,
the developers analyze and restart a build within an hour of the initial build
execution. This suggests that developers wait for CI results, interrupting
their workflow to address the issue. Restarted builds also slow down the
merging of pull requests by a factor of three, bringing median merging time
from 16h to 48h.

[Dyba2006] Tore Dyb̊a, Vigdis By Kampenes, and Dag I.K. Sjøberg. A
systematic review of statistical power in software engineering experi-
ments. Information and Software Technology, 48(8):745–755, 8 2006, DOI
10.1016/j.infsof.2005.08.009.
Abstract: Statistical power is an inherent part of empirical studies that
employ significance testing and is essential for the planning of studies, for
the interpretation of study results, and for the validity of study conclusions.
This paper reports a quantitative assessment of the statistical power of em-
pirical software engineering research based on the 103 papers on controlled
experiments (of a total of 5,453 papers) published in nine major software
engineering journals and three conference proceedings in the decade 1993–
2002. The results show that the statistical power of software engineering

37

experiments falls substantially below accepted norms as well as the levels
found in the related discipline of information systems research. Given this
study’s findings, additional attention must be directed to the adequacy of
sample sizes and research designs to ensure acceptable levels of statistical
power. Furthermore, the current reporting of significance tests should be
enhanced by also reporting effect sizes and confidence intervals.

[Dzidek2008] W.J. Dzidek, E. Arisholm, and L.C. Briand. A realistic empir-
ical evaluation of the costs and benefits of UML in software maintenance.
IEEE Transactions on Software Engineering, 34(3):407–432, 5 2008, DOI
10.1109/tse.2008.15.
Abstract: The Unified Modeling Language (UML) is the de facto standard
for object-oriented software analysis and design modeling. However, few em-
pirical studies exist that investigate the costs and evaluate the benefits of
using UML in realistic contexts. Such studies are needed so that the soft-
ware industry can make informed decisions regarding the extent to which
they should adopt UML in their development practices. This is the first con-
trolled experiment that investigates the costs of maintaining and the benefits
of using UML documentation during the maintenance and evolution of a real,
non-trivial system, using professional developers as subjects, working with a
state-of-the-art UML tool during an extended period of time. The subjects
in the control group had no UML documentation. In this experiment, the
subjects in the UML group had on average a practically and statistically
significant 54% increase in the functional correctness of changes (p=0.03),
and an insignificant 7% overall improvement in design quality (p=0.22) -
though a much larger improvement was observed on the first change task
(56%) - at the expense of an insignificant 14% increase in development time
caused by the overhead of updating the UML documentation (p=0.35).

[Eghbal2020] Nadia Eghbal. Working in Public: The Making and Mainte-
nance of Open Source Software. Stripe Press, 2020.
Abstract: An inside look at modern open source software developers and
their applications to, and influence on, our online social world.

[Eichberg2015] Michael Eichberg, Ben Hermann, Mira Mezini, and Leonid
Glanz. Hidden truths in dead software paths. In Proc. International Sym-
posium on the Foundations of Software Engineering (FSE). ACM, 8 2015,
DOI 10.1145/2786805.2786865.
Abstract: Approaches and techniques for statically finding a multitude of
issues in source code have been developed in the past. A core property of
these approaches is that they are usually targeted towards finding only a
very specific kind of issue and that the effort to develop such an analysis is
significant. This strictly limits the number of kinds of issues that can be de-
tected. In this paper, we discuss a generic approach based on the detection of
infeasible paths in code that can discover a wide range of code smells ranging
from useless code that hinders comprehension to real bugs. Code issues are
identified by calculating the difference between the control-flow graph that

38

contains all technically possible edges and the corresponding graph recorded
while performing a more precise analysis using abstract interpretation. We
have evaluated the approach using the Java Development Kit as well as the
Qualitas Corpus (a curated collection of over 100 Java Applications) and
were able to find thousands of issues across a wide range of categories.

[ElEmam2001] K. El Emam, S. Benlarbi, N. Goel, and S.N. Rai. The
confounding effect of class size on the validity of object-oriented metrics.
IEEE Transactions on Software Engineering, 27(7):630–650, 7 2001, DOI
10.1109/32.935855.
Abstract: Much effort has been devoted to the development and empirical
validation of object-oriented metrics. The empirical validations performed
thus far would suggest that a core set of validated metrics is close to being
identified. However, none of these studies allow for the potentially confound-
ing effect of class size. We demonstrate a strong size confounding effect and
question the results of previous object-oriented metrics validation studies.
We first investigated whether there is a confounding effect of class size in
validation studies of object-oriented metrics and show that, based on pre-
vious work, there is reason to believe that such an effect exists. We then
describe a detailed empirical methodology for identifying those effects. Fi-
nally, we perform a study on a large C++ telecommunications framework to
examine if size is really a confounder. This study considered the Chidamber
and Kemerer metrics and a subset of the Lorenz and Kidd metrics. The de-
pendent variable was the incidence of a fault attributable to a field failure
(fault-proneness of a class). Our findings indicate that, before controlling for
size, the results are very similar to previous studies. The metrics that are
expected to be validated are indeed associated with fault-proneness.

[Fagerholm2017] Fabian Fagerholm, Marco Kuhrmann, and Jürgen Münch.
Guidelines for using empirical studies in software engineering education.
PeerJ Computer Science, 3:e131, 9 2017, DOI 10.7717/peerj-cs.131.
Abstract: Software engineering education is supposed to provide students
with industry-relevant knowledge and skills. Educators must address issues
beyond exercises and theories that can be directly rehearsed in small settings.
A way to experience such efects and to increase the relevance of software en-
gineering education is to apply empirical studies in teaching. In our article,
we show how diferent types of empirical studies can be used for educational
purposes in software engineering. We give examples illustrating how to utilize
empirical studies, discuss challenges, and derive an initial guideline that sup-
ports teachers to include empirical studies in software engineering courses.
This summary refers to the paper Guidelines for Using Empirical Studies in
Software Engineering Education [FKM17]. This paper was published in the
PeerJ Computer Science journal.

[Farzat2021] Fabio de A. Farzat, Marcio de O. Barros, and Guilherme H.
Travassos. Evolving JavaScript code to reduce load time. IEEE
Transactions on Software Engineering, 47(8):1544–1558, 8 2021, DOI

39

10.1109/tse.2019.2928293.
Abstract: JavaScript is one of the most used programming languages for
front-end development of Web applications. The increase in complexity of
front-end features brings concerns about performance, especially the load
and execution time of JavaScript code. In this paper, we propose an evo-
lutionary program improvement technique to reduce the size of JavaScript
programs and, therefore, the time required to load and execute them in Web
applications. To guide the development of this technique, we performed an
experimental study to characterize the patches applied to JavaScript pro-
grams to reduce their size while keeping the functionality required to pass
all test cases in their test suites. We applied this technique to 19 JavaScript
programs varying from 92 to 15,602 LOC and observed reductions from 0.2
to 73.8 percent of the original code, as well as a relationship between the
quality of a program’s test suite and the ability to reduce the size of its
source code.

[Feal2020] Álvaro Feal, Paolo Calciati, Narseo Vallina-Rodriguez, Carmela
Troncoso, and Alessandra Gorla. Angel or devil? a privacy study of mo-
bile parental control apps. Proceedings on Privacy Enhancing Technologies,
2020(2):314–335, 4 2020, DOI 10.2478/popets-2020-0029.
Abstract: Android parental control applications are used by parents to
monitor and limit their children’s mobile behaviour (e.g., mobile apps usage,
web browsing, calling, and texting). In order to offer this service, parental
control apps require privileged access to sys-tem resources and access to sen-
sitive data. This may significantly reduce the dangers associated with kids’
online activities, but it raises important privacy con-cerns. These concerns
have so far been overlooked by organizations providing recommendations re-
garding the use of parental control applications to the public. We conduct
the first in-depth study of the Android parental control app’s ecosystem
from a privacy and regulatory point of view. We exhaustively study 46 apps
from 43 developers which have a combined 20M installs in the Google Play
Store. Using a combination of static and dynamic analysis we find that:
these apps are on average more permissions-hungry than the top 150 apps in
the Google Play Store, and tend to request more dangerous permissions with
new releases; 11% of the apps transmit personal data in the clear; 34% of the
apps gather and send personal information without appropriate consent; and
72% of the apps share data with third parties (including online advertising
and analytics services) without mentioning their presence in their privacy
policies. In summary, parental control applications lack transparency and
lack compliance with reg ulatory requirements. This holds even for those
applications recommended by European and other national security centers.

[Ferreira2021] Gabriel Ferreira, Limin Jia, Joshua Sunshine, and Christian
Kästner. Containing malicious package updates in npm with a lightweight
permission system. 2021, DOI 10.1109/ICSE43902.2021.00121.
Abstract: The large amount of third-party packages available in fast-
moving software ecosystems, such as Node.js/npm, enables attackers to com-

40

promise applications by pushing malicious updates to their package depen-
dencies. Studying the npm repository, we observed that many packages in
the npm repository that are used in Node.js applications perform only simple
computations and do not need access to filesystem or network APIs. This of-
fers the opportunity to enforce least-privilege design per package, protecting
applications and package dependencies from malicious updates. We propose
a lightweight permission system that protects Node.js applications by enforc-
ing package permissions at runtime. We discuss the design space of solutions
and show that our system makes a large number of packages much harder
to be exploited, almost for free.

[Fischer2015] Lars Fischer and Stefan Hanenberg. An empirical investigation
of the effects of type systems and code completion on API usability using
TypeScript and JavaScript in MS Visual Studio. In Proc. Symposium on Dy-
namic Languages (DL). ACM, 10 2015, DOI 10.1145/2816707.2816720.
Abstract: Recent empirical studies that compared static and dynamic type
systems on API usability showed a positive impact of static type systems on
developer productivity in most cases. Nevertheless, it is unclear how large
this effect is in comparison to other factors. One obvious factor in program-
ming is tooling: It is commonly accepted that modern IDEs have a large
positive impact on developers, although it is not clear which parts of modern
IDEs are responsible for that. One possible—and for most developers obvious
candidate—is code completion. This paper describes a 2x2 randomized trial
that compares JavaScript and Microsoft’s statically typed alternative Type-
Script with and without code completion in MS Visual Studio. While the
experiment shows (in correspondence to previous experiments) a large posi-
tive effect of the statically typed language TypeScript, the code completion
effect is not only marginal, but also just approaching statistical significance.
This seems to be an indicator that the effect of static type systems is larger
than often assumed, at least in comparison to code completion.

[Flint2021] Samuel W. Flint, Jigyasa Chauhan, and Robert Dyer. Escaping
the time pit: Pitfalls and guidelines for using time-based git data. In Proc.
International Conference on Mining Software Repositories (MSR). IEEE, 5
2021, DOI 10.1109/msr52588.2021.00022.
Abstract: Many software engineering research papers rely on time-based
data (e.g., commit timestamps, issue report creation/update/close dates,
release dates). Like most real-world data however, time-based data is often
dirty. To date, there are no studies that quantify how frequently such data is
used by the software engineering research community, or investigate sources
of and quantify how often such data is dirty. Depending on the research task
and method used, including such dirty data could affect the research results.
This paper presents the first survey of papers that utilize time-based data,
published in the Mining Software Repositories (MSR) conference series. Out
of the 690 technical track and data papers published in MSR 2004–2020, we
saw at least 35% of papers utilized time-based data. We then used the Boa
and Software Heritage infrastructures to help identify and quantify several

41

sources of dirty commit timestamp data. Finally we provide guidelines/best
practices for researchers utilizing time-based data from Git repositories.

[Ford2016] Denae Ford, Justin Smith, Philip J. Guo, and Chris Parnin. Par-
adise unplugged: identifying barriers for female participation on Stack Over-
flow. In Proc. International Symposium on the Foundations of Software En-
gineering (FSE). ACM, 11 2016, DOI 10.1145/2950290.2950331.
Abstract: It is no secret that females engage less in programming fields than
males. However, in online communities, such as Stack Overflow, this gender
gap is even more extreme: only 5.8% of contributors are female. In this
paper, we use a mixed-methods approach to identify contribution barriers
females face in online communities. Through 22 semi-structured interviews
with a spectrum of female users ranging from non-contributors to a top 100
ranked user of all time, we identified 14 barriers preventing them from con-
tributing to Stack Overflow. We then conducted a survey with 1470 female
and male developers to confirm which barriers are gender related or general
problems for everyone. Females ranked five barriers significantly higher than
males. A few of these include doubts in the level of expertise needed to con-
tribute, feeling overwhelmed when competing with a large number of users,
and limited awareness of site features. Still, there were other barriers that
equally impacted all Stack Overflow users or affected particular groups, such
as industry programmers. Finally, we describe several implications that may
encourage increased participation in the Stack Overflow community across
genders and other demographics.

[Ford2017] Denae Ford, Tom Zimmermann, Christian Bird, and Nachiappan
Nagappan. Characterizing software engineering work with personas based
on knowledge worker actions. In Proc. International Symposium on Empir-
ical Software Engineering and Measurement (ESEM). IEEE, 11 2017, DOI
10.1109/esem.2017.54.
Abstract: Mistaking versatility for universal skills, some companies tend
to categorize all software engineers the same not knowing a difference ex-
ists. For example, a company may select one of many software engineers
to complete a task, later finding that the engineer’s skills and style do not
match those needed to successfully complete that task. This can result in
delayed task completion and demonstrates that a one-size fits all concept
should not apply to how software engineers work. In order to gain a com-
prehensive understanding of different software engineers and their working
styles we interviewed 21 participants and surveyed 868 software engineers
at a large software company and asked them about their work in terms of
knowledge worker actions. We identify how tasks, collaboration styles, and
perspectives of autonomy can significantly effect different approaches to soft-
ware engineering work. To characterize differences, we describe empirically
informed personas on how they work. Our defined software engineering per-
sonas include those with focused debugging abilities, engineers with an active
interest in learning, experienced advisors who serve as experts in their role,

42

and more. Our study and results serve as a resource for building products,
services, and tools around these software engineering personas.

[Ford2019] Denae Ford, Mahnaz Behroozi, Alexander Serebrenik, and Chris
Parnin. Beyond the code itself: how programmers really look at pull re-
quests. In Proc. International Conference on Software Engineering (ICSE).
IEEE, 5 2019, DOI 10.1109/icse-seis.2019.00014.
Abstract: Developers in open source projects must make decisions on con-
tributions from other community members, such as whether or not to accept
a pull request. However, secondary factors-beyond the code itself-can influ-
ence those decisions. For example, signals from GitHub profiles, such as a
number of followers, activity, names, or gender can also be considered when
developers make decisions. In this paper, we examine how developers use
these signals (or not) when making decisions about code contributions. To
evaluate this question, we evaluate how signals related to perceived gender
identity and code quality influenced decisions on accepting pull requests.
Unlike previous work, we analyze this decision process with data collected
from an eye-tracker. We analyzed differences in what signals developers said
are important for themselves versus what signals they actually used to make
decisions about others. We found that after the code snippet (x=57%), the
second place programmers spent their time fixating is on supplemental tech-
nical signals (x=32%), such as previous contributions and popular reposito-
ries. Diverging from what participants reported themselves, we also found
that programmers fixated on social signals more than recalled.

[Foundjem2021] Armstrong Foundjem and Bram Adams. Release synchro-
nization in software ecosystems. Empirical Software Engineering, 26(3), 3
2021, DOI 10.1007/s10664-020-09929-1.
Abstract: Software ecosystems bring value by integrating software projects
related to a given domain, such as Linux distributions integrating upstream
open-source projects or the Android ecosystem for mobile Apps. Since each
project within an ecosystem may potentially have its release cycle and
roadmap, this creates an enormous burden for users who must expend the
effort to identify and install compatible project releases from the ecosystem
manually. Thus, many ecosystems, such as the Linux distributions, take it
upon them to release a polished, well-integrated product to the end-user.
However, the body of knowledge lacks empirical evidence about the coordi-
nation and synchronization efforts needed at the ecosystem level to ensure
such federated releases. This paper empirically studies the strategies used to
synchronize releases of ecosystem projects in the context of the OpenStack
ecosystem, in which a central release team manages the six-month release
cycle of the overall OpenStack ecosystem product. We use qualitative anal-
ysis on the release team’s IRC-meeting logs that comprise two OpenStack
releases (one-year long). Thus, we identified, cataloged, and documented ten
major release synchronization activities, which we further validated through
interviews with eight active OpenStack senior practitioners (members of ei-
ther the release team or project teams). Our results suggest that even though

43

an ecosystem’s power lies in the interaction of inter-dependent projects, re-
lease synchronization remains a challenge for both the release team and the
project teams. Moreover, we found evidence (and reasons) of multiple release
strategies co-existing within a complex ecosystem.

[Freeman1972] Jo Freeman. The tyranny of structurelessness. The Second
Wave, 2(1), 1972.
Abstract: An influential essay pointing out that every organization has a
power structure; the only question is whether it’s formal and accountable,
or informal and unaccountable.

[Fritz2010] Thomas Fritz, Jingwen Ou, Gail C. Murphy, and Emerson
Murphy-Hill. A degree-of-knowledge model to capture source code famil-
iarity. In Proc. International Conference on Software Engineering (ICSE).
ACM Press, 2010, DOI 10.1145/1806799.1806856.
Abstract: The size and high rate of change of source code comprising a soft-
ware system make it difficult for software developers to keep up with who on
the team knows about particular parts of the code. Existing approaches to
this problem are based solely on authorship of code. In this paper, we present
data from two professional software development teams to show that both
authorship and interaction information about how a developer interacts with
the code are important in characterizing a developer’s knowledge of code.
We introduce the degree-of-knowledge model that computes automatically
a real value for each source code element based on both authorship and
interaction information. We show that the degree-of-knowledge model can
provide better results than an existing expertise finding approach and also
report on case studies of the use of the model to support knowledge transfer
and to identify changes of interest.

[Fritzsch2021] Jonas Fritzsch, Marvin Wyrich, Justus Bogner, and Stefan
Wagner. Résumé-driven development: A definition and empirical character-
ization. In Proc. International Conference on Software Engineering (ICSE).
IEEE, 5 2021, DOI 10.1109/icse-seis52602.2021.00011.
Abstract: Technologies play an important role in the hiring process for soft-
ware professionals. Within this process, several studies revealed misconcep-
tions and bad practices which lead to suboptimal recruitment experiences.
In the same context, grey literature anecdotally coined the term Résumé-
Driven Development (RDD), a phenomenon describing the overemphasis of
trending technologies in both job offerings and resumes as an interaction
between employers and applicants. While RDD has been sporadically men-
tioned in books and online discussions, there are so far no scientific studies on
the topic, despite its potential negative consequences. We therefore empiri-
cally investigated this phenomenon by surveying 591 software professionals
in both hiring (130) and technical (558) roles and identified RDD facets in
substantial parts of our sample: 60% of our hiring professionals agreed that
trends influence their job offerings, while 82% of our software professionals
believed that using trending technologies in their daily work makes them

44

more attractive for prospective employers. Grounded in the survey results,
we conceptualize a theory to frame and explain Résumé-Driven Develop-
ment. Finally, we discuss influencing factors and consequences and propose
a definition of the term. Our contribution provides a foundation for future re-
search and raises awareness for a potentially systemic trend that may broadly
affect the software industry.

[Fu2016] Wei Fu, Tim Menzies, and Xipeng Shen. Tuning for software analyt-
ics: Is it really necessary? Information and Software Technology, 76:135–146,
8 2016, DOI 10.1016/j.infsof.2016.04.017.
Abstract: Context: Data miners have been widely used in software engi-
neering to, say, generate defect predictors from static code measures. Such
static code defect predictors perform well compared to manual methods, and
they are easy to use and useful to use. But one of the “black arts” of data
mining is setting the tunings that control the miner.Objective: We seek sim-
ple, automatic, and very effective method for finding those tunings.Method:
For each experiment with different data sets (from open source JAVA sys-
tems), we ran differential evolution as an optimizer to explore the tuning
space (as a first step) then tested the tunings using hold-out data.Results:
Contrary to our prior expectations, we found these tunings were remarkably
simple: it only required tens, not thousands, of attempts to obtain very
good results. For example, when learning software defect predictors, this
method can quickly find tunings that alter detection precision from 0% to
60%. Conclusion: Since (1) the improvements are so large, and (2) the tun-
ing is so simple, we need to change standard methods in software analytics.
At least for defect prediction, it is no longer enough to just run a data miner
and present the result without conducting a tuning optimization study. The
implication for other kinds of analytics is now an open and pressing issue.

[Fucci2016] Davide Fucci, Giuseppe Scanniello, Simone Romano, Martin
Shepperd, Boyce Sigweni, Fernando Uyaguari, Burak Turhan, Natalia Ju-
risto, and Markku Oivo. An external replication on the effects of test-driven
development using a multi-site blind analysis approach. In Proc. Inter-
national Symposium on Empirical Software Engineering and Measurement
(ESEM). ACM, 9 2016, DOI 10.1145/2961111.2962592.
Abstract: Context: Test-driven development (TDD) is an agile practice
claimed to improve the quality of a software product, as well as the pro-
ductivity of its developers. A previous study (i.e., baseline experiment) at
the University of Oulu (Finland) compared TDD to a test-last development
(TLD) approach through a randomized controlled trial. The results failed to
support the claims. Goal: We want to validate the original study results by
replicating it at the University of Basilicata (Italy), using a different design.
Method: We replicated the baseline experiment, using a crossover design,
with 21 graduate students. We kept the settings and context as close as possi-
ble to the baseline experiment. In order to limit researchers bias, we involved
two other sites (UPM, Spain, and Brunel, UK) to conduct blind analysis of

45

the data. Results: The Kruskal-Wallis tests did not show any significant dif-
ference between TDD and TLD in terms of testing effort (p-value = .27),
external code quality (p-value = .82), and developers’ productivity (p-value
= .83). Nevertheless, our data revealed a difference based on the order in
which TDD and TLD were applied, though no carry over effect. Conclu-
sions: We verify the baseline study results, yet our results raises concerns
regarding the selection of experimental objects, particularly with respect to
their interaction with the order in which of treatments are applied. We rec-
ommend future studies to survey the tasks used in experiments evaluating
TDD. Finally, to lower the cost of replication studies and reduce researchers’
bias, we encourage other research groups to adopt similar multi-site blind
analysis approach described in this paper.

[Fucci2020] Davide Fucci, Giuseppe Scanniello, Simone Romano, and Natalia
Juristo. Need for sleep: The impact of a night of sleep deprivation on
novice developers’ performance. IEEE Transactions on Software Engineer-
ing, 46(1):1–19, 1 2020, DOI 10.1109/tse.2018.2834900.
Abstract: We present a quasi-experiment to investigate whether, and to
what extent, sleep deprivation impacts the performance of novice software
developers using the agile practice of test-first development (TFD). We re-
cruited 45 undergraduates, and asked them to tackle a programming task.
Among the participants, 23 agreed to stay awake the night before carrying
out the task, while 22 slept normally. We analyzed the quality (i.e., the func-
tional correctness) of the implementations delivered by the participants in
both groups, their engagement in writing source code (i.e., the amount of
activities performed in the IDE while tackling the programming task) and
ability to apply TFD (i.e., the extent to which a participant is able to ap-
ply this practice). By comparing the two groups of participants, we found
that a single night of sleep deprivation leads to a reduction of 50 percent
in the quality of the implementations. There is notable evidence that the
developers’ engagement and their prowess to apply TFD are negatively im-
pacted. Our results also show that sleep-deprived developers make more fixes
to syntactic mistakes in the source code. We conclude that sleep deprivation
has possibly disruptive effects on software development activities. The results
open opportunities for improving developers’ performance by integrating the
study of sleep with other psycho-physiological factors in which the software
engineering research community has recently taken an interest in.

[Furia2019] Carlo Alberto Furia, Robert Feldt, and Richard Torkar.
Bayesian data analysis in empirical software engineering research.
IEEE Transactions on Software Engineering, pages 1–1, 2019, DOI
10.1109/tse.2019.2935974.
Abstract: Statistics comes in two main flavors: frequentist and Bayesian.
For historical and technical reasons, frequentist statistics have traditionally
dominated empirical data analysis, and certainly remain prevalent in empir-
ical software engineering. This situation is unfortunate because frequentist
statistics suffer from a number of shortcomings—such as lack of flexibility

46

and results that are unintuitive and hard to interpret—that curtail their
effectiveness when dealing with the heterogeneous data that is increasingly
available for empirical analysis of software engineering practice. In this pa-
per, we pinpoint these shortcomings, and present Bayesian data analysis
techniques that work better on the same data—as they can provide clearer
results that are simultaneously robust and nuanced. After a short, high-level
introduction to the basic tools of Bayesian statistics, our presentation targets
the reanalysis of two empirical studies targeting data about the effectiveness
of automatically generated tests and the performance of programming lan-
guages. By contrasting the original frequentist analysis to our new Bayesian
analysis, we demonstrate concrete advantages of using Bayesian techniques,
and we advocate a prominent role for them in empirical software engineering
research and practice.

[Gao2017] Zheng Gao, Christian Bird, and Earl T. Barr. To type or not
to type: quantifying detectable bugs in JavaScript. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, 5 2017, DOI
10.1109/icse.2017.75.
Abstract: JavaScript is growing explosively and is now used in large ma-
ture projects even outside the web domain. JavaScript is also a dynamically
typed language for which static type systems, notably Facebook’s Flow and
Microsoft’s TypeScript, have been written. What benefits do these static
type systems provide? Leveraging JavaScript project histories, we select a
fixed bug and check out the code just prior to the fix. We manually add
type annotations to the buggy code and test whether Flow and TypeScript
report an error on the buggy code, thereby possibly prompting a devel-
oper to fix the bug before its public release. We then report the proportion
of bugs on which these type systems reported an error. Evaluating static
type systems against public bugs, which have survived testing and review,
is conservative: it understates their effectiveness at detecting bugs during
private development, not to mention their other benefits such as facilitating
code search/completion and serving as documentation. Despite this uneven
playing field, our central finding is that both static type systems find an
important percentage of public bugs: both Flow 0.30 and TypeScript 2.0
successfully detect 15%!.

[Gao2020] Gao Gao, Finn Voichick, Michelle Ichinco, and Caitlin Kelle-
her. Exploring programmers' API learning processes: Collecting
web resources as external memory. In Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). IEEE, 8 2020, DOI
10.1109/vl/hcc50065.2020.9127274.
Abstract: Modern programming frequently requires the use of APIs (Ap-
plication Programming Interfaces). Yet many programmers struggle when
trying to learn APIs. We ran an exploratory study in which we observed
participants performing an API learning task. We analyze their processes us-
ing a proposed model of API learning, grounded in Cognitive Load Theory,
Information Foraging Theory, and External Memory research. The results

47

provide support for the model of API Learning and add new insights into
the form and usage of external memory while learning APIs. Programmers
quickly curated a set of API resources through Information Foraging which
served as external memory and then primarily referred to these resources to
meet information needs while coding.

[Garcia2021] Boni Garćıa, Mario Munoz-Organero, Carlos Alario-Hoyos,
and Carlos Delgado Kloos. Automated driver management for sele-
nium WebDriver. Empirical Software Engineering, 26(5), 7 2021, DOI
10.1007/s10664-021-09975-3.
Abstract: Selenium WebDriver is a framework used to control web browsers
automatically. It provides a cross-browser Application Programming Inter-
face (API) for different languages (e.g., Java, Python, or JavaScript) that
allows automatic navigation, user impersonation, and verification of web ap-
plications. Internally, Selenium WebDriver makes use of the native automa-
tion support of each browser. Hence, a platform-dependent binary file (the
so-called driver) must be placed between the Selenium WebDriver script
and the browser to support this native communication. The management
(i.e., download, setup, and maintenance) of these drivers is cumbersome
for practitioners. This paper provides a complete methodology to automate
this management process. Particularly, we present WebDriverManager, the
reference tool implementing this methodology. WebDriverManager provides
different execution methods: as a Java dependency, as a Command-Line In-
terface (CLI) tool, as a server, as a Docker container, and as a Java agent.
To provide empirical validation of the proposed approach, we surveyed the
WebDriverManager users. The aim of this study is twofold. First, we as-
sessed the extent to which WebDriverManager is adopted and used. Second,
we evaluated the WebDriverManager API following Clarke’s usability di-
mensions. A total of 148 participants worldwide completed this survey in
2020. The results show a remarkable assessment of the automation capabil-
ities and API usability of WebDriverManager by Java users, but a scarce
adoption for other languages.

[Gauthier2013] Francois Gauthier and Ettore Merlo. Semantic smells and
errors in access control models: a case study in PHP. In Proc. Inter-
national Conference on Software Engineering (ICSE). IEEE, 5 2013, DOI
10.1109/icse.2013.6606670.
Abstract: Access control models implement mechanisms to restrict access
to sensitive data from unprivileged users. Access controls typically check
privileges that capture the semantics of the operations they protect. Seman-
tic smells and errors in access control models stem from privileges that are
partially or totally unrelated to the action they protect. This paper presents
a novel approach, partly based on static analysis and information retrieval
techniques, for the automatic detection of semantic smells and errors in ac-
cess control models. Investigation of the case study application revealed 31
smells and 2 errors. Errors were reported to developers who quickly confirmed

48

their relevance and took actions to correct them. Based on the obtained re-
sults, we also propose three categories of semantic smells and errors to lay
the foundations for further research on access control smells in other systems
and domains.

[Gerosa2021] Marco Gerosa, Igor Wiese, Bianca Trinkenreich, Georg Link,
Gregorio Robles, Christoph Treude, Igor Steinmacher, and Anita Sarma.
The shifting sands of motivation: Revisiting what drives contributors in
open source. In Proc. International Conference on Software Engineering
(ICSE). IEEE, 5 2021, DOI 10.1109/icse43902.2021.00098.
Abstract: Open Source Software (OSS) has changed drastically over the
last decade, with OSS projects now producing a large ecosystem of popular
products, involving industry participation, and providing professional career
opportunities. But our field’s understanding of what motivates people to
contribute to OSS is still fundamentally grounded in studies from the early
2000s. With the changed landscape of OSS, it is very likely that motivations
to join OSS have also evolved. Through a survey of 242 OSS contributors,
we investigate shifts in motivation from three perspectives: (1) the impact
of the new OSS landscape, (2) the impact of individuals’ personal growth as
they become part of OSS communities, and (3) the impact of differences in
individuals’ demographics. Our results show that some motivations related
to social aspects and reputation increased in frequency and that some in-
trinsic and internalized motivations, such as learning and intellectual stim-
ulation, are still highly relevant. We also found that contributing to OSS
often transforms extrinsic motivations to intrinsic, and that while experi-
enced contributors often shift toward altruism, novices often shift toward
career, fun, kinship, and learning. OSS projects can leverage our results to
revisit current strategies to attract and retain contributors, and researchers
and tool builders can better support the design of new studies and tools to
engage and support OSS development.

[Ghiotto2020] Gleiph Ghiotto, Leonardo Murta, Marcio Barros, and André
van der Hoek. On the nature of merge conflicts: a study of 2,731 open source
Java projects hosted by GitHub. IEEE Transactions on Software Engineer-
ing, 46(8):892–915, 8 2020, DOI 10.1109/tse.2018.2871083.
Abstract: When multiple developers change a software system in parallel,
these concurrent changes need to be merged to all appear in the software
being developed. Numerous merge techniques have been proposed to support
this task, but none of them can fully automate the merge process. Indeed, it
has been reported that as much as 10 to 20 percent of all merge attempts re-
sult in a merge conflict, meaning that a developer has to manually complete
the merge. To date, we have little insight into the nature of these merge
conflicts. What do they look like, in detail? How do developers resolve
them? Do any patterns exist that might suggest new merge techniques that
could reduce the manual effort? This paper contributes an in-depth study of
the merge conflicts found in the histories of 2,731 open source Java projects.
Seeded by the manual analysis of the histories of five projects, our automated

49

analysis of all 2,731 projects: (1) characterizes the merge conflicts in terms
of number of chunks, size, and programming language constructs involved,
(2) classifies the manual resolution strategies that developers use to address
these merge conflicts, and (3) analyzes the relationships between various
characteristics of the merge conflicts and the chosen resolution strategies.
Our results give rise to three primary recommendations for future merge
techniques, that—when implemented—could on one hand help in automat-
ically resolving certain types of conflicts and on the other hand provide the
developer with tool-based assistance to more easily resolve other types of
conflicts that cannot be automatically resolved.

[Giger2011] Emanuel Giger, Martin Pinzger, and Harald Gall. Using the Gini
Coefficient for bug prediction in Eclipse. In Proc. International Workshop on
Principles on Software Evolution/Workshop on Software Evolution (IWPSE-
EVOL). ACM Press, 2011, DOI 10.1145/2024445.2024455.
Abstract: The Gini coefficient is a prominent measure to quantify the
inequality of a distribution. It is often used in the field of economy to describe
how goods, e.g., wealth or farmland, are distributed among people. We use
the Gini coefficient to measure code ownership by investigating how changes
made to source code are distributed among the developer population. The
results of our study with data from the Eclipse platform show that less bugs
can be expected if a large share of all changes are accumulated, i.e., carried
out, by relatively few developers.

[Glanz2020] Leonid Glanz, Patrick Müller, Lars Baumgärtner, Michael Reif,
Sven Amann, Pauline Anthonysamy, and Mira Mezini. Hidden in plain sight:
Obfuscated strings threatening your privacy. In Proc. Asia Conference on
Computer and Communications Security (ACCCS). ACM, 10 2020, DOI
10.1145/3320269.3384745.
Abstract: String obfuscation is an established technique used by propri-
etary, closed-source applications to protect intellectual property. Further-
more, it is also frequently used to hide spyware or malware in applications.
In both cases, the techniques range from bit-manipulation over XOR op-
erations to AES encryption. However, string obfuscation techniques/tools
suffer from one shared weakness: They generally have to embed the neces-
sary logic to deobfuscate strings into the app code. In this paper, we show
that most of the string obfuscation techniques found in malicious and be-
nign applications for Android can easily be broken in an automated fashion.
We developed StringHound, an open-source tool that uses novel techniques
that identify obfuscated strings and reconstruct the originals using slicing.
We evaluated StringHound on both benign and malicious Android apps.
In summary, we deobfuscate almost 30 times more obfuscated strings than
other string deobfuscation tools. Additionally, we analyzed 100,000 Google
Play Store apps and found multiple obfuscated strings that hide vulnera-
ble cryptographic usages, insecure internet accesses, API keys, hard-coded
passwords, and exploitation of privileges without the awareness of the de-

50

veloper. Furthermore, our analysis reveals that not only malware uses string
obfuscation but also benign apps make extensive use of string obfuscation.

[Golubev2021] Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlO-
mar, Timofey Bryksin, and Mohamed Wiem Mkaouer. One thousand and
one stories: a large-scale survey of software refactoring. In Proc. Eu-
ropean Software Engineering Conference/International Symposium on the
Foundations of Software Engineering (ESEC/FSE). ACM, 8 2021, DOI
10.1145/3468264.3473924.
Abstract: Despite the availability of refactoring as a feature in popular
IDEs, recent studies revealed that developers are reluctant to use them, and
still prefer the manual refactoring of their code. At JetBrains, our goal is to
fully support refactoring features in IntelliJ-based IDEs and improve their
adoption in practice. Therefore, we start by raising the following main ques-
tions. How exactly do people refactor code? What refactorings are the most
popular? Why do some developers tend not to use convenient IDE refac-
toring tools? In this paper, we investigate the raised questions through the
design and implementation of a survey targeting 1,183 users of IntelliJ-based
IDEs. Our quantitative and qualitative analysis of the survey results shows
that almost two-thirds of developers spend more than one hour in a single
session refactoring their code; that refactoring types vary greatly in pop-
ularity; and that a lot of developers would like to know more about IDE
refactoring features but lack the means to do so. These results serve us in-
ternally to support the next generation of refactoring features, as well as can
help our research community to establish new directions in the refactoring
usability research.

[Gousios2016] Georgios Gousios, Margaret-Anne Storey, and Alberto Bac-
chelli. Work practices and challenges in pull-based development. In Proc.
International Conference on Software Engineering (ICSE). ACM, 5 2016,
DOI 10.1145/2884781.2884826.
Abstract: The pull-based development model is an emerging way of con-
tributing to distributed software projects that is gaining enormous popular-
ity within the open source software (OSS) world. Previous work has exam-
ined this model by focusing on projects and their owners—we complement
it by examining the work practices of project contributors and the chal-
lenges they face. We conducted a survey with 645 top contributors to active
OSS projects using the pull-based model on GitHub, the prevalent social
coding site. We also analyzed traces extracted from corresponding GitHub
repositories. Our research shows that: contributors have a strong interest in
maintaining awareness of project status to get inspiration and avoid dupli-
cating work, but they do not actively propagate information; communication
within pull requests is reportedly limited to low-level concerns and contribu-
tors often use communication channels external to pull requests; challenges
are mostly social in nature, with most reporting poor responsiveness from
integrators; and the increased transparency of this setting is a confirmed mo-
tivation to contribute. Based on these findings, we present recommendations

51

for practitioners to streamline the contribution process and discuss potential
future research directions.

[Graziotin2014] Daniel Graziotin, Xiaofeng Wang, and Pekka Abrahamsson.
Happy software developers solve problems better: psychological measure-
ments in empirical software engineering. PeerJ Computer Science, 2:e289, 3
2014, DOI 10.7717/peerj.289.
Abstract: For more than thirty years, it has been claimed that a way to
improve software developers’ productivity and software quality is to focus
on people and to provide incentives to make developers satisfied and happy.
This claim has rarely been verified in software engineering research, which
faces an additional challenge in comparison to more traditional engineering
fields: software development is an intellectual activity and is dominated by
often-neglected human factors (called human aspects in software engineering
research). Among the many skills required for software development, devel-
opers must possess high analytical problem-solving skills and creativity for
the software construction process. According to psychology research, affec-
tive states—emotions and moods—deeply influence the cognitive process-
ing abilities and performance of workers, including creativity and analytical
problem solving. Nonetheless, little research has investigated the correla-
tion between the affective states, creativity, and analytical problem-solving
performance of programmers. This article echoes the call to employ psycho-
logical measurements in software engineering research. We report a study
with 42 participants to investigate the relationship between the affective
states, creativity, and analytical problem-solving skills of software develop-
ers. The results offer support for the claim that happy developers are indeed
better problem solvers in terms of their analytical abilities. The following
contributions are made by this study: (1) providing a better understanding
of the impact of affective states on the creativity and analytical problem-
solving capacities of developers, (2) introducing and validating psychologi-
cal measurements, theories, and concepts of affective states, creativity, and
analytical-problem-solving skills in empirical software engineering, and (3)
raising the need for studying the human factors of software engineering by
employing a multidisciplinary viewpoint.

[Green1996] Thomas R. G. Green and Marian Petre. Usability analysis
of visual programming environments: a ’cognitive dimensions’ framework.
Journal of Visual Languages & Computing, 7(2):131–174, 6 1996, DOI
10.1006/jvlc.1996.0009.
Abstract: Abstract The cognitive dimensions framework is a broad-brush
evaluation technique for interactive devices and for non-interactive notations.
It sets out a small vocabulary of terms designed to capture the cognitively-
relevant aspects of structure, and shows how they can be traded off against
each other. The purpose of this paper is to propose the framework as an
evaluation technique for visual programming environments. We apply it to
two commercially-available dataflow languages (with further examples from

52

other systems) and conclude that it is effective and insightful; other HCI-
based evaluation techniques focus on different aspects and would make good
complements. Insofar as the examples we used are representative, current
VPLs are successful in achieving a good ’closeness of match’, but design-
ers need to consider the ’viscosity ’ (resistance to local change) and the
’secondary notation’ (possibility of conveying extra meaning by choice of
layout, colour, etc.).

[Gujral2021] Harshit Gujral, Sangeeta Lal, and Heng Li. An exploratory
semantic analysis of logging questions. Journal of Software: Evolution and
Process, 33(7), 6 2021, DOI 10.1002/smr.2361.
Abstract: Logging is an integral part of software development. Software
practitioners often face issues in software logging, and they post these issues
on Q&A websites to take suggestions from the experts. In this study, we
perform a three-level empirical analysis of logging questions posted on six
popular technical Q&A websites, namely, Stack Overflow (SO), Serverfault
(SF), Superuser (SU), Database Administrators (DB), Software Engineering
(SE), and Android Enthusiasts (AE). The findings show that logging issues
are prevalent across various domains, for example, database, networks, and
mobile computing, and software practitioners from different domains face
different logging issues. The semantic analysis of logging questions using
Latent Dirichlet Allocation (LDA) reveals trends of several existing and new
logging topics, such as logging conversion pattern, Android device logging,
and database logging. In addition, we observe specific logging topics for each
website: DB (log shipping and log file growing/shrinking), SU (event log and
syslog configuration), SF (log analysis and syslog configuration), AE (app
install and usage tracking), SE (client server logging and exception logging),
and SO (log file creation/deletion, Android emulator logging, and logger
class of Log4j). We obtain an increasing trend of logging topics on the SO,
SU, and DB websites whereas a decreasing trend of logging topics on the SF
website.

[Gulzar2016] Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo,
Sai Deep Tetali, Tyson Condie, Todd Millstein, and Miryung Kim. BigDe-
bug: debugging primitives for interactive big data processing in Spark. In
Proc. International Conference on Software Engineering (ICSE). ACM, 5
2016, DOI 10.1145/2884781.2884813.
Abstract: Developers use cloud computing platforms to process a large
quantity of data in parallel when developing big data analytics. Debugging
the massive parallel computations that run in today’s data-centers is time
consuming and error-prone. To address this challenge, we design a set of in-
teractive, real-time debugging primitives for big data processing in Apache
Spark, the next generation data-intensive scalable cloud computing plat-
form. This requires re-thinking the notion of step-through debugging in a
traditional debugger such as gdb, because pausing the entire computation
across distributed worker nodes causes significant delay and naively inspect-
ing millions of records using a watchpoint is too time consuming for an end

53

user.First, BigDebug’s simulated breakpoints and on-demand watchpoints
allow users to selectively examine distributed, intermediate data on the cloud
with little overhead. Second, a user can also pinpoint a crash-inducing record
and selectively resume relevant sub-computations after a quick fix. Third,
a user can determine the root causes of errors (or delays) at the level of
individual records through a fine-grained data provenance capability. Our
evaluation shows that BigDebug scales to terabytes and its record-level trac-
ing incurs less than 25% overhead on average. It determines crash culprits
orders of magnitude more accurately and provides up to 100% time saving
compared to the baseline replay debugger. The results show that BigDebug
supports debugging at interactive speeds with minimal performance impact.

[Han2021] Junxiao Han, Shuiguang Deng, David Lo, Chen Zhi, Jian-
wei Yin, and Xin Xia. An empirical study of the landscape of open
source projects in baidu, alibaba, and tencent. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, 5 2021, DOI
10.1109/icse-seip52600.2021.00039.
Abstract: Open source software has drawn more and more attention from
researchers, developers and companies nowadays. Meanwhile, many Chi-
nese technology companies are embracing open source and choosing to open
source their projects. Nevertheless, most previous studies are concentrated
on international companies such as Microsoft or Google, while the practi-
cal values of open source projects of Chinese technology companies remain
unclear. To address this issue, we conduct a mixed-method study to inves-
tigate the landscape of projects open sourced by three large Chinese tech-
nology companies, namely Baidu, Alibaba, and Tencent (BAT). We study
the categories and characteristics of open source projects, the developer’s
perceptions towards open sourcing effort for these companies, and the in-
ternationalization effort of their open source projects. We collected 1,000
open source projects that were open sourced by BAT in GitHub and per-
formed an online survey that received 101 responses from developers of these
projects. Some key findings include: 1) BAT prefer to open source frontend
development projects, 2) 88% of the respondents are positive towards open
sourcing software projects in their respective companies, 3) 64% of the re-
spondents reveal that the most common motivations for BAT to open source
their projects are the desire to gain fame, expand their influence and gain
recruitment advantage, 4) respondents believe that the most common in-
ternationalization effort is “providing an English version of readme files”, 5)
projects with more internationalization effort (i.e., include an English readme
file) are more popular. Our findings provide directions for software engineer-
ing researchers and provide practical suggestions to software developers and
Chinese technology companies.

[Hanenberg2010] Stefan Hanenberg. An experiment about static and dy-
namic type systems. In Proc. International Conference on Object-Oriented
Programming Systems Languages and Applications (OOPSLA). ACM Press,
2010, DOI 10.1145/1869459.1869462.

54

Abstract: Although static type systems are an essential part in teach-ing
and research in software engineering and computer science, there is hardly
any knowledge about what the impact of static type systems on the devel-
opment time or the resulting quality for a piece of software is. On the one
hand there are authors that state that static type systems decrease an ap-
plication’s complexity and hence its development time (which means that
the quality must be improved since developers have more time left in their
projects). On the other hand there are authors that argue that static type
systems increase development time (and hence decrease the code quality)
since they restrict developers to express themselves in a desired way. This
paper presents an empirical study with 49 subjects that studies the impact
of a static type system for the development of a parser over 27 hours working
time. In the experiments the existence of the static type system has neither a
positive nor a negative impact on an application’s development time (under
the conditions of the experiment).

[Hanenberg2013] Stefan Hanenberg, Sebastian Kleinschmager, Romain
Robbes, Éric Tanter, and Andreas Stefik. An empirical study on the impact
of static typing on software maintainability. Empirical Software Engineering,
19(5):1335–1382, 12 2013, DOI 10.1007/s10664-013-9289-1.
Abstract: Static type systems play an essential role in contemporary pro-
gramming languages. Despite their importance, whether static type systems
impact human software development capabilities remains open. One fre-
quently mentioned argument in favor of static type systems is that they
improve the maintainability of software systems—an often-used claim for
which there is little empirical evidence. This paper describes an experiment
that tests whether static type systems improve the maintainability of soft-
ware systems, in terms of understanding undocumented code, fixing type
errors, and fixing semantic errors. The results show rigorous empirical evi-
dence that static types are indeed beneficial to these activities, except when
fixing semantic errors. We further conduct an exploratory analysis of the
data in order to understand possible reasons for the effect of type systems
on the three kinds of tasks used in this experiment. From the exploratory
analysis, we conclude that developers using a dynamic type system tend to
look at different files more frequently when doing programming tasks—which
is a potential reason for the observed differences in time.

[Hannay2010] J.E. Hannay, E. Arisholm, H. Engvik, and D.I.K. Sjøberg. Ef-
fects of personality on pair programming. IEEE Transactions on Software
Engineering, 36(1):61–80, 1 2010, DOI 10.1109/tse.2009.41.
Abstract: Personality tests in various guises are commonly used in recruit-
ment and career counseling industries. Such tests have also been considered
as instruments for predicting the job performance of software profession-
als both individually and in teams. However, research suggests that other
human-related factors such as motivation, general mental ability, expertise,
and task complexity also affect the performance in general. This paper re-
ports on a study of the impact of the Big Five personality traits on the

55

performance of pair programmers together with the impact of expertise and
task complexity. The study involved 196 software professionals in three coun-
tries forming 98 pairs. The analysis consisted of a confirmatory part and
an exploratory part. The results show that: (1) Our data do not confirm
a meta-analysis-based model of the impact of certain personality traits on
performance and (2) personality traits, in general, have modest predictive
value on pair programming performance compared with expertise, task com-
plexity, and country. We conclude that more effort should be spent on in-
vestigating other performance-related predictors such as expertise, and task
complexity, as well as other promising predictors, such as programming skill
and learning. We also conclude that effort should be spent on elaborating
on the effects of personality on various measures of collaboration, which,
in turn, may be used to predict and influence performance. Insights into
such malleable, rather than static, factors may then be used to improve pair
programming performance.

[Harms2016] Kyle James Harms, Jason Chen, and Caitlin L. Kelleher. Dis-
tractors in Parsons Problems decrease learning efficiency for young novice
programmers. In Proc. Conference on International Computing Education
Research (ICER). ACM, 8 2016, DOI 10.1145/2960310.2960314.
Abstract: Parsons problems are an increasingly popular method for help-
ing inexperienced programmers improve their programming skills. In Parsons
problems, learners are given a set of programming statements that they must
assemble into the correct order. Parsons problems commonly use distractors,
extra statements that are not part of the solution. Yet, little is known about
the effect distractors have on a learner’s ability to acquire new programming
skills. We present a study comparing the effectiveness of learning program-
ming from Parsons problems with and without distractors. The results sug-
gest that distractors decrease learning efficiency. We found that distractor
participants showed no difference in transfer task performance compared to
those without distractors. However, the distractors increased learners cogni-
tive load, decreased their success at completing Parsons problems by 26%,
and increased learners’ time on task by 14%.

[Hata2019] Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and
Takashi Ishio. 9.6 million links in source code comments: purpose, evolu-
tion, and decay. In Proc. International Conference on Software Engineering
(ICSE). IEEE, 5 2019, DOI 10.1109/icse.2019.00123.
Abstract: Links are an essential feature of the World Wide Web, and source
code repositories are no exception. However, despite their many undisputed
benefits, links can suffer from decay, insufficient versioning, and lack of bidi-
rectional traceability. In this paper, we investigate the role of links contained
in source code comments from these perspectives. We conducted a large-scale
study of around 9.6 million links to establish their prevalence, and we used
a mixed-methods approach to identify the links’ targets, purposes, decay,
and evolutionary aspects. We found that links are prevalent in source code

56

repositories, that licenses, software homepages, and specifications are com-
mon types of link targets, and that links are often included to provide meta-
data or attribution. Links are rarely updated, but many link targets evolve.
Almost 10% of the links included in source code comments are dead. We
then submitted a batch of link-fixing pull requests to open source software
repositories, resulting in most of our fixes being merged successfully. Our
findings indicate that links in source code comments can indeed be fragile,
and our work opens up avenues for future work to address these problems.

[Hatton1994] L. Hatton and A. Roberts. How accurate is scientific software?
IEEE Transactions on Software Engineering, 20(10):785–797, 1994, DOI
10.1109/32.328993.
Abstract: This paper describes some results of what, to the authors’ knowl-
edge, is the largest N-version programming experiment ever performed. The
object of this ongoing four-year study is to attempt to determine just how
consistent the results of scientific computation really are, and, from this,
to estimate accuracy. The experiment is being carried out in a branch of
the earth sciences known as seismic data processing, where 15 or so in-
dependently developed large commercial packages that implement mathe-
matical algorithms from the same or similar published specifications in the
same programming language (Fortran) have been developed over the last
20 years. The results of processing the same input dataset, using the same
user-specified parameters, for nine of these packages is reported in this pa-
per. Finally, feedback of obvious flaws was attempted to reduce the overall
disagreement. The results are deeply disturbing. Whereas scientists like to
think that their code is accurate to the precision of the arithmetic used,
in this study, numerical disagreement grows at around the rate of 1% in
average absolute difference per 4000 fines of implemented code, and, even
worse, the nature of the disagreement is nonrandom. Furthermore, the seis-
mic data processing industry has better than average quality standards for
its software development with both identifiable quality assurance functions
and substantial test datasets.

[Hatton1997] L. Hatton. The t-experiments: errors in scientific software. In
Ronald F. Boisvert, editor, Quality of Numerical Software, pages 12–31.
Springer US, 1997, DOI 10.1007/978-1-5041-2940-4_2.
Abstract: This paper covers two very large experiments carried out con-
currently between 1990 and 1994, together known as the T-experiments.
Experiment T1 had the objective of measuring the consistency of several
million lines of scientific software written in C and Fortran 77 by static
deep-flow analysis across many different industries and application areas,
and experiment T2 had the objective of measuring the level of dynamic
disagreement between independent implementations of the same algorithms
acting on the same input data with the same parameters in just one of these
industrial application areas. Experiment T1 showed that C and Fortran are
riddled with statically detectable inconsistencies independent of the appli-
cation area. For example, interface inconsistencies occur at the rate of one

57

in every 7 interfaces on average in Fortran, and one in every 37 interfaces in
C. They also show that Fortran components are typically 2.5 times bigger
than C components, and that roughly 30% of the Fortran population and
10% of the C population would be deemed untestable by any standards.
Experiment T2 was even more disturbing. Whereas scientists like to think
that their results are accurate to the precision of the arithmetic used, in
this study, the degree of agreement gradually degenerated from 6 significant
figures to 1 significant figure during the computation. The reasons for this
disagreement are laid squarely at the door of software failure, as other pos-
sible causes are considered and rejected. Taken with other evidence, these
two experiments suggest that the results of scientific calculations involving
significant amounts of software should be taken with several large pinches of
salt.

[Hayashi2019] Junichi Hayashi, Yoshiki Higo, Shinsuke Matsumoto, and
Shinji Kusumoto. Impacts of daylight saving time on software development.
In Proc. International Conference on Mining Software Repositories (MSR).
IEEE, 5 2019, DOI 10.1109/msr.2019.00076.
Abstract: Daylight saving time (DST) is observed in many countries and
regions. DST is not considered on some software systems at the beginning
of their developments, for example, software systems developed in regions
where DST is not observed. However, such systems may have to consider
DST at the requests of their users. Before now, there has been no study
about the impacts of DST on software development. In this paper, we study
the impacts of DST on software development by mining the repositories on
GitHub. We analyze the date when the code related to DST is changed,
and we analyze the regions where the developers applied the changes live.
Furthermore, we classify the changes into some patterns.

[Hazoom2021] Moshe Hazoom, Vibhor Malik, and Ben Bogin. Text-to-
SQL in the wild: A naturally-occurring dataset based on stack exchange
data. In Proc. Workshop on Natural Language Processing for Program-
ming (NLP4Prog). Association for Computational Linguistics, 2021, DOI
10.18653/v1/2021.nlp4prog-1.9.
Abstract: Most available semantic parsing datasets, comprising of pairs of
natural utterances and logical forms, were collected solely for the purpose of
training and evaluation of natural language understanding systems. As a re-
sult, they do not contain any of the richness and variety of natural-occurring
utterances, where humans ask about data they need or are curious about.
In this work, we release SEDE, a dataset with 12,023 pairs of utterances
and SQL queries collected from real usage on the Stack Exchange website.
We show that these pairs contain a variety of real-world challenges which
were rarely reflected so far in any other semantic parsing dataset, propose
an evaluation metric based on comparison of partial query clauses that is
more suitable for real-world queries, and conduct experiments with strong
baselines, showing a large gap between the performance on SEDE compared
to other common datasets.

58

[Hemmati2013] Hadi Hemmati, Sarah Nadi, Olga Baysal, Oleksii Kononenko,
Wei Wang, Reid Holmes, and Michael W. Godfrey. The MSR Cook-
book: mining a decade of research. In Proc. International Con-
ference on Mining Software Repositories (MSR). IEEE, 5 2013, DOI
10.1109/msr.2013.6624048.
Abstract: The Mining Software Repositories (MSR) research community
has grown significantly since the first MSR workshop was held in 2004. As
the community continues to broaden its scope and deepens its expertise, it
is worthwhile to reflect on the best practices that our community has devel-
oped over the past decade of research. We identify these best practices by
surveying past MSR conferences and workshops. To that end, we review all
117 full papers published in the MSR proceedings between 2004 and 2012.
We extract 268 comments from these papers, and categorize them using a
grounded theory methodology. From this evaluation, four high-level themes
were identified: data acquisition and preparation, synthesis, analysis, and
sharing/replication. Within each theme we identify several common recom-
mendations, and also examine how these recommendations have evolved over
the past decade. In an effort to make this survey a living artifact, we also
provide a public forum that contains the extracted recommendations in the
hopes that the MSR community can engage in a continuing discussion on
our evolving best practices.

[Hermans2011] Felienne Hermans, Martin Pinzger, and Arie van Deursen.
Supporting professional spreadsheet users by generating leveled dataflow di-
agrams. In Proc. International Conference on Software Engineering (ICSE).
ACM, 5 2011, DOI 10.1145/1985793.1985855.
Abstract: Thanks to their flexibility and intuitive programming model,
spreadsheets are widely used in industry, often for businesscritical applica-
tions. Similar to software developers, professional spreadsheet users demand
support for maintaining and transferring their spreadsheets. In this paper,
we first study the problems and information needs of professional spreadsheet
users by means of a survey conducted at a large financial company. Based on
these needs, we then present an approach that extracts this information from
spreadsheets and presents it in a compact and easy to understand way, with
leveled dataflow diagrams. Our approach comes with three different views
on the dataflow that allow the user to analyze the dataflow diagrams in a
top-down fashion. To evaluate the usefulness of the proposed approach, we
conducted a series of interviews as well as nine case studies in an industrial
setting. The results of the evaluation clearly indicate the demand for and
usefulness of our approach in ease the understanding of spreadsheets.

[Hermans2016] Felienne Hermans and Efthimia Aivaloglou. Do code smells
hamper novice programming? a controlled experiment on Scratch programs.
In Proc. International Conference on Program Comprehension (ICPC).
IEEE, 5 2016, DOI 10.1109/icpc.2016.7503706.
Abstract: Recently, block-based programming languages like Alice, Scratch
and Blockly have become popular tools for programming education. There

59

is substantial research showing that block-based languages are suitable for
early programming education. But can block-based programs be smelly too?
And does that matter to learners? In this paper we explore the code smells
metaphor in the context of block-based programming language Scratch. We
conduct a controlled experiment with 61 novice Scratch programmers, in
which we divided the novices into three groups. One third receive a non-
smelly program, while the other groups receive a program suffering from
the Duplication or the Long Method smell respectively. All subjects then
perform the same comprehension tasks on their program, after which we
measure their time and correctness. The results of the experiment show that
code smell indeed influence performance: subjects working on the program
exhibiting code smells perform significantly worse, but the smells did not af-
fect the time subjects needed. Investigating different types of tasks in more
detail, we find that Long Method mainly decreases system understanding,
while Duplication decreases the ease with which subjects modify Scratch
programs.

[Hermans2021] Felienne Hermans. The Programmer’s Brain: What Every
Programmer Needs to Know About Cognition. Manning, 2021.
Abstract: Your brain responds in a predictable way when it encounters new
or difficult tasks. This unique book teaches you concrete techniques rooted
in cognitive science that will improve the way you learn and think about
code.

[Herraiz2010] Israel Herraiz and Ahmed E. Hassan. Beyond lines of code: Do
we need more complexity metrics? In Andy Oram and Greg Wilson, editors,
Making Software. O’Reilly, 2010.
Abstract: Summarizes work on code complexity metrics and finds that
there is little evidence any of them provide more information than simply
counting lines of code.

[Herzig2013] Kim Herzig, Sascha Just, and Andreas Zeller. It's not a bug,
it's a feature: how misclassification impacts bug prediction. In Proc. Inter-
national Conference on Software Engineering (ICSE). IEEE, 5 2013, DOI
10.1109/icse.2013.6606585.
Abstract: In a manual examination of more than 7,000 issue reports from
the bug databases of five open-source projects, we found 33.8% of all bug
reports to be misclassified - that is, rather than referring to a code fix,
they resulted in a new feature, an update to documentation, or an internal
refactoring. This misclassification introduces bias in bug prediction models,
confusing bugs and features: On average, 39% of files marked as defective
actually never had a bug. We discuss the impact of this misclassification on
earlier studies and recommend manual data validation for future studies.

[Hindle2012] Abram Hindle, Christian Bird, Thomas Zimmermann, and
Nachiappan Nagappan. Relating requirements to implementation via topic
analysis: do topics extracted from requirements make sense to managers

60

and developers? In Proc. International Conference on Software Mainte-
nance (ICSM). IEEE, 9 2012, DOI 10.1109/icsm.2012.6405278.
Abstract: Large organizations like Microsoft tend to rely on formal require-
ments documentation in order to specify and design the software products
that they develop. These documents are meant to be tightly coupled with the
actual implementation of the features they describe. In this paper we evaluate
the value of high-level topic-based requirements traceability in the version
control system, using Latent Dirichlet Allocation (LDA). We evaluate LDA
topics on practitioners and check if the topics and trends extracted matches
the perception that Program Managers and Developers have about the ef-
fort put into addressing certain topics. We found that effort extracted from
version control that was relevant to a topic often matched the perception
of the managers and developers of what occurred at the time. Furthermore
we found evidence that many of the identified topics made sense to practi-
tioners and matched their perception of what occurred. But for some topics,
we found that practitioners had difficulty interpreting and labelling them.
In summary, we investigate the high-level traceability of requirements topics
to version control commits via topic analysis and validate with the actual
stakeholders the relevance of these topics extracted from requirements.

[Hindle2016] Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su, and
Premkumar Devanbu. On the naturalness of software. Communications of
the ACM, 59(5):122–131, 4 2016, DOI 10.1145/2902362.
Abstract: Natural languages like English are rich, complex, and powerful.
The highly creative and graceful use of languages like English and Tamil,
by masters like Shakespeare and Avvaiyar, can certainly delight and in-
spire. But in practice, given cognitive constraints and the exigencies of daily
life, most human utterances are far simpler and much more repetitive and
predictable. In fact, these utterances can be very usefully modeled using
modern statistical methods. This fact has led to the phenomenal success of
statistical approaches to speech recognition, natural language translation,
question-answering, and text mining and comprehension. We begin with the
conjecture that most software is also natural, in the sense that it is cre-
ated by humans at work, with all the attendant constraints and limitations
- and thus, like natural language, it is also likely to be repetitive and pre-
dictable. We then proceed to ask whether a) code can be usefully modeled
by statistical language models and b) such models can be leveraged to sup-
port software engineers. Using the widely adopted n-gram model, we provide
empirical evidence supportive of a positive answer to both these questions.
We show that code is also very repetitive, and in fact even more so than
natural languages. As an example use of the model, we have developed a
simple code completion engine for Java that, despite its simplicity, already
improves Eclipse’s built-in completion capability. We conclude the paper by
laying out a vision for future research in this area.

[Hoda2021] Rashina Hoda. Socio-technical grounded theory for software en-
gineering. IEEE Transactions on Software Engineering, pages 1–1, 2021,

61

DOI 10.1109/tse.2021.3106280.
Abstract: Grounded Theory (GT), a sociological research method designed
to study social phenomena, is increasingly being used to investigate the hu-
man and social aspects of software engineering (SE). However, being written
by and for sociologists, GT is often challenging for a majority of SE re-
searchers to understand and apply. Additionally, SE researchers attempting
ad hoc adaptations of traditional GT guidelines for modern socio-technical
(ST) contexts often struggle in the absence of clear and relevant guidelines
to do so, resulting in poor quality studies. To overcome these research com-
munity challenges and leverage modern research opportunities, this paper
presents Socio-Technical Grounded Theory (STGT) designed to ease ap-
plication and achieve quality outcomes. It defines what exactly is meant
by an ST research context and presents the STGT guidelines that expand
GT’s philosophical foundations, provide increased clarity and flexibility in its
methodological steps and procedures, define possible scope and contexts of
application, encourage frequent reporting of a variety of interim, preliminary,
and mature outcomes, and introduce nuanced evaluation guidelines for dif-
ferent outcomes. It is hoped that the SE research community and related ST
disciplines such as computer science, data science, artificial intelligence, in-
formation systems, human computer/robot/AI interaction, human-centered
emerging technologies (and increasingly other disciplines being transformed
by rapid digitalisation and AI-based augmentation), will benefit from apply-
ing STGT to conduct quality research studies and systematically produce
rich findings and mature theories with confidence.

[Hofmeister2017] Johannes Hofmeister, Janet Siegmund, and Daniel V. Holt.
Shorter identifier names take longer to comprehend. In Proc. International
Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2 2017, DOI 10.1109/saner.2017.7884623.
Abstract: Developers spend the majority of their time comprehending code,
a process in which identifier names play a key role. Although many identifier
naming styles exist, they often lack an empirical basis and it is not quite
clear whether short or long identifier names facilitate comprehension. In this
paper, we investigate the effect of different identifier naming styles (letters,
abbreviations, words) on program comprehension, and whether these effects
arise because of their length or their semantics. We conducted an experi-
mental study with 72 professional C# developers, who looked for defects
in source-code snippets. We used a within-subjects design, such that each
developer saw all three versions of identifier naming styles and we measured
the time it took them to find a defect. We found that words lead to, on
average, 19% faster comprehension speed compared to letters and abbrevi-
ations, but we did not find a significant difference in speed between letters
and abbreviations. The results of our study suggest that defects in code are
more difficult to detect when code contains only letters and abbreviations.
Words as identifier names facilitate program comprehension and can help to
save costs and improve software quality.

62

[Holmes2020] Josie Holmes, Iftekhar Ahmed, Caius Brindescu, Rahul
Gopinath, He Zhang, and Alex Groce. Using relative lines of code to guide
automated test generation for python. ACM Transactions on Software En-
gineering and Methodology, 29(4):1–38, 10 2020, DOI 10.1145/3408896.
Abstract: Raw lines of code (LOC) is a metric that does not, at first
glance, seem extremely useful for automated test generation. It is both highly
language-dependent and not extremely meaningful, semantically, within a
language: one coder can produce the same effect with many fewer lines than
another. However, relative LOC, between components of the same project,
turns out to be a highly useful metric for automated testing. In this arti-
cle, we make use of a heuristic based on LOC counts for tested functions
to dramatically improve the effectiveness of automated test generation. This
approach is particularly valuable in languages where collecting code coverage
data to guide testing has a very high overhead. We apply the heuristic to
property-based Python testing using the TSTL (Template Scripting Testing
Language) tool. In our experiments, the simple LOC heuristic can improve
branch and statement coverage by large margins (often more than 20%, up
to 40% or more) and improve fault detection by an even larger margin (usu-
ally more than 75% and up to 400% or more). The LOC heuristic is also easy
to combine with other approaches and is comparable to, and possibly more
effective than, two well-established approaches for guiding random testing.

[Hora2021a] Andre Hora. Googling for software development: What de-
velopers search for and what they find. In Proc. International Con-
ference on Mining Software Repositories (MSR). IEEE, 5 2021, DOI
10.1109/msr52588.2021.00044.
Abstract: Developers often search for software resources on the web. In
practice, instead of going directly to websites (e.g., Stack Overflow), they
rely on search engines (e.g., Google). Despite this being a common activ-
ity, we are not yet aware of what developers search from the perspective
of popular software development websites and what search results are re-
turned. With this knowledge, we can understand real-world queries, devel-
opers’ needs, and the query impact on the search results. In this paper, we
provide an empirical study to understand what developers search on the
web and what they find. We assess 1.3M queries to popular programming
websites and we perform thousands of queries on Google to explore search
results. We find that (i) developers’ queries typically start with keywords
(e.g., Python, Android, etc.), are short (3 words), tend to omit functional
words, and are similar among each other; (ii) minor changes to queries do
not largely affect the Google search results, however, some cosmetic changes
may have a non-negligible impact; and (iii) search results are dominated
by Stack Overflow, but YouTube is also a relevant source nowadays. We
conclude by presenting detailed implications for researchers and developers.

[Hora2021b] Andre Hora. What code is deliberately excluded from test cov-
erage and why? In Proc. International Conference on Mining Software
Repositories (MSR). IEEE, 5 2021, DOI 10.1109/msr52588.2021.00051.

63

Abstract: Test coverage is largely used to assess test effectiveness. In prac-
tice, not all code is equally important for coverage analysis, for instance,
code that will not be executed during tests is irrelevant and can actually
harm the analysis. Some coverage tools provide support for code exclusion
from coverage reports, however, we are not yet aware of what code tends
to be excluded nor the reasons behind it. This can support the creation of
more accurate coverage reports and reveal novel and harmful usage cases.
In this paper, we provide the first empirical study to understand code ex-
clusion practices in test coverage. We mine 55 Python projects and assess
commit messages and code comments to detect rationales for exclusions. We
find that (1) over 1/3 of the projects perform deliberate coverage exclusion;
(2) 75% of the code are already created using the exclusion feature, while
25% add it over time; (3) developers exclude non-runnable, debug-only, and
defensive code, but also platform-specific and conditional importing; and (4)
most code is excluded because it is already untested, low-level, or complex.
Finally, we discuss implications to improve coverage analysis and shed light
on the existence of biased coverage reports.

[Hoyos2021] Juan Hoyos, Rabe Abdalkareem, Suhaib Mujahid, Emad Shihab,
and Albeiro Espinosa Bedoya. On the removal of feature toggles: A study
of python projects and practitioners motivations. Empirical Software Engi-
neering, 26(2), 2 2021, DOI 10.1007/s10664-020-09902-y.
Abstract: Feature Toggling is a technique to control the execution of fea-
tures in a software project. For example, practitioners using feature toggles
can experiment with new features in a production environment by exposing
them to a subset of users. Some of these toggles require additional maintain-
ability efforts and are expected to be removed, whereas others are meant
to remain for a long time. However, to date, very little is known about the
removal of feature toggles, which is why we focus on this topic in our pa-
per. We conduct an empirical study that focuses on the removal of feature
toggles. We use source code analysis techniques to analyze 12 Python open
source projects and surveyed 61 software practitioners to provide deeper in-
sights on the topic. Our study shows that 75% of the toggle components in
the studied Python projects are removed within 49 weeks after introduction.
However, eventually practitioners remove feature toggles to follow the life
cycle of a feature when it becomes stable in production. We also find that
not all long-term feature toggles are designed to live that long and not all
feature toggles are removed from the source code, opening the possibilities
to unwanted risks. Our study broadens the understanding of feature toggles
by identifying reasons for their survival in practice and aims to help prac-
titioners make better decisions regarding the way they manage and remove
feature toggles.

[Huang2020] Yu Huang, Kevin Leach, Zohreh Sharafi, Nicholas McKay, Tyler
Santander, and Westley Weimer. Biases and differences in code review us-
ing medical imaging and eye-tracking: genders, humans, and machines. In
Proc. European Software Engineering Conference/International Symposium

64

on the Foundations of Software Engineering (ESEC/FSE). ACM, 11 2020,
DOI 10.1145/3368089.3409681.
Abstract: Code review is a critical step in modern software quality as-
surance, yet it is vulnerable to human biases. Previous studies have clar-
ified the extent of the problem, particularly regarding biases against the
authors of code,but no consensus understanding has emerged. Advances in
medical imaging are increasingly applied to software engineering, supporting
grounded neurobiological explorations of computing activities, including the
review, reading, and writing of source code. In this paper, we present the
results of a controlled experiment using both medical imaging and also eye
tracking to investigate the neurological correlates of biases and differences
between genders of humans and machines (e.g., automated program repair
tools) in code review. We find that men and women conduct code reviews
differently, in ways that are measurable and supported by behavioral, eye-
tracking and medical imaging data. We also find biases in how humans review
code as a function of its apparent author, when controlling for code quality.
In addition to advancing our fundamental understanding of how cognitive
biases relate to the code review process, the results may inform subsequent
training and tool design to reduce bias.

[Huijgens2020] Hennie Huijgens, Ayushi Rastogi, Ernst Mulders, Georgios
Gousios, and Arie van Deursen. Questions for data scientists in software
engineering: a replication. In Proc. European Software Engineering Confer-
ence/International Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 11 2020, DOI 10.1145/3368089.3409717.
Abstract: In 2014, a Microsoft study investigated the sort of questions that
data science applied to software engineering should answer. This resulted in
145 questions that developers considered relevant for data scientists to an-
swer, thus providing a research agenda to the community. Fast forward to
five years, no further studies investigated whether the questions from the
software engineers at Microsoft hold for other software companies, including
software-intensive companies with different primary focus (to which we re-
fer as software-defined enterprises). Furthermore, it is not evident that the
problems identified five years ago are still applicable, given the technologi-
cal advances in software engineering. This paper presents a study at ING, a
software-defined enterprise in banking in which over 15,000 IT staff provides
in-house software solutions. This paper presents a comprehensive guide of
questions for data scientists selected from the previous study at Microsoft
along with our current work at ING. We replicated the original Microsoft
study at ING, looking for questions that impact both software companies
and software-defined enterprises and continue to impact software engineer-
ing. We also add new questions that emerged from differences in the context
of the two companies and the five years gap in between. Our results show that
software engineering questions for data scientists in the software-defined en-
terprise are largely similar to the software company, albeit with exceptions.
We hope that the software engineering research community builds on the

65

new list of questions to create a useful body of knowledge.

[Hundhausen2011] Christopher D. Hundhausen, Pawan Agarwal, and
Michael Trevisan. Online vs. face-to-face pedagogical code reviews. In Proc.
Technical Symposium on Computer Science Education (SIGCSE). ACM
Press, 2011, DOI 10.1145/1953163.1953201.
Abstract: Given the increased importance of communication, teamwork,
and critical thinking skills in the computing profession, we have been ex-
ploring studio-based instructional methods, in which students develop solu-
tions and iteratively refine them through critical review by their peers and
instructor. We have developed an adaptation of studio-based instruction for
computing education called the pedagogical code review (PCR), which is
modeled after the code inspection process used in the software industry. Un-
fortunately, PCRs are time-intensive, making them difficult to implement
within a typical computing course. To address this issue, we have developed
an online environment that allows PCRs to take place asynchronously out-
side of class. We conducted an empirical study that compared a CS 1 course
with online PCRs against a CS 1 course with face-to-face PCRs. Our study
had three key results: (a) in the course with face-to-face PCRs, student
attitudes with respect to self-efficacy and peer learning were significantly
higher; (b) in the course with face-to-face PCRs, students identified more
substantive issues in their reviews; and (c) in the course with face-to-face
PCRs, students were generally more positive about the value of PCRs. In
light of our findings, we recommend specific ways online PCRs can be better
designed.

[Imam2021] Ahmed Imam and Tapajit Dey. Tracking hackathon code creation
and reuse. In Proc. International Conference on Mining Software Reposito-
ries (MSR). IEEE, 5 2021, DOI 10.1109/msr52588.2021.00085.
Abstract: Background: Hackathons have become popular events for teams
to collaborate on projects and develop software prototypes. Most existing re-
search focuses on activities during an event with limited attention to the evo-
lution of the code brought to or created during a hackathon. Aim: We aim to
understand the evolution of hackathon-related code, specifically, how much
hackathon teams rely on pre-existing code or how much new code they de-
velop during a hackathon. Moreover, we aim to understand if and where that
code gets reused. Method: We collected information about 22,183 hackathon
projects from Devpost—a hackathon database—and obtained related code
(blobs), authors, and project characteristics from the World of Code. We
investigated if code blobs in hackathon projects were created before, during,
or after an event by identifying the original blob creation date and author,
and also checked if the original author was a hackathon project member. We
tracked code reuse by first identifying all commits containing blobs created
during an event before determining all projects that contain those commits.
Result: While only approximately 9.14% of the code blobs are created dur-
ing hackathons, this amount is still significant considering time and member
constraints of such events. Approximately a third of these code blobs get

66

reused in other projects. Conclusion: Our study demonstrates to what ex-
tent pre-existing code is used and new code is created during a hackathon
and how much of it is reused elsewhere afterwards. Our findings help to bet-
ter understand code reuse as a phenomenon and the role of hackathons in
this context and can serve as a starting point for further studies in this area.

[Inozemtseva2014] Laura Inozemtseva and Reid Holmes. Coverage is
not strongly correlated with test suite effectiveness. In Proc. Interna-
tional Conference on Software Engineering (ICSE). ACM, 5 2014, DOI
10.1145/2568225.2568271.
Abstract: The coverage of a test suite is often used as a proxy for its ability
to detect faults. However, previous studies that investigated the correlation
between code coverage and test suite effectiveness have failed to reach a con-
sensus about the nature and strength of the relationship between these test
suite characteristics. Moreover, many of the studies were done with small
or synthetic programs, making it unclear whether their results generalize to
larger programs, and some of the studies did not account for the confounding
influence of test suite size. In addition, most of the studies were done with
adequate suites, which are are rare in practice, so the results may not gener-
alize to typical test suites. We have extended these studies by evaluating the
relationship between test suite size, coverage, and effectiveness for large Java
programs. Our study is the largest to date in the literature: we generated
31,000 test suites for five systems consisting of up to 724,000 lines of source
code. We measured the statement coverage, decision coverage, and modi-
fied condition coverage of these suites and used mutation testing to evaluate
their fault detection effectiveness. We found that there is a low to moderate
correlation between coverage and effectiveness when the number of test cases
in the suite is controlled for. In addition, we found that stronger forms of
coverage do not provide greater insight into the effectiveness of the suite.
Our results suggest that coverage, while useful for identifying under-tested
parts of a program, should not be used as a quality target because it is not
a good indicator of test suite effectiveness.

[Jacobson2013] Ivar Jacobson, Pan-Wei Ng, Paul E. McMahon, Ian Spence,
and Svante Lidman. The Essence of Software Engineering: Applying the
SEMAT Kernel. Addison-Wesley Professional, 2013.
Abstract: SEMAT (Software Engineering Methods and Theory) is an in-
ternational initiative designed to identify a common ground, or universal
standard, for software engineering. It is supported by some of the most dis-
tinguished contributors to the field. Creating a simple language to describe
methods and practices, the SEMAT team expresses this common ground as
a kernel—or framework—of elements essential to all software development.
The Essence of Software Engineering introduces this kernel and shows how
to apply it when developing software and improving a team’s way of work-
ing. It is a book for software professionals, not methodologists. Its usefulness
to development team members, who need to evaluate and choose the best

67

practices for their work, goes well beyond the description or application of
any single method.

[Jalote2021] Pankaj Jalote and Damodaram Kamma. Studying task processes
for improving programmer productivity. IEEE Transactions on Software En-
gineering, 47(4):801–817, 4 2021, DOI 10.1109/tse.2019.2904230.
Abstract: Productivity of a software development organization can be en-
hanced by improving the software process, using better tools/technology,
and enhancing the productivity of programmers. This work focuses on im-
proving programmer productivity by studying the process used by a pro-
grammer for executing an assigned task, which we call the task process.
We propose a general framework for studying the impact of task processes
on programmer productivity and also the impact of transferring task pro-
cesses of high-productivity programmers to average-productivity peers. We
applied the framework to a few live projects in Robert Bosch Engineering
and Business Solutions Limited, a CMMI Level 5 company. In each project,
we identified two groups of programmers: high-productivity and average-
productivity programmers. We requested each programmer to video capture
their computer screen while executing his/her assigned tasks. We then ana-
lyzed these task videos to extract the task processes and then used them to
identify the differences between the task processes used by the two groups.
Some key differences were found between the task processes, which could
account for the difference in productivities of the two groups. Similarities be-
tween the task processes were also analyzed quantitatively by modeling each
task process as a Markov chain. We found that programmers from the same
group used similar task processes, but the task processes of the two groups
differed considerably. The task processes of high-productivity programmers
were transferred to the average-productivity programmers by training them
on the key steps missing in their process but commonly present in the work of
their high-productivity peers. A substantial productivity gain was found in
the average-productivity programmers as a result of this transfer. The study
shows that task processes of programmers impact their productivity, and it
is possible to improve the productivity of average-productivity programmers
by transferring task processes from high-productivity programmers to them.

[Jin2021] Xianhao Jin and Francisco Servant. What helped, and what did
not? an evaluation of the strategies to improve continuous integration. In
Proc. International Conference on Software Engineering (ICSE). IEEE, 5
2021, DOI 10.1109/icse43902.2021.00031.
Abstract: Continuous integration (CI) is a widely used practice in modern
software engineering. Unfortunately, it is also an expensive practice - Google
and Mozilla estimate their CI systems in millions of dollars. There are a
number of techniques and tools designed to or having the potential to save
the cost of CI or expand its benefit - reducing time to feedback. However,
their benefits in some dimensions may also result in drawbacks in others.
They may also be beneficial in other scenarios where they are not designed

68

to help. In this paper, we perform the first exhaustive comparison of tech-
niques to improve CI, evaluating 14 variants of 10 techniques using selection
and prioritization strategies on build and test granularity. We evaluate their
strengths and weaknesses with 10 different cost and time-tofeedback saving
metrics on 100 real-world projects. We analyze the results of all techniques
to understand the design decisions that helped different dimensions of bene-
fit. We also synthesized those results to lay out a series of recommendations
for the development of future research techniques to advance this area.

[Johnson2019] John Johnson, Sergio Lubo, Nishitha Yedla, Jairo Aponte,
and Bonita Sharif. An empirical study assessing source code readability in
comprehension. In Proc. International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 9 2019, DOI 10.1109/icsme.2019.00085.
Abstract: Software developers spend a significant amount of time reading
source code. If code is not written with readability in mind, it impacts the
time required to maintain it. In order to alleviate the time taken to read
and understand code, it is important to consider how readable the code is.
The general consensus is that source code should be written to minimize the
time it takes for others to read and understand it. In this paper, we conduct
a controlled experiment to assess two code readability rules: nesting and
looping. We test 32 Java methods in four categories: ones that follow/do
not follow the readability rule and that are correct/incorrect. The study was
conducted online with 275 participants. The results indicate that minimizing
nesting decreases the time a developer spends reading and understanding
source code, increases confidence about the developer’s understanding of
the code, and also suggests that it improves their ability to find bugs. The
results also show that avoiding the do-while statement had no significant
impact on level of understanding, time spent reading and understanding,
confidence in understanding, or ease of finding bugs. It was also found that
the better knowledge of English a participant had, the more their readability
and comprehension confidence ratings were affected by the minimize nesting
rule. We discuss the implications of these findings for code readability and
comprehension.

[Johnson2021] Brittany Johnson, Thomas Zimmermann, and Christian Bird.
The effect of work environments on productivity and satisfaction of software
engineers. IEEE Transactions on Software Engineering, 47(4):736–757, 4
2021, DOI 10.1109/tse.2019.2903053.
Abstract: The physical work environment of software engineers can have
various effects on their satisfaction and the ability to get the work done. To
better understand the factors of the environment that affect productivity and
satisfaction of software engineers, we explored different work environments
at Microsoft. We used a mixed-methods, multiple stage research design with
a total of 1,159 participants: two surveys with 297 and 843 responses re-
spectively and interviews with 19 employees. We found several factors that
were considered as important for work environments: personalization, social

69

norms and signals, room composition and atmosphere, work-related envi-
ronment affordances, work area and furniture, and productivity strategies.
We built statistical models for satisfaction with the work environment and
perceived productivity of software engineers and compared them to models
for employees in the Program Management, IT Operations, Marketing, and
Business Program & Operations disciplines. In the satisfaction models, the
ability to work privately with no interruptions and the ability to communi-
cate with the team and leads were important factors among all disciplines.
In the productivity models, the overall satisfaction with the work environ-
ment and the ability to work privately with no interruptions were important
factors among all disciplines. For software engineers, another important fac-
tor for perceived productivity was the ability to communicate with the team
and leads. We found that private offices were linked to higher perceived
productivity across all disciplines.

[Jolak2020] Rodi Jolak, Maxime Savary-Leblanc, Manuela Dalibor, Andreas
Wortmann, Regina Hebig, Juraj Vincur, Ivan Polasek, Xavier Le Pallec,
Sébastien Gérard, and Michel R. V. Chaudron. Software engineering whis-
pers: The effect of textual vs. graphical software design descriptions on soft-
ware design communication. Empirical Software Engineering, 25(6):4427–
4471, 9 2020, DOI 10.1007/s10664-020-09835-6.
Abstract: Software engineering is a social and collaborative activity. Com-
municating and sharing knowledge between software developers requires
much effort. Hence, the quality of communication plays an important role
in influencing project success. To better understand the effect of communi-
cation on project success, more in-depth empirical studies investigating this
phenomenon are needed. We investigate the effect of using a graphical ver-
sus textual design description on co-located software design communication.
Therefore, we conducted a family of experiments involving a mix of 240 soft-
ware engineering students from four universities. We examined how different
design representations (i.e., graphical vs. textual) affect the ability to Ex-
plain, Understand, Recall, and Actively Communicate knowledge. We found
that the graphical design description is better than the textual in promoting
Active Discussion between developers and improving the Recall of design
details. Furthermore, compared to its unaltered version, a well-organized
and motivated textual design description—that is used for the same amount
of time—enhances the recall of design details and increases the amount of
active discussions at the cost of reducing the perceived quality of explaining.

[Jones2020] Derek M. Jones. Evidence-based Software Engineering: based on
the publicly available data. Knowledge Software, Ltd., 11 2020.
Abstract: This book discusses what is currently known about software
engineering, based on an analysis of all the publicly available data. This
aim is not as ambitious as it sounds, because there is not a great deal of
data publicly available. The intent is to provide material that is useful to
professional developers working in industry; until recently researchers in
software engineering have been more interested in vanity work, promoted by

70

ego and bluster. The material is organized in two parts, the first covering
software engineering and the second the statistics likely to be needed for the
analysis of software engineering data.

[Jorgensen2011] Magne Jørgensen and Stein Grimstad. the impact of irrel-
evant and misleading information on software development effort estimates:
a randomized controlled field experiment. IEEE Transactions on Software
Engineering, 37(5):695–707, 9 2011, DOI 10.1109/tse.2010.78.
Abstract: Studies in laboratory settings report that software development
effort estimates can be strongly affected by effort-irrelevant and misleading
information. To increase our knowledge about the importance of these effects
in field settings, we paid 46 outsourcing companies from various countries to
estimate the required effort of the same five software development projects.
The companies were allocated randomly to either the original requirement
specification or a manipulated version of the original requirement specifica-
tion. The manipulations were as follows: 1) reduced length of requirement
specification with no change of content, 2) information about the low effort
spent on the development of the old system to be replaced, 3) information
about the client’s unrealistic expectations about low cost, and 4) a restric-
tion of a short development period with start up a few months ahead. We
found that the effect sizes in the field settings were much smaller than those
found for similar manipulations in laboratory settings. Our findings sug-
gest that we should be careful about generalizing to field settings the effect
sizes found in laboratory settings. While laboratory settings can be useful to
demonstrate the existence of an effect and better understand it, field studies
may be needed to study the size and importance of these effects.

[Jorgensen2012] Magne Jørgensen and Stein Grimstad. Software develop-
ment estimation biases: the role of interdependence. IEEE Transactions on
Software Engineering, 38(3):677–693, 5 2012, DOI 10.1109/tse.2011.40.
Abstract: Software development effort estimates are frequently too low,
which may lead to poor project plans and project failures. One reason for
this bias seems to be that the effort estimates produced by software devel-
opers are affected by information that has no relevance for the actual use
of effort. We attempted to acquire a better understanding of the underly-
ing mechanisms and the robustness of this type of estimation bias. For this
purpose, we hired 374 software developers working in outsourcing companies
to participate in a set of three experiments. The experiments examined the
connection between estimation bias and developer dimensions: self-construal
(how one sees oneself), thinking style, nationality, experience, skill, educa-
tion, sex, and organizational role. We found that estimation bias was present
along most of the studied dimensions. The most interesting finding may be
that the estimation bias increased significantly with higher levels of inter-
dependence, i.e., with stronger emphasis on connectedness, social context,
and relationships. We propose that this connection may be enabled by an
activation of one’s self-construal when engaging in effort estimation, and
a connection between a more interdependent self-construal and increased

71

search for indirect messages, lower ability to ignore irrelevant context, and
a stronger emphasis on socially desirable responses.

[Kamienski2021] Arthur V. Kamienski, Luisa Palechor, Cor-Paul Beze-
mer, and Abram Hindle. PySStuBs: Characterizing single-statement
bugs in popular open-source python projects. In Proc. International
Conference on Mining Software Repositories (MSR). IEEE, 5 2021, DOI
10.1109/msr52588.2021.00066.
Abstract: Single-statement bugs (SStuBs) can have a severe impact on de-
veloper productivity. Despite usually being simple and not offering much of
a challenge to fix, these bugs may still disturb a developer’s workflow and
waste precious development time. However, few studies have paid attention
to these simple bugs, focusing instead on bugs of any size and complexity. In
this study, we explore the occurrence of SStuBs in some of the most popular
open-source Python projects on GitHub, while also characterizing their pat-
terns and distribution. We further compare these bugs to SStuBs found in a
previous study on Java Maven projects. We find that these Python projects
have different SStuB patterns than the ones in Java Maven projects and
identify 7 new SStuB patterns. Our results may help uncover the impor-
tance of understanding these bugs for the Python programming language,
and how developers can handle them more effectively.

[KanatAlexander2012] Max Kanat-Alexander. Code Simplicity: The Sci-
ence of Software Development. O’Reilly, 2012.
Abstract: Good software development results in simple code. Unfortu-
nately, much of the code existing in the world today is far too complex.
This concise guide helps you understand the fundamentals of good software
development through universal laws—principles you can apply to any pro-
gramming language or project from here to eternity.

[Kapser2008] Cory J. Kapser and Michael W. Godfrey. “cloning con-
sidered harmful” considered harmful: patterns of cloning in soft-
ware. Empirical Software Engineering, 13(6):645–692, 7 2008, DOI
10.1007/s10664-008-9076-6.
Abstract: Literature on the topic of code cloning often asserts that du-
plicating code within a software system is a bad practice, that it causes
harm to the system’s design and should be avoided. However, in our studies,
we have found significant evidence that cloning is often used in a variety
of ways as a principled engineering tool. For example, one way to evaluate
possible new features for a system is to clone the affected subsystems and
introduce the new features there, in a kind of sandbox testbed. As features
mature and become stable within the experimental subsystems, they can be
migrated incrementally into the stable code base; in this way, the risk of
introducing instabilities in the stable version is minimized. This paper de-
scribes several patterns of cloning that we have observed in our case studies
and discusses the advantages and disadvantages associated with using them.
We also examine through a case study the frequencies of these clones in

72

two medium-sized open source software systems, the Apache web server and
the Gnumeric spreadsheet application. In this study, we found that as many
as 71% of the clones could be considered to have a positive impact on the
maintainability of the software system.

[Kasi2013] Bakhtiar Khan Kasi and Anita Sarma. Cassandra: proactive
conflict minimization through optimized task scheduling. In Proc. Inter-
national Conference on Software Engineering (ICSE). IEEE, 5 2013, DOI
10.1109/icse.2013.6606619.
Abstract: Software conflicts arising because of conflicting changes are a
regular occurrence and delay projects. The main precept of workspace aware-
ness tools has been to identify potential conflicts early, while changes are still
small and easier to resolve. However, in this approach conflicts still occur
and require developer time and effort to resolve. We present a novel con-
flict minimization technique that proactively identifies potential conflicts,
encodes them as constraints, and solves the constraint space to recommend
a set of conflict-minimal development paths for the team. Here we present
a study of four open source projects to characterize the distribution of con-
flicts and their resolution efforts. We then explain our conflict minimization
technique and the design and implementation of this technique in our proto-
type, Cassandra. We show that Cassandra would have successfully avoided
a majority of conflicts in the four open source test subjects. We demonstrate
the efficiency of our approach by applying the technique to a simulated set
of scenarios with higher than normal incidence of conflicts.

[Kavaler2019] David Kavaler, Asher Trockman, Bogdan Vasilescu, and
Vladimir Filkov. Tool choice matters: JavaScript quality assurance
tools and usage outcomes in GitHub projects. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, 5 2019, DOI
10.1109/icse.2019.00060.
Abstract: Quality assurance automation is essential in modern software
development. In practice, this automation is supported by a multitude of
tools that fit different needs and require developers to make decisions about
which tool to choose in a given context. Data and analytics of the pros and
cons can inform these decisions. Yet, in most cases, there is a dearth of em-
pirical evidence on the effectiveness of existing practices and tool choices.
We propose a general methodology to model the time-dependent effect of
automation tool choice on four outcomes of interest: prevalence of issues,
code churn, number of pull requests, and number of contributors, all with
a multitude of controls. On a large data set of npm JavaScript projects, we
extract the adoption events for popular tools in three task classes: linters,
dependency managers, and coverage reporters. Using mixed methods ap-
proaches, we study the reasons for the adoptions and compare the adoption
effects within each class, and sequential tool adoptions across classes. We
find that some tools within each group are associated with more beneficial
outcomes than others, providing an empirical perspective for the benefits of

73

each. We also find that the order in which some tools are implemented is
associated with varying outcomes.

[Kernighan1979] Brian W. Kernighan and P. J. Plauger. The Elements of
Programming Style. McGraw-Hill, 2nd edition, 1979.
Abstract: Lays out several dozen rules for good programming style; while
examples are in FORTRAN, the rules apply to almost every language.

[Kernighan1981] Brian W. Kernighan and P. J. Plauger. Software Tools in
Pascal. Addison-Wesley Professional, 1981.
Abstract: Shows readers how to build simple version of the the program-
ming tools they use themselves, and in doing so shows how to think about
software design.

[Kernighan1983] Brian W. Kernighan and Rob Pike. The Unix Programming
Environment. Prentice-Hall, 1983.
Abstract: Explains the Unix “lots of little tools, easily recombined” ap-
proach to computing with lots of examples.

[Khomh2012] Foutse Khomh, Tejinder Dhaliwal, Ying Zou, and Bram
Adams. Do faster releases improve software quality? an empirical case study
of Mozilla Firefox. In Proc. International Conference on Mining Software
Repositories (MSR). IEEE, 6 2012, DOI 10.1109/msr.2012.6224279.
Abstract: Nowadays, many software companies are shifting from the tradi-
tional 18-month release cycle to shorter release cycles. For example, Google
Chrome and Mozilla Firefox release new versions every 6 weeks. These
shorter release cycles reduce the users’ waiting time for a new release and
offer better marketing opportunities to companies, but it is unclear if the
quality of the software product improves as well, since shorter release cy-
cles result in shorter testing periods. In this paper, we empirically study the
development process of Mozilla Firefox in 2010 and 2011, a period during
which the project transitioned to a shorter release cycle. We compare crash
rates, median uptime, and the proportion of post-release bugs of the versions
that had a shorter release cycle with those having a traditional release cycle,
to assess the relation between release cycle length and the software quality
observed by the end user. We found that (1) with shorter release cycles, users
do not experience significantly more post-release bugs and (2) bugs are fixed
faster, yet (3) users experience these bugs earlier during software execution
(the program crashes earlier).

[Kiefer2015] Marc Kiefer, Daniel Warzel, and Walter F. Tichy. An empirical
study on parallelism in modern open-source projects. In Proc. International
Workshop on Software Engineering for Parallel Systems (SEPS). ACM, 10
2015, DOI 10.1145/2837476.2837481.
Abstract: Writing parallel programs is hard, especially for inexperienced
programmers. Parallel language features are still being added on a regular
basis to most modern object-oriented languages and this trend is likely to

74

continue. Being able to support developers with tools for writing and opti-
mizing parallel programs requires a deep understanding of how programmers
approach and implement parallelism. We present an empirical study of 135
parallel open-source projects in Java, C# and C++ ranging from small (¡
1000 lines of code) to very large (¿ 2M lines of code) codebases. We examine
the projects to find out how language features, synchronization mechanisms,
parallel data structures and libraries are used by developers to express paral-
lelism. We also determine which common parallel patterns are used and how
the implemented solutions compare to typical textbook advice. The results
show that similar parallel constructs are used equally often across languages,
but usage also heavily depends on how easy to use a certain language feature
is. Patterns that do not map well to a language are much rarer compared
to other languages. Bad practices are prevalent in hobby projects but also
occur in larger projects.

[Kim2013] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim.
Automatic patch generation learned from human-written patches. In Proc.
International Conference on Software Engineering (ICSE). IEEE, 5 2013,
DOI 10.1109/icse.2013.6606626.
Abstract: Patch generation is an essential software maintenance task be-
cause most software systems inevitably have bugs that need to be fixed.
Unfortunately, human resources are often insufficient to fix all reported
and known bugs. To address this issue, several automated patch genera-
tion techniques have been proposed. In particular, a genetic-programming-
based patch generation technique, GenProg, proposed by Weimer et al., has
shown promising results. However, these techniques can generate nonsensi-
cal patches due to the randomness of their mutation operations. To address
this limitation, we propose a novel patch generation approach, Pattern-based
Automatic program Repair (Par), using fix patterns learned from existing
human-written patches. We manually inspected more than 60,000 human-
written patches and found there are several common fix patterns. Our ap-
proach leverages these fix patterns to generate program patches automat-
ically. We experimentally evaluated Par on 119 real bugs. In addition, a
user study involving 89 students and 164 developers confirmed that patches
generated by our approach are more acceptable than those generated by
GenProg. Par successfully generated patches for 27 out of 119 bugs, while
GenProg was successful for only 16 bugs.

[Kim2016] Dohyeong Kim, Yonghwi Kwon, Peng Liu, I. Luk Kim,
David Mitchel Perry, Xiangyu Zhang, and Gustavo Rodriguez-Rivera. Apex:
automatic programming assignment error explanation. In Proc. Interna-
tional Conference on Object-Oriented Programming Systems Languages and
Applications (OOPSLA). ACM, 10 2016, DOI 10.1145/2983990.2984031.
Abstract: This paper presents Apex, a system that can automatically gen-
erate explanations for programming assignment bugs, regarding where the
bugs are and how the root causes led to the runtime failures. It works by com-
paring the passing execution of a correct implementation (provided by the

75

instructor) and the failing execution of the buggy implementation (submitted
by the student). The technique overcomes a number of technical challenges
caused by syntactic and semantic differences of the two implementations.
It collects the symbolic traces of the executions and matches assignment
statements in the two execution traces by reasoning about symbolic equiv-
alence. It then matches predicates by aligning the control dependences of
the matched assignment statements, avoiding direct matching of path con-
ditions which are usually quite different. Our evaluation shows that Apex is
every effective for 205 buggy real world student submissions of 4 program-
ming assignments, and a set of 15 programming assignment type of buggy
programs collected from stackoverflow.com, precisely pinpointing the root
causes and capturing the causality for 94.5% of them. The evaluation on a
standard benchmark set with over 700 student bugs shows similar results.
A user study in the classroom shows that Apex has substantially improved
student productivity.

[Kim2021] Dong Jae Kim, Tse-Hsun Chen, and Jinqiu Yang. The se-
cret life of test smells—an empirical study on test smell evolution
and maintenance. Empirical Software Engineering, 26(5), 7 2021, DOI
10.1007/s10664-021-09969-1.
Abstract: In recent years, researchers and practitioners have been studying
the impact of test smells in test maintenance. However, there is still limited
empirical evidence on why developers remove test smells in software mainte-
nance and the mechanism employed for addressing test smells. In this paper,
we conduct an empirical study on 12 real-world open-source systems to study
the evolution and maintenance of test smells and how test smells are related
to software quality. Results show that: 1) Although the number of test smell
instances increases, test smell density decreases as systems evolve. 2) How-
ever, our qualitative analysis on those removed test smells reveals that most
test smell removal (83%) is a by-product of feature maintenance activities.
45% of the removed test smells relocate to other test cases due to refactoring,
while developers deliberately address the only 17% of test smells, consisting
of largely Exception Catch/Throw and Sleepy Test. 3) Our statistical model
shows that test smell metrics can provide additional explanatory power on
post-release defects over traditional baseline metrics (an average of 8.25%
increase in AUC). However, most types of test smells have a minimal effect
on post-release defects. Our study provides insight into developers’ percep-
tion of test smells and current practices. Future studies on test smells may
consider focusing on the specific types of test smells that may have a higher
correlation with defect-proneness when helping developers with test code
maintenance.

[Kinshumann2011] Kinshuman Kinshumann, Kirk Glerum, Steve Green-
berg, Gabriel Aul, Vince Orgovan, Greg Nichols, David Grant, Gretchen
Loihle, and Galen Hunt. Debugging in the (very) large: ten years of imple-
mentation and experience. Communications of the ACM, 54(7):111–116, 7
2011, DOI 10.1145/1965724.1965749.

76

Abstract: Windows Error Reporting (WER) is a distributed system that
automates the processing of error reports coming from an installed base of
a billion machines. WER has collected billions of error reports in 10 years
of operation. It collects error data automatically and classifies errors into
buckets, which are used to prioritize developer effort and report fixes to
users. WER uses a progressive approach to data collection, which minimizes
overhead for most reports yet allows developers to collect detailed informa-
tion when needed. WER takes advantage of its scale to use error statistics
as a tool in debugging; this allows developers to isolate bugs that cannot
be found at smaller scale. WER has been designed for efficient operation at
large scale: one pair of database servers records all the errors that occur on
all Windows computers worldwide.

[Kinsman2021] Timothy Kinsman, Mairieli Wessel, Marco A. Gerosa, and
Christoph Treude. How do software developers use GitHub actions to auto-
mate their workflows? In Proc. International Conference on Mining Software
Repositories (MSR). IEEE, 5 2021, DOI 10.1109/msr52588.2021.00054.
Abstract: Automated tools are frequently used in social coding repositories
to perform repetitive activities that are part of the distributed software de-
velopment process. Recently, GitHub introduced GitHub Actions, a feature
providing automated work-flows for repository maintainers. Although sev-
eral Actions have been built and used by practitioners, relatively little has
been done to evaluate them. Understanding and anticipating the effects of
adopting such kind of technology is important for planning and management.
Our research is the first to investigate how developers use Actions and how
several activity indicators change after their adoption. Our results indicate
that, although only a small subset of repositories adopted GitHub Actions to
date, there is a positive perception of the technology. Our findings also indi-
cate that the adoption of GitHub Actions increases the number of monthly
rejected pull requests and decreases the monthly number of commits on
merged pull requests. These results are especially relevant for practitioners
to understand and prevent undesirable effects on their projects.

[Klotins2021] Eriks Klotins, Michael Unterkalmsteiner, Panagiota
Chatzipetrou, Tony Gorschek, Rafael Prikladnicki, Nirnaya Tripathi, and
Leandro Bento Pompermaier. A progression model of software engineering
goals, challenges, and practices in start-ups. IEEE Transactions on Software
Engineering, 47(3):498–521, 3 2021, DOI 10.1109/tse.2019.2900213.
Abstract: Context: Software start-ups are emerging as suppliers of
innovation and software-intensive products. However, traditional software
engineering practices are not evaluated in the context, nor adopted to goals
and challenges of start-ups. As a result, there is insufficient support for
software engineering in the start-up context. Objective: We aim to collect
data related to engineering goals, challenges, and practices in start-up
companies to ascertain trends and patterns characterizing engineering work
in start-ups. Such data allows researchers to understand better how goals
and challenges are related to practices. This understanding can then inform

77

future studies aimed at designing solutions addressing those goals and
challenges. Besides, these trends and patterns can be useful for practitioners
to make more informed decisions in their engineering practice. Method: We
use a case survey method to gather first-hand, in-depth experiences from
a large sample of software start-ups. We use open coding and cross-case
analysis to describe and identify patterns, and corroborate the findings
with statistical analysis. Results: We analyze 84 start-up cases and identify
16 goals, 9 challenges, and 16 engineering practices that are common
among start-ups. We have mapped these goals, challenges, and practices to
start-up life-cycle stages (inception, stabilization, growth, and maturity).
Thus, creating the progression model guiding software engineering efforts
in start-ups. Conclusions: We conclude that start-ups to a large extent face
the same challenges and use the same practices as established companies.
However, the primary software engineering challenge in start-ups is to
evolve multiple process areas at once, with a little margin for serious errors.

[Kocaguneli2012] Ekrem Kocaguneli, Tim Menzies, and Jacky W. Keung.
On the value of ensemble effort estimation. IEEE Transactions on Software
Engineering, 38(6):1403–1416, 11 2012, DOI 10.1109/tse.2011.111.
Abstract: Background: Despite decades of research, there is no consen-
sus on which software effort estimation methods produce the most accurate
models. Aim: Prior work has reported that, given M estimation methods, no
single method consistently outperforms all others. Perhaps rather than rec-
ommending one estimation method as best, it is wiser to generate estimates
from ensembles of multiple estimation methods. Method: Nine learners were
combined with 10 preprocessing options to generate 9×10 = 90 solo methods.
These were applied to 20 datasets and evaluated using seven error measures.
This identified the best n (in our case n = 13) solo methods that showed
stable performance across multiple datasets and error measures. The top 2,
4, 8, and 13 solo methods were then combined to generate 12 multimeth-
ods, which were then compared to the solo methods. Results: 1) The top
10 (out of 12) multimethods significantly outperformed all 90 solo methods.
2) The error rates of the multimethods were significantly less than the solo
methods. 3) The ranking of the best multimethod was remarkably stable.
Conclusion: While there is no best single effort estimation method, there
exist best combinations of such effort estimation methods.

[Kochhar2019] Pavneet Singh Kochhar, Eirini Kalliamvakou, Nachiappan
Nagappan, Thomas Zimmermann, and Christian Bird. Moving from
closed to open source: Observations from six transitioned projects to
GitHub. IEEE Transactions on Software Engineering, pages 1–1, 2019, DOI
10.1109/tse.2019.2937025.
Abstract: Open source software systems have gained a lot of attention in
the past few years. With the emergence of open source platforms like GitHub,
developers can contribute, store, and manage their projects with ease. Large
organizations like Microsoft, Google, and Facebook are open sourcing their
in-house technologies in an effort to more broadly involve the community

78

in the development of software systems. Although closed source and open
source systems have been studied extensively, there has been little research
on the transition from closed source to open source systems. Through this
study we aim to: a) provide guidance and insights for other teams planning
to open source their projects and b) to help them avoid pitfalls during the
transition process. We studied six different Microsoft systems, which were
recently open-sourced i.e., CoreFX, CoreCLR, Roslyn, Entity Framework,
MVC, and Orleans. This paper presents the transition from the viewpoints
of both Microsoft and the open source community based on interviews with
eleven Microsoft developer, five Microsoft senior managers involved in the
decision to open source, and eleven open-source developers. From Microsoft’s
perspective we discuss the reasons for the transition, experiences of devel-
opers involved, and the transition’s outcomes and challenges. Our results
show that building a vibrant community, prompt answers, developing an
open source culture, security regulations and business opportunities are the
factors which persuade companies to open source their products. We also
discuss the transition outcomes on processes such as code reviews, version
control systems, continuous integration as well as developers’ perception of
these changes. From the open source community’s perspective, we illustrate
the response to the open-sourcing initiative through contributions and inter-
actions with the internal developers and provide guidelines for other projects
planning to go open source.

[Kosar2011] Tomaž Kosar, Marjan Mernik, and Jeffrey C. Carver. Program
comprehension of domain-specific and general-purpose languages: com-
parison using a family of experiments. Empirical Software Engineering,
17(3):276–304, 8 2011, DOI 10.1007/s10664-011-9172-x.
Abstract: Domain-specific languages (DSLs) are often argued to have a
simpler notation than general-purpose languages (GPLs), since the notation
is adapted to the specific problem domain. Consequently, the impact of do-
main relevance on the creation of the problem representation is believed to
improve programmers’ efficiency and accuracy when using DSLs compared
with using similar solutions like application libraries in GPLs. Most of the
common beliefs have been based upon qualitative conclusions drawn by de-
velopers. Rather than implementing the same problem in a DSL and in a
GPL and comparing the efficiency and accuracy of each approach, develop-
ers often compare the implementation of a new program in a DSL to their
previous experiences implementing similar programs in GPLs. Such a con-
clusion may or may not be valid. This paper takes a more skeptical approach
to acceptance of those beliefs. By reporting on a family of three empirical
studies comparing DSLs and GPLs in different domains. The results of the
studies showed that when using a DSL, developers are more accurate and
more efficient in program comprehension than when using a GPL. These re-
sults validate some of the long-held beliefs of the DSL community that until
now were only supported by anecdotal evidence.

[Kosar2018] Tomaž Kosar, Sašo Gaberc, Jeffrey C. Carver, and Marjan

79

Mernik. Program comprehension of domain-specific and general-purpose
languages: replication of a family of experiments using integrated devel-
opment environments. Empirical Software Engineering, 23(5):2734–2763, 2
2018, DOI 10.1007/s10664-017-9593-2.
Abstract: Domain-specific languages (DSLs) allow developers to write code
at a higher level of abstraction compared with general-purpose languages
(GPLs). Developers often use DSLs to reduce the complexity of GPLs. Our
previous study found that developers performed program comprehension
tasks more accurately and efficiently with DSLs than with corresponding
APIs in GPLs. This study replicates our previous study to validate and ex-
tend the results when developers use IDEs to perform program comprehen-
sion tasks. We performed a dependent replication of a family of experiments.
We made two specific changes to the original study: (1) participants used
IDEs to perform the program comprehension tasks, to address a threat to va-
lidity in the original experiment and (2) each participant performed program
comprehension tasks on either DSLs or GPLs, not both as in the original
experiment. The results of the replication are consistent with and expanded
the results of the original study. Developers are significantly more effective
and efficient in tool-based program comprehension when using a DSL than
when using a corresponding API in a GPL. The results indicate that, where
a DSL is available, developers will perform program comprehension better
using the DSL than when using the corresponding API in a GPL.

[Krein2016] Jonathan L. Krein, Lutz Prechelt, Natalia Juristo, Aziz Nan-
thaamornphong, Jeffrey C. Carver, Sira Vegas, Charles D. Knutson,
Kevin D. Seppi, and Dennis L. Eggett. A multi-site joint replication of
a design patterns experiment using moderator variables to generalize across
contexts. IEEE Transactions on Software Engineering, 42(4):302–321, 4
2016, DOI 10.1109/tse.2015.2488625.
Abstract: Context. Several empirical studies have explored the benefits of
software design patterns, but their collective results are highly inconsistent.
Resolving the inconsistencies requires investigating moderators—i.e., vari-
ables that cause an effect to differ across contexts. Objectives. Replicate a
design patterns experiment at multiple sites and identify sufficient moder-
ators to generalize the results across prior studies. Methods. We perform a
close replication of an experiment investigating the impact (in terms of time
and quality) of design patterns (Decorator and Abstract Factory) on software
maintenance. The experiment was replicated once previously, with divergent
results. We execute our replication at four universities—spanning two conti-
nents and three countries—using a new method for performing distributed
replications based on closely coordinated, small-scale instances (“joint repli-
cation”). We perform two analyses: 1) a post-hoc analysis of moderators,
based on frequentist and Bayesian statistics; 2) an a priori analysis of the
original hypotheses, based on frequentist statistics. Results. The main ef-
fect differs across the previous instances of the experiment and across the
sites in our distributed replication. Our analysis of moderators (including

80

developer experience and pattern knowledge) resolves the differences suffi-
ciently to allow for cross-context (and cross-study) conclusions. The final
conclusions represent 126 participants from five universities and 12 software
companies, spanning two continents and at least four countries. Conclusions.
The Decorator pattern is found to be preferable to a simpler solution during
maintenance, as long as the developer has at least some prior knowledge of
the pattern. For Abstract Factory, the simpler solution is found to be mostly
equivalent to the pattern solution. Abstract Factory is shown to require a
higher level of knowledge and/or experience than Decorator for the pattern
to be beneficial.

[Krueger2020] Ryan Krueger, Yu Huang, Xinyu Liu, Tyler Santander, West-
ley Weimer, and Kevin Leach. Neurological divide: an fMRI study of prose
and code writing. In Proc. International Conference on Software Engineer-
ing (ICSE). ACM, 6 2020, DOI 10.1145/3377811.3380348.
Abstract: Software engineering involves writing new code or editing ex-
isting code. Recent efforts have investigated the neural processes associated
with reading and comprehending code—however, we lack a thorough under-
standing of the human cognitive processes underlying code writing. While
prose reading and writing have been studied thoroughly, that same scrutiny
has not been applied to code writing. In this paper, we leverage functional
brain imaging to investigate neural representations of code writing in com-
parison to prose writing. We present the first human study in which par-
ticipants wrote code and prose while undergoing a functional magnetic res-
onance imaging (fMRI) brain scan, making use of a full-sized fMRI-safe
QWERTY keyboard. We find that code writing and prose writing are sig-
nificantly dissimilar neural tasks. While prose writing entails significant left
hemisphere activity associated with language, code writing involves more ac-
tivations of the right hemisphere, including regions associated with attention
control, working memory, planning and spatial cognition. These findings are
unlike existing work in which code and prose comprehension were studied.
By contrast, we present the first evidence suggesting that code and prose
writing are quite dissimilar at the neural level.

[Lamba2020] Hemank Lamba, Asher Trockman, Daniel Armanios, Christian
Kästner, Heather Miller, and Bogdan Vasilescu. Heard it through the gitvine:
an empirical study of tool diffusion across the npm ecosystem. In Proc. Eu-
ropean Software Engineering Conference/International Symposium on the
Foundations of Software Engineering (ESEC/FSE). ACM, 11 2020, DOI
10.1145/3368089.3409705.
Abstract: Automation tools like continuous integration services, code cov-
erage reporters, style checkers, dependency managers, etc. are all known
to provide significant improvements in developer productivity and software
quality. Some of these tools are widespread, others are not. How do these au-
tomation “best practices” spread? And how might we facilitate the diffusion
process for those that have seen slower adoption? In this paper, we rely on a

81

recent innovation in transparency on code hosting platforms like GitHub—
the use of repository badges—to track how automation tools spread in open-
source ecosystems through different social and technical mechanisms over
time. Using a large longitudinal data set, multivariate network science tech-
niques, and survival analysis, we study which socio-technical factors can best
explain the observed diffusion process of a number of popular automation
tools. Our results show that factors such as social exposure, competition,
and observability affect the adoption of tools significantly, and they provide
a roadmap for software engineers and researchers seeking to propagate best
practices and tools.

[Lampel2021] Johannes Lampel, Sascha Just, Sven Apel, and Andreas Zeller.
When life gives you oranges: detecting and diagnosing intermittent job
failures at mozilla. In Proc. European Software Engineering Confer-
ence/International Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 8 2021, DOI 10.1145/3468264.3473931.
Abstract: Continuous delivery of cloud systems requires constant running
of jobs (build processes, tests, etc.). One issue that plagues this continuous
integration (CI) process are intermittent failures - non-deterministic, false
alarms that do not result from a bug in the software or job specification,
but rather from issues in the underlying infrastructure. At Mozilla, such in-
termittent failures are called oranges as a reference to the color of the build
status indicator. As such intermittent failures disrupt CI and lead to failures,
they erode the developers’ trust in the jobs. We present a novel approach
that automatically classifies failing jobs to determine whether job execution
failures arise from an actual software bug or were caused by flakiness in the
job (e.g., test) or the underlying infrastructure. For this purpose, we train
classification models using job telemetry data to diagnose failure patterns
involving features such as runtime, cpu load, operating system version, or
specific platform with high precision. In an evaluation on a set of Mozilla
CI jobs, our approach achieves precision scores of 73%, on average, across
all data sets with some test suites achieving precision scores good enough
for fully automated classification (i.e., precision scores of up to 100%), and
recall scores of 82% on average (up to 94%).

[Latendresse2021] Jasmine Latendresse, Rabe Abdalkareem, Diego Elias
Costa, and Emad Shihab. How effective is continuous integration
in indicating single-statement bugs? In Proc. International Con-
ference on Mining Software Repositories (MSR). IEEE, 5 2021, DOI
10.1109/msr52588.2021.00062.
Abstract: Continuous Integration (CI) is the process of automatically com-
piling, building, and testing code changes in the hope of catching bugs as
they are introduced into the code base. With bug fixing being a core and in-
creasingly costly task in software development, the community has adopted
CI to mitigate this issue and improve the quality of their software products.
Bug fixing is a core task in software development and becomes increasingly

82

costly over time. However, little is known about how effective CI is at detect-
ing simple, single-statement bugs.In this paper, we analyze the effectiveness
of CI in 14 popular open source Java-based projects to warn about 318
single-statement bugs (SStuBs). We analyze the build status at the commits
that introduce SStuBs and before the SStuBs were fixed. We then investi-
gate how often CI indicates the presence of these bugs, through test failure.
Our results show that only 2% of the commits that introduced SStuBs have
builds with failed tests and 7.5% of builds before the fix reported test fail-
ures. Upon close manual inspection, we found that none of the failed builds
actually captured SStuBs, indicating that CI is not the right medium to cap-
ture the SStuBs we studied. Our results suggest that developers should not
rely on CI to catch SStuBs or increase their CI pipeline coverage to detect
single-statement bugs.

[LeGoues2018] Claire Le Goues, Ciera Jaspan, Ipek Ozkaya, Mary Shaw,
and Kathryn T. Stolee. Bridging the gap: From research to practical advice.
IEEE Software, 35(5):50–57, 9 2018, DOI 10.1109/ms.2018.3571235.
Abstract: Software developers need actionable guidance, but researchers
rarely integrate diverse types of evidence in a way that indicates the recom-
mendations’ strength. A levels-ofevidence framework might allow researchers
and practitioners to translate research results to a pragmatically useful form.

[LeGoues2021] Claire Le Goues, Michael Pradel, Abhik Roychoudhury, and
Satish Chandra. Automatic program repair. IEEE Software, 38(4):22–27, 7
2021, DOI 10.1109/ms.2021.3072577.
Abstract: An introduction to a special journal issue on automatic program
repair.

[Lee2020a] Daniel Lee, Dayi Lin, Cor-Paul Bezemer, and Ahmed E. Has-
san. Building the perfect game – an empirical study of game modifi-
cations. Empirical Software Engineering, 25(4):2485–2518, 3 2020, DOI
10.1007/s10664-019-09783-w.
Abstract: Prior work has shown that gamer loyalty is important for the
sales of a developer’s future games. Therefore, it is important for game
developers to increase the longevity of their games. However, game devel-
opers cannot always meet the growing and changing needs of the gaming
community, due to the often already overloaded schedules of developers.
So-called modders can potentially assist game developers with addressing
gamers’ needs. Modders are enthusiasts who provide modifications or com-
pletely new content for a game. By supporting modders, game developers
can meet the rapidly growing and varying needs of their gamer base. Mod-
ders have the potential to play a role in extending the life expectancy of
a game, thereby saving game developers time and money, and leading to
a better overall gaming experience for their gamer base. In this paper, we
empirically study the metadata of 9,521 mods that were extracted from the
Nexus Mods distribution platform. The Nexus Mods distribution platform
is one of the largest mod distribution platforms for PC games at the time of

83

our study. The goal of our paper is to provide useful insights about mods on
the Nexus Mods distribution platform from a quantitative perspective, and
to provide researchers a solid foundation to further explore game mods. To
better understand the potential of mods to extend the longevity of a game
we study their characteristics, and we study their release schedules and post-
release support (in terms of bug reports) as a proxy for the willingness of the
modding community to contribute to a game. We find that providing official
support for mods can be beneficial for the perceived quality of the mods of
a game: games for which a modding tool is provided by the original game
developer have a higher median endorsement ratio than mods for games that
do not have such a tool. In addition, mod users are willing to submit bug
reports for a mod. However, they often fail to do this in a systematic manner
using the bug reporting tool of the Nexus Mods platform, resulting in low-
quality bug reports which are difficult to resolve. Our findings give the first
insights into the characteristics, release schedule and post-release support of
game mods. Our findings show that some games have a very active modding
community, which contributes to those games through mods. Based on our
findings, we recommend that game developers who desire an active mod-
ding community for their own games provide the modding community with
an officially-supported modding tool. In addition, we recommend that mod
distribution platforms, such as Nexus Mods, improve their bug reporting
system to receive higher quality bug reports.

[Lee2020b] Daniel Lee, Gopi Krishnan Rajbahadur, Dayi Lin, Mohammed
Sayagh, Cor-Paul Bezemer, and Ahmed E. Hassan. An empirical study of
the characteristics of popular minecraft mods. Empirical Software Engineer-
ing, 25(5):3396–3429, 8 2020, DOI 10.1007/s10664-020-09840-9.
Abstract: It is becoming increasingly difficult for game developers to man-
age the cost of developing a game, while meeting the high expectations of
gamers. One way to balance the increasing gamer expectation and devel-
opment stress is to build an active modding community around the game.
There exist several examples of games with an extremely active and suc-
cessful modding community, with the Minecraft game being one of the most
notable ones. This paper reports on an empirical study of 1,114 popular
and 1,114 unpopular Minecraft mods from the CurseForge mod distribution
platform, one of the largest distribution platforms for Minecraft mods. We
analyzed the relationship between 33 features across 5 dimensions of mod
characteristics and the popularity of mods (i.e., mod category, mod docu-
mentation, environmental context of the mod, remuneration for the mod,
and community contribution for the mod), to understand the characteristics
of popular Minecraft mods. We firstly verify that the studied dimensions
have significant explanatory power in distinguishing the popularity of the
studied mods. Then we evaluated the contribution of each of the 33 features
across the 5 dimensions. We observed that popular mods tend to have a high
quality description and promote community contribution.

[Leitao2019] Roxanne Leitão. Technology-facilitated intimate partner

84

abuse: a qualitative analysis of data from online domestic abuse fo-
rums. Human–Computer Interaction, 36(3):203–242, 12 2019, DOI
10.1080/07370024.2019.1685883.
Abstract: This article reports on a qualitative analysis of data gathered
from three online discussion forums for victims and survivors of domestic
abuse. The analysis focussed on technology-facilitated abuse and the findings
cover three main themes, namely, 1) forms of technology-facilitated abuse
being discussed on the forums, 2) the ways in which forum members are using
technology within the context of intimate partner abuse, and 3) the digital
privacy and security advice being exchanged between victims/survivors on
the forums. The article concludes with a discussion on the dual role of digital
technologies within the context of intimate partner abuse, on the challenges
and advantages of digital ubiquity, as well as on the issues surrounding digital
evidence of abuse, and the labor of managing digital privacy and security.

[Lemire2021] Daniel Lemire. Number parsing at a gigabyte per sec-
ond. Software: Practice and Experience, 51(8):1700–1727, 5 2021, DOI
10.1002/spe.2984.
Abstract: With disks and networks providing gigabytes per second, pars-
ing decimal numbers from strings becomes a bottleneck. We consider the
problem of parsing decimal numbers to the nearest binary floating-point
value. The general problem requires variable-precision arithmetic. However,
we need at most 17 digits to represent 64-bit standard floating-point num-
bers (IEEE 754). Thus, we can represent the decimal significand with a
single 64-bit word. By combining the significand and precomputed tables,
we can compute the nearest floating-point number using as few as one or
two 64-bit multiplications. Our implementation can be several times faster
than conventional functions present in standard C libraries on modern 64-bit
systems (Intel, AMD, ARM, and POWER9). Our work is available as open
source software used by major systems such as Apache Arrow and Yandex
ClickHouse. The Go standard library has adopted a version of our approach.

[Levy2020] Karen Levy and Bruce Schneier. Privacy threats in in-
timate relationships. Journal of Cybersecurity, 6(1), 1 2020, DOI
10.1093/cybsec/tyaa006.
Abstract: This article provides an overview of intimate threats: a class
of privacy threats that can arise within our families, romantic partnerships,
close friendships, and caregiving relationships. Many common assumptions
about privacy are upended in the context of these relationships, and many
otherwise effective protective measures fail when applied to intimate threats.
Those closest to us know the answers to our secret questions, have access to
our devices, and can exercise coercive power over us. We survey a range of
intimate relationships and describe their common features. Based on these
features, we explore implications for both technical privacy design and policy,
and offer design recommendations for ameliorating intimate privacy risks.

85

[Lewis2013] Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu,
Rong Ou, and E. James Whitehead. Does bug prediction support hu-
man developers? findings from a Google case study. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, 5 2013, DOI
10.1109/icse.2013.6606583.
Abstract: While many bug prediction algorithms have been developed by
academia, they’re often only tested and verified in the lab using automated
means. We do not have a strong idea about whether such algorithms are
useful to guide human developers. We deployed a bug prediction algorithm
across Google, and found no identifiable change in developer behavior. Using
our experience, we provide several characteristics that bug prediction algo-
rithms need to meet in order to be accepted by human developers and truly
change how developers evaluate their code.

[Li2013] Sihan Li, Hucheng Zhou, Haoxiang Lin, Tian Xiao, Haibo Lin, Wei
Lin, and Tao Xie. A characteristic study on failures of production distributed
data-parallel programs. In Proc. International Conference on Software En-
gineering (ICSE). IEEE, 5 2013, DOI 10.1109/icse.2013.6606646.
Abstract: SCOPE is adopted by thousands of developers from tens of
different product teams in Microsoft Bing for daily web-scale data process-
ing, including index building, search ranking, and advertisement display.
A SCOPE job is composed of declarative SQL-like queries and imperative
C# user-defined functions (UDFs), which are executed in pipeline by thou-
sands of machines. There are tens of thousands of SCOPE jobs executed
on Microsoft clusters per day, while some of them fail after a long execu-
tion time and thus waste tremendous resources. Reducing SCOPE failures
would save significant resources. This paper presents a comprehensive char-
acteristic study on 200 SCOPE failures/fixes and 50 SCOPE failures with
debugging statistics from Microsoft Bing, investigating not only major fail-
ure types, failure sources, and fixes, but also current debugging practice.
Our major findings include (1) most of the failures (84.5%) are caused by
defects in data processing rather than defects in code logic; (2) table-level
failures (22.5%) are mainly caused by programmers’ mistakes and frequent
data-schema changes while row-level failures (62%) are mainly caused by ex-
ceptional data; (3) 93% fixes do not change data processing logic; (4) there
are 8% failures with root cause not at the failure-exposing stage, making
current debugging practice insufficient in this case. Our study results pro-
vide valuable guidelines for future development of data-parallel programs.
We believe that these guidelines are not limited to SCOPE, but can also be
generalized to other similar data-parallel platforms.

[Liao2016] Soohyun Nam Liao, Daniel Zingaro, Michael A. Laurenzano,
William G. Griswold, and Leo Porter. Lightweight, early identification of
at-risk CS1 students. In Proc. Conference on International Computing Ed-
ucation Research (ICER). ACM, 8 2016, DOI 10.1145/2960310.2960315.
Abstract: Being able to identify low-performing students early in the term
may help instructors intervene or differently allocate course resources. Prior

86

work in CS1 has demonstrated that clicker correctness in Peer Instruction
courses correlates with exam outcomes and, separately, that machine learn-
ing models can be built based on early-term programming assessments. This
work aims to combine the best elements of each of these approaches. We
offer a methodology for creating models, based on in-class clicker questions,
to predict cross-term student performance. In as early as week 3 in a 12-week
CS1 course, this model is capable of correctly predicting students as being in
danger of failing, or not, for 70% of the students, with only 17% of students
misclassified as not at-risk when at-risk. Additional measures to ensure more
broad applicability of the methodology, along with possible limitations, are
explored.

[Lima2021a] Luan P. Lima, Lincoln S. Rocha, Carla I. M. Bezerra, and
Matheus Paixao. Assessing exception handling testing practices in open-
source libraries. Empirical Software Engineering, 26(5), 6 2021, DOI
10.1007/s10664-021-09983-3.
Abstract: Modern programming languages (e.g., Java and C#) provide
features to separate error-handling code from regular code, seeking to en-
hance software comprehensibility and maintainability. Nevertheless, the way
exception handling (EH) code is structured in such languages may lead to
multiple, different, and complex control flows, which may affect the soft-
ware testability. Previous studies have reported that EH code is typically
neglected, not well tested, and its misuse can lead to reliability degradation
and catastrophic failures. However, little is known about the relationship
between testing practices and EH testing effectiveness. In this exploratory
study, we (i) measured the adequacy degree of EH testing concerning code
coverage (instruction, branch, and method) criteria; and (ii) evaluated the
effectiveness of the EH testing by measuring its capability to detect arti-
ficially injected faults (i.e., mutants) using 7 EH mutation operators. Our
study was performed using test suites of 27 long-lived Java libraries from
open-source ecosystems. Our results show that instructions and branches
within catch blocks and throw instructions are less covered, with statistical
significance, than the overall instructions and branches. Nevertheless, most
of the studied libraries presented test suites capable of detecting more than
70% of the injected faults. From a total of 12, 331 mutants created in this
study, the test suites were able to detect 68% of them.

[Lima2021b] Igor Lima, Jefferson Silva, Breno Miranda, Gustavo Pinto, and
Marcelo d’Amorim. Exposing bugs in JavaScript engines through test trans-
plantation and differential testing. Software Quality Journal, 29(1):129–158,
1 2021, DOI 10.1007/s11219-020-09537-8.
Abstract: JavaScript is a popular programming language today with sev-
eral implementations competing for market dominance. Although a specifi-
cation document and a conformance test suite exist to guide engine develop-
ment, bugs occur and have important practical consequences. Implementing
correct engines is challenging because the spec is intentionally incomplete

87

and evolves frequently. This paper investigates the use of test transplan-
tation and differential testing for revealing functional bugs in JavaScript
engines. The former technique runs the regression test suite of a given en-
gine on another engine. The latter technique fuzzes existing inputs and then
compares the output produced by different engines with a differential ora-
cle. We conducted experiments with engines from five major players—Apple,
Facebook, Google, Microsoft, and Mozilla—to assess the effectiveness of test
transplantation and differential testing. Our results indicate that both tech-
niques revealed several bugs, many of which are confirmed by developers.
We reported 35 bugs with test transplantation (23 of these bugs confirmed
and 19 fixed) and reported 24 bugs with differential testing (17 of these
confirmed and 10 fixed). Results indicate that most of these bugs affected
two engines—Apple’s JSC and Microsoft’s ChakraCore (24 and 26 bugs, re-
spectively). To summarize, our results show that test transplantation and
differential testing are easy to apply and very effective in finding bugs in
complex software, such as JavaScript engines.

[LimaJunior2021] Manoel Limeira Lima Júnior, Daricélio Soares, Alexandre
Plastino, and Leonardo Murta. Predicting the lifetime of pull requests in
open-source projects. Journal of Software: Evolution and Process, 33(6), 4
2021, DOI 10.1002/smr.2337.
Abstract: A recent survey using industrial projects has shown that provid-
ing an estimate of the lifetime of pull requests to developers helps to speed up
their conclusion. Previous work has explored pull request lifetime prediction
in open-source projects using regression techniques but with a broad margin
of error. The first objective of our work was to reduce the average error rate
of the prediction obtained by the regression techniques so far. We performed
experiments with different regression techniques and achieved a significant
decrease in the mean error rate. The second objective of our work was to
obtain a more effective and useful predictive model that can classify pull re-
quests according to five discrete time intervals. We proposed new predictive
attributes for the estimation of the time intervals and employed attribute
selection strategies to identify subsets of attributes that could improve the
predictive behavior of the classifiers. Our classification approach achieved
the best accuracy in all the 20 projects evaluated in comparison with the
literature. The average accuracy was of 45.28% to predict pull request life-
time, with an average normalized improvement of 14.68% in relation to the
majority class and 6.49% in relation to the state-of-the-art.

[Lin2020] Sarah Lin, Ibraheem Ali, and Greg Wilson. Ten quick tips for mak-
ing things findable. PLOS Computational Biology, 16(12):e1008469, 12 2020,
DOI 10.1371/journal.pcbi.1008469.
Abstract: The distribution of scholarly content today happens in the con-
text of an immense deluge of information found on the internet. As a result,
researchers face serious challenges when archiving and finding information
that relates to their work. Library science principles provide a framework
for navigating information ecosystems in order to help researchers improve

88

findability of their professional output. Here, we describe the information
ecosystem which consists of users, context, and content, all 3 of which must
be addressed to make information findable and usable. We provide a set of
tips that can help researchers evaluate who their users are, how to archive
their research outputs to encourage findability, and how to leverage struc-
tural elements of software to make it easier to find information within and
beyond their publications. As scholars evaluate their research communica-
tion strategies, they can use these steps to improve how their research is
discovered and reused.

[Liu2021] Kui Liu, Dongsun Kim, Tegawende F. Bissyande, Shin Yoo,
and Yves Le Traon. Mining fix patterns for FindBugs violations.
IEEE Transactions on Software Engineering, 47(1):165–188, 1 2021, DOI
10.1109/tse.2018.2884955.
Abstract: Several static analysis tools, such as Splint or FindBugs, have
been proposed to the software development community to help detect se-
curity vulnerabilities or bad programming practices. However, the adoption
of these tools is hindered by their high false positive rates. If the false pos-
itive rate is too high, developers may get acclimated to violation reports
from these tools, causing concrete and severe bugs being overlooked. Fortu-
nately, some violations are actually addressed and resolved by developers.
We claim that those violations that are recurrently fixed are likely to be
true positives, and an automated approach can learn to repair similar un-
seen violations. However, there is lack of a systematic way to investigate the
distributions on existing violations and fixed ones in the wild, that can pro-
vide insights into prioritizing violations for developers, and an effective way
to mine code and fix patterns which can help developers easily understand
the reasons of leading violations and how to fix them. In this paper, we first
collect and track a large number of fixed and unfixed violations across revi-
sions of software. The empirical analyses reveal that there are discrepancies
in the distributions of violations that are detected and those that are fixed,
in terms of occurrences, spread and categories, which can provide insights
into prioritizing violations. To automatically identify patterns in violations
and their fixes, we propose an approach that utilizes convolutional neural
networks to learn features and clustering to regroup similar instances. We
then evaluate the usefulness of the identified fix patterns by applying them
to unfixed violations. The results show that developers will accept and merge
a majority (69/116) of fixes generated from the inferred fix patterns. It is
also noteworthy that the yielded patterns are applicable to four real bugs in
the Defects4J major benchmark for software testing and automated repair.

[Lo2015] David Lo, Nachiappan Nagappan, and Thomas Zimmermann. How
practitioners perceive the relevance of software engineering research. In
Proc. International Symposium on the Foundations of Software Engineer-
ing (FSE). ACM, 8 2015, DOI 10.1145/2786805.2786809.
Abstract: The number of software engineering research papers over the
last few years has grown significantly. An important question here is: how

89

relevant is software engineering research to practitioners in the field? To
address this question, we conducted a survey at Microsoft where we invited
3,000 industry practitioners to rate the relevance of research ideas contained
in 571 ICSE, ESEC/FSE and FSE papers that were published over a five
year period. We received 17,913 ratings by 512 practitioners who labelled
ideas as essential, worthwhile, unimportant, or unwise. The results from the
survey suggest that practitioners are positive towards studies done by the
software engineering research community: 71% of all ratings were essential
or worthwhile. We found no correlation between the citation counts and the
relevance scores of the papers. Through a qualitative analysis of free text
responses, we identify several reasons why practitioners considered certain
research ideas to be unwise. The survey approach described in this paper is
lightweight: on average, a participant spent only 22.5 minutes to respond
to the survey. At the same time, the results can provide useful insight to
conference organizers, authors, and participating practitioners.

[Louis2020] Annie Louis, Santanu Kumar Dash, Earl T. Barr, Michael D.
Ernst, and Charles Sutton. Where should i comment my code?: a dataset
and model for predicting locations that need comments. In Proc. Inter-
national Conference on Software Engineering (ICSE). ACM, 6 2020, DOI
10.1145/3377816.3381736.
Abstract: Programmers should write code comments, but not on every line
of code. We have created a machine learning model that suggests locations
where a programmer should write a code comment. We trained it on exist-
ing commented code to learn locations that are chosen by developers. Once
trained, the model can predict locations in new code. Our models achieved
precision of 74% and recall of 13% in identifying comment-worthy locations.
This first success opens the door to future work, both in the new where-to-
comment problem and in guiding comment generation. Our code and data
is available at http://groups.inf.ed.ac.uk/cup/comment-locator/.

[Lunn2021] Stephanie Lunn, Monique Ross, Zahra Hazari, Mark Allen Weiss,
Michael Georgiopoulos, and Kenneth Christensen. The impact of tech-
nical interviews, and other professional and cultural experiences on stu-
dents' computing identity. In Proc. Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE). ACM, 6 2021, DOI
10.1145/3430665.3456362.
Abstract: Increasingly companies assess a computing candidate’s capa-
bilities using technical interviews (TIs). Yet students struggle to code on
demand, and there is already an insufficient amount of computing graduates
to meet industry needs. Therefore, it is important to understand students’
perceptions of TIs, and other professional experiences (e.g., computing jobs).
We surveyed 740 undergraduate computing students at three universities to
examine their experiences with the hiring process, as well as the impact of
professional and cultural experiences (e.g., familial support) on computing
identity. We considered the interactions between these experiences and social
identity for groups underrepresented in computing - women, Black/African

90

American, and Hispanic/Latinx students. Among other findings, we observed
that students that did not have positive experiences with TIs had a reduced
computing identity, but that facing discrimination during technical inter-
views had the opposite effect. Social support may play a role. Having friends
in computing bolsters computing identity for Hispanic/Latinx students, as
does a supportive home environment for women. Also, freelance computing
jobs increase computing identity for Black/African American students. Our
findings are intended to raise awareness of the best way for educators to help
diverse groups of students to succeed, and to inform them of the experiences
that may influence students’ engagement, resilience, and computing identity
development.

[Luu2021] Quang-Hung Luu, Man F. Lau, Sebastian P.H. Ng, and Tsong Yueh
Chen. Testing multiple linear regression systems with metamorphic
testing. Journal of Systems and Software, 182:111062, 12 2021, DOI
10.1016/j.jss.2021.111062.
Abstract: Regression is one of the most commonly used statistical tech-
niques. However, testing regression systems is a great challenge because of
the absence of test oracle. In this paper, we show that Metamorphic Test-
ing is an effective approach to test multiple linear regression systems. In
doing so, we identify intrinsic mathematical properties of linear regression,
and then propose 11 Metamorphic Relations to be used for testing. Their
effectiveness is examined using mutation analysis with a range of different
regression programs. We further look at how the testing could be adopted in
a more effective way. Our work is applicable to examine the reliability of pre-
dictive systems based on regression that has been widely used in economics,
engineering and science, as well as of the regression calculation manipulated
by statistical users.

[Ma2021] Yuxing Ma, Tapajit Dey, Chris Bogart, Sadika Amreen, Marat Va-
liev, Adam Tutko, David Kennard, Russell Zaretzki, and Audris Mockus.
World of code: enabling a research workflow for mining and analyzing the
universe of open source VCS data. Empirical Software Engineering, 26(2),
2 2021, DOI 10.1007/s10664-020-09905-9.
Abstract: Open source software (OSS) is essential for modern society and,
while substantial research has been done on individual (typically central)
projects, only a limited understanding of the periphery of the entire OSS
ecosystem exists. For example, how are the tens of millions of projects in
the periphery interconnected through. technical dependencies, code sharing,
or knowledge flow? To answer such questions we: a) create a very large and
frequently updated collection of version control data in the entire FLOSS
ecosystems named World of Code (WoC), that can completely cross-reference
authors, projects, commits, blobs, dependencies, and history of the FLOSS
ecosystems and b) provide capabilities to efficiently correct, augment, query,
and analyze that data. Our current WoC implementation is capable of being
updated on a monthly basis and contains over 18B Git objects. To evaluate
its research potential and to create vignettes for its usage, we employ WoC

91

in conducting several research tasks. In particular, we find that it is capable
of supporting trend evaluation, ecosystem measurement, and the determi-
nation of package usage. We expect WoC to spur investigation into global
properties of OSS development leading to increased resiliency of the entire
OSS ecosystem. Our infrastructure facilitates the discovery of key technical
dependencies, code flow, and social networks that provide the basis to de-
termine the structure and evolution of the relationships that drive FLOSS
activities and innovation.

[Maalej2014] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer
Koschke. On the comprehension of program comprehension. ACM Trans-
actions on Software Engineering and Methodology, 23(4):1–37, 9 2014, DOI
10.1145/2622669.
Abstract: Research in program comprehension has evolved considerably
over the past decades. However, only little is known about how developers
practice program comprehension in their daily work. This article reports
on qualitative and quantitative research to comprehend the strategies, tools,
and knowledge used for program comprehension. We observed 28 professional
developers, focusing on their comprehension behavior, strategies followed,
and tools used. In an online survey with 1,477 respondents, we analyzed the
importance of certain types of knowledge for comprehension and where de-
velopers typically access and share this knowledge. We found that developers
follow pragmatic comprehension strategies depending on context. They try
to avoid comprehension whenever possible and often put themselves in the
role of users by inspecting graphical interfaces. Participants confirmed that
standards, experience, and personal communication facilitate comprehen-
sion. The team size, its distribution, and open-source experience influence
their knowledge sharing and access behavior. While face-to-face communica-
tion is preferred for accessing knowledge, knowledge is frequently shared in
informal comments. Our results reveal a gap between research and practice,
as we did not observe any use of comprehension tools and developers seem to
be unaware of them. Overall, our findings call for reconsidering the research
agendas towards context-aware tool support.

[Macho2021] Christian Macho, Stefanie Beyer, Shane McIntosh, and Mar-
tin Pinzger. The nature of build changes: An empirical study of maven-
based build systems. Empirical Software Engineering, 26(3), 3 2021, DOI
10.1007/s10664-020-09926-4.
Abstract: Build systems are an essential part of modern software projects.
As software projects change continuously, it is crucial to understand how the
build system changes because neglecting its maintenance can, at best, lead
to expensive build breakage, or at worst, introduce user-reported defects due
to incorrectly compiled, linked, packaged, or deployed official releases. Re-
cent studies have investigated the (co-)evolution of build configurations and
reasons for build breakage; however, the prior analysis focused on a coarse-
grained outcome (i.e., either build changing or not). In this paper, we present
BUILDDIFF, an approach to extract detailed build changes from MAVEN

92

build files and classify them into 143 change types. In a manual evaluation
of 400 build-changing commits, we show that BUILDDIFF can extract and
classify build changes with average precision, recall, and f1-scores of 0.97,
0.98, and 0.97, respectively. We then present two studies using the build
changes extracted from 144 open source Java projects to study the frequency
and time of build changes. The results show that the top-10 most frequent
change types account for 51% of the build changes. Among them, changes to
version numbers and changes to dependencies of the projects occur most fre-
quently. We also observe frequently co-occurring changes, such as changes to
the source code management definitions, and corresponding changes to the
dependency management system and the dependency declaration. Further-
more, our results show that build changes frequently occur around release
days. In particular, critical changes, such as updates to plugin configuration
parts and dependency insertions, are performed before a release day. The
contributions of this paper lay in the foundation for future research, such as
for analyzing the (co-)evolution of build files with other artifacts, improving
effort estimation approaches by incorporating necessary modifications to the
build system specification, or automatic repair approaches for configuration
code. Furthermore, our detailed change information enables improvements
of refactoring approaches for build configurations and improvements of pre-
diction models to identify error-prone build files.

[Maenpaa2018] Hanna Mäenpää, Simo Mäkinen, Terhi Kilamo, Tommi
Mikkonen, Tomi Männistö, and Paavo Ritala. Organizing for openness: six
models for developer involvement in hybrid OSS projects. Journal of Internet
Services and Applications, 9(1), 8 2018, DOI 10.1186/s13174-018-0088-1.
Abstract: This article examines organization and governance of commer-
cially influenced Open Source Software development communities by pre-
senting a multiple-case study of six contemporary, hybrid OSS projects. The
findings provide in-depth understanding on how to design the participatory
nature of the software development process, while understanding the factors
that influence the delicate balance of openness, motivations, and governance.
The results lay ground for further research on how to organize and manage
developer communities where needs of the stakeholders are competing, yet
complementary.

[Majumder2019] Suvodeep Majumder, Joymallya Chakraborty, Amritanshu
Agrawal, and Tim Menzies. Why software projects need heroes: Lessons
learned from 1100+ projects. arxiv.org, abs/1904.09954, 2019.
Abstract: A “hero” project is one where 80% or more of the contribu-
tions are made by the 20% of the developers. Those developers are called
“hero” developers. In the literature, heroes projects are deprecated since
they might cause bottlenecks in development and communication. However,
there is little empirical evidence on this matter. Further, recent studies show
that such hero projects are very prevalent. Accordingly, this paper explores
the effect of having heroes in project, from a code quality perspective by
analyzing 1000+ open source GitHub projects. Based on the analysis, this

93

study finds that (a) majority of the projects are hero projects; and (b)the
commits from “hero developers” (who contribute most to the code) result
in far fewer bugs than other developers. That is, contrary to the literature,
heroes are standard and very useful part of modern open source projects.

[Malik2019] Mashkoor Malik, Alexandre C. G. Schimel, Giuseppe Masetti,
Marc Roche, Julian Le Deunf, Margaret F.J. Dolan, Jonathan Beau-
doin, Jean-Marie Augustin, Travis Hamilton, and Iain Parnum. Re-
sults from the first phase of the seafloor backscatter processing soft-
ware inter-comparison project. Geosciences, 9(12):516, 12 2019, DOI
10.3390/geosciences9120516.
Abstract: Seafloor backscatter mosaics are now routinely produced from
multibeam echosounder data and used in a wide range of marine applica-
tions. However, large differences (¿5 dB) can often be observed between the
mosaics produced by different software packages processing the same dataset.
Without transparency of the processing pipeline and the lack of consistency
between software packages raises concerns about the validity of the final
results. To recognize the source(s) of inconsistency between software, it is
necessary to understand at which stage(s) of the data processing chain the
differences become substantial. To this end, willing commercial and aca-
demic software developers were invited to generate intermediate processed
backscatter results from a common dataset, for cross-comparison. The first
phase of the study requested intermediate processed results consisting of two
stages of the processing sequence: the one-value-per-beam level obtained af-
ter reading the raw data and the level obtained after radiometric corrections
but before compensation of the angular dependence. Both of these interme-
diate results showed large differences between software solutions. This study
explores the possible reasons for these differences and highlights the need
for collaborative efforts between software developers and their users to im-
prove the consistency and transparency of the backscatter data processing
sequence.

[Malloy2018] Brian A. Malloy and James F. Power. An empirical analysis of
the transition from Python 2 to Python 3. Empirical Software Engineering,
24(2):751–778, 7 2018, DOI 10.1007/s10664-018-9637-2.
Abstract: Python is one of the most popular and widely adopted program-
ming languages in use today. In 2008 the Python developers introduced a
new version of the language, Python 3.0, that was not backward compatible
with Python 2, initiating a transitional phase for Python software devel-
opers. In this paper, we describe a study that investigates the degree to
which Python software developers are making the transition from Python 2
to Python 3. We have developed a Python compliance analyser, PyComply,
and have analysed a previously studied corpus of Python applications called
Qualitas. We use PyComply to measure and quantify the degree to which
Python 3 features are being used, as well as the rate and context of their
adoption in the Qualitas corpus. Our results indicate that Python software
developers are not exploiting the new features and advantages of Python

94

3, but rather are choosing to retain backward compatibility with Python 2.
Moreover, Python developers are confining themselves to a language subset,
governed by the diminishing intersection of Python 2, which is not under
development, and Python 3, which is under development with new features
being introduced as the language continues to evolve.

[Mangano2015] Nicolas Mangano, Thomas D. LaToza, Marian Petre, and
Andre van der Hoek. How software designers interact with sketches at the
whiteboard. IEEE Transactions on Software Engineering, 41(2):135–156, 2
2015, DOI 10.1109/tse.2014.2362924.
Abstract: Whiteboard sketches play a crucial role in software develop-
ment, helping to support groups of designers in reasoning about a software
design problem at hand. However, little is known about these sketches and
how they support design ’in the moment’, particularly in terms of the re-
lationships among sketches, visual syntactic elements within sketches, and
reasoning activities. To address this gap, we analyzed 14 hours of design
activity by eight pairs of professional software designers, manually coding
over 4000 events capturing the introduction of visual syntactic elements into
sketches, focus transitions between sketches, and reasoning activities. Our
findings indicate that sketches serve as a rich medium for supporting design
conversations. Designers often use general-purpose notations. Designers in-
troduce new syntactic elements to record aspects of the design, or re-purpose
sketches as the design develops. Designers constantly shift focus between
sketches, using groups of sketches together that contain complementary in-
formation. Finally, sketches play an important role in supporting several
types of reasoning activities (mental simulation, review of progress, consid-
eration of alternatives). But these activities often leave no trace and rarely
lead to sketch creation. We discuss the implications of these and other find-
ings for the practice of software design at the whiteboard and for the creation
of new electronic software design sketching tools.

[Marinescu2011] Cristina Marinescu. Are the classes that use exceptions
defect prone? In Proc. International Workshop on Principles on Software
Evolution/Workshop on Software Evolution (IWPSE-EVOL). ACM Press,
2011, DOI 10.1145/2024445.2024456.
Abstract: Exception handling is a mechanism that highlights exceptional
functionality of software systems. Currently many empirical studies point out
that sometimes developers neglect exceptional functionality, minimizing its
importance. In this paper we investigate if the design entities (classes) that
use exceptions are more defect prone than the other classes. The results,
based on analyzing three releases of Eclipse, show that indeed the classes
that use exceptions are more defect prone than the other classes. Based on
our results, developers are advertised to pay more attention to the way they
handle exceptions.

[Masood2020a] Zainab Masood, Rashina Hoda, and Kelly Blincoe.
How agile teams make self-assignment work: a grounded theory

95

study. Empirical Software Engineering, 25(6):4962–5005, 9 2020, DOI
10.1007/s10664-020-09876-x.
Abstract: Self-assignment, a self-directed method of task allocation in
which teams and individuals assign and choose work for themselves, is con-
sidered one of the hallmark practices of empowered, self-organizing agile
teams. Despite all the benefits it promises, agile software teams do not prac-
tice it as regularly as other agile practices such as iteration planning and
daily stand-ups, indicating that it is likely not an easy and straighforward
practice. There has been very little empirical research on self-assignment.
This Grounded Theory study explores how self-assignment works in agile
projects. We collected data through interviews with 42 participants repre-
senting 28 agile teams from 23 software companies and supplemented these
interviews with observations. Based on rigorous application of Grounded
Theory analysis procedures such as open, axial, and selective coding, we
present a comprehensive grounded theory of making self-assignment work
that explains the (a) context and (b) causal conditions that give rise to the
need for self-assignment, (c) a set of facilitating conditions that mediate how
self-assignment may be enabled, (d) a set of constraining conditions that me-
diate how self-assignment may be constrained and which are overcome by
a set of (e) strategies applied by agile teams, which in turn result in (f)
a set of consequences, all in an attempt to make the central phenomenon,
self-assignment, work. The findings of this study will help agile practitioners
and companies understand different aspects of self-assignment and practice
it with confidence regularly as a valuable practice. Additionally, it will help
teams already practicing self-assignment to apply strategies to overcome the
challenges they face on an everyday basis.

[Masood2020b] Zainab Masood, Rashina Hoda, and Kelly Blincoe.
Real world scrum a grounded theory of variations in practice.
IEEE Transactions on Software Engineering, pages 1–1, 2020, DOI
10.1109/tse.2020.3025317.
Abstract: Scrum, the most popular agile method and project management
framework, is widely reported to be used, adapted, misused, and abused in
practice. However, not much is known about how Scrum actually works in
practice, and critically, where, when, how and why it diverges from Scrum
by the book. Through a Grounded Theory study involving semi-structured
interviews of 45 participants from 30 companies and observations of five
teams, we present our findings on how Scrum works in practice as compared
to how it is presented in its formative books. We identify significant varia-
tions in these practices such as work breakdown, estimation, prioritization,
assignment, the associated roles and artefacts, and discuss the underlying
rationales driving the variations. Critically, we claim that not all variations
are process misuse/abuse and propose a nuanced classification approach to
understanding variations as standard, necessary, contextual, and clear devi-
ations for successful Scrum use and adaptation.

[Mattmann2015] Chris A. Mattmann, Joshua Garcia, Ivo Krka, Daniel

96

Popescu, and Nenad Medvidović. Revisiting the anatomy and physiol-
ogy of the grid. Journal of Grid Computing, 13(1):19–34, 1 2015, DOI
10.1007/s10723-015-9324-0.
Abstract: A domain-specific software architecture (DSSA) represents an
effective, generalized, reusable solution to constructing software systems
within a given application domain. In this paper, we revisit the widely cited
DSSA for the domain of grid computing. We have studied systems in this do-
main over the last ten years. During this time, we have repeatedly observed
that, while individual grid systems are widely used and deemed successful,
the grid DSSA is actually underspecified to the point where providing a pre-
cise answer regarding what makes a software system a grid system is nearly
impossible. Moreover, every one of the existing purported grid technologies
actually violates the published grid DSSA. In response to this, based on an
analysis of the source code, documentation, and usage of eighteen of the
most pervasive grid technologies, we have significantly refined the original
grid DSSA. We demonstrate that this DSSA much more closely matches the
grid technologies studied. Our refinements allow us to more definitively iden-
tify a software system as a grid technology, and distinguish it from software
libraries, middleware, and frameworks.

[May2019] Anna May, Johannes Wachs, and Anikó Hannák. Gender differ-
ences in participation and reward on stack overflow. Empirical Software
Engineering, 24(4):1997–2019, 2 2019, DOI 10.1007/s10664-019-09685-x.
Abstract: Programming is a valuable skill in the labor market, making the
underrepresentation of women in computing an increasingly important is-
sue. Online question and answer platforms serve a dual purpose in this field:
they form a body of knowledge useful as a reference and learning tool, and
they provide opportunities for individuals to demonstrate credible, verifiable
expertise. Issues, such as male-oriented site design or overrepresentation of
men among the site’s elite may therefore compound the issue of women’s
underrepresentation in IT. In this paper we audit the differences in behavior
and outcomes between men and women on Stack Overflow, the most pop-
ular of these Q&A sites. We observe significant differences in how men and
women participate in the platform and how successful they are. For example,
the average woman has roughly half of the reputation points, the primary
measure of success on the site, of the average man. Using an Oaxaca-Blinder
decomposition, an econometric technique commonly applied to analyze dif-
ferences in wages between groups, we find that most of the gap in success
between men and women can be explained by differences in their activity
on the site and differences in how these activities are rewarded. Specifically,
1) men give more answers than women and 2) are rewarded more for their
answers on average, even when controlling for possible confounders such as
tenure or buy-in to the site. Women ask more questions and gain more re-
ward per question. We conclude with a hypothetical redesign of the site’s
scoring system based on these behavioral differences, cutting the reputation
gap in half.

97

[McGee2011] Sharon McGee and Des Greer. Software requirements
change taxonomy: evaluation by case study. In Proc. Interna-
tional Requirements Engineering Conference (RE). IEEE, 8 2011, DOI
10.1109/re.2011.6051641.
Abstract: Although a number of requirements change classifications have
been proposed in the literature, there is no empirical assessment of their
practical value in terms of their capacity to inform change monitoring and
management. This paper describes an investigation of the informative ef-
ficacy of a taxonomy of requirements change sources which distinguishes
between changes arising from ’market’, ’organisation’, ’project vision’, ’spec-
ification’ and ’solution’. This investigation was effected through a case study
where change data was recorded over a 16 month period covering the devel-
opment lifecycle of a government sector software application. While insuffi-
ciency of data precluded an investigation of changes arising due to the change
source of ’market’, for the remainder of the change sources, results indicate
a significant difference in cost, value to the customer and management con-
siderations. Findings show that higher cost and value changes arose more
often from ’organisation’ and ’vision’ sources; these changes also generally
involved the co-operation of more stakeholder groups and were considered to
be less controllable than changes arising from the ’specification’ or ’solution’
sources. Overall, the results suggest that monitoring and measuring change
using this classification is a practical means to support change management,
understanding and risk visibility.

[McIntosh2011] Shane McIntosh, Bram Adams, Thanh H.D. Nguyen, Yasu-
taka Kamei, and Ahmed E. Hassan. An empirical study of build maintenance
effort. In Proc. International Conference on Software Engineering (ICSE).
ACM, 5 2011, DOI 10.1145/1985793.1985813.
Abstract: The build system of a software project is responsible for trans-
forming source code and other development artifacts into executable pro-
grams and deliverables. Similar to source code, build system specifications
require maintenance to cope with newly implemented features, changes to
imported Application Program Interfaces (APIs), and source code restruc-
turing. In this paper, we mine the version histories of one proprietary and
nine open source projects of different sizes and domain to analyze the over-
head that build maintenance imposes on developers. We split our analysis
into two dimensions: (1) Build Coupling, i.e., how frequently source code
changes require build changes, and (2) Build Ownership, i.e., the proportion
of developers responsible for build maintenance. Our results indicate that,
despite the difference in scale, the build system churn rate is comparable
to that of the source code, and build changes induce more relative churn
on the build system than source code changes induce on the source code.
Furthermore, build maintenance yields up to a 27% overhead on source code
development and a 44% overhead on test development. Up to 79% of source
code developers and 89% of test code developers are significantly impacted
by build maintenance, yet investment in build experts can reduce the pro-

98

portion of impacted developers to 22% of source code developers and 24%
of test code developers.

[McIntosh2021] Lukas McIntosh and Caroline D. Hardin. Do hackathon
projects change the world? an empirical analysis of GitHub repositories.
In Proc. Technical Symposium on Computer Science Education (SIGCSE).
ACM, 3 2021, DOI 10.1145/3408877.3432435.
Abstract: Hackathons, the increasingly popular collaborative technology
challenge events, are praised for producing modern solutions to real world
problems. They have, however, recently been criticized for positing that seri-
ous real world problems can be solved in 24-48 hours of undergraduate cod-
ing. Projects created at hackathons are typically demos or proof-of-concepts,
and little is known about the fate of them after the hackathon ends. Do
they receive continued development in preparation for real world use and
maintenance as part of actually being used, or are they abandoned? Since
participants often use GitHub (Microsoft’s popular version control system),
it is possible to check. This quantitative, empirical study uses a series of
Python scripts to complete a robust analysis of development patterns for
all 11,889 of the U.S. based 2018-2019 Major League Hacking (MLH) affil-
iated hackathon projects which had GitHub repositories. Of these projects,
approximately 85% of commits were made within the first month, and ap-
proximately 77% of the total commits occurred within the first week. Only
7% of projects had any activity 6 months after the event ended. Evaluated
projects had an average of only 3.097 distinct commit dates, and the average
of commits divided by the length of the development period was only 0.1.
This indicates that few projects receive the post-event attention expected of
an actively developed project. Finally, this study offers a dialogue of possible
ways to reformat hackathons to help increase the average longevity of the
development period for projects.

[McLeod2011] Laurie McLeod and Stephen G. MacDonell. Factors that affect
software systems development project outcomes. ACM Computing Surveys,
43(4):1–56, 10 2011, DOI 10.1145/1978802.1978803.
Abstract: Determining the factors that have an influence on software sys-
tems development and deployment project outcomes has been the focus of
extensive and ongoing research for more than 30 years. We provide here a
survey of the research literature that has addressed this topic in the period
1996–2006, with a particular focus on empirical analyses. On the basis of
this survey we present a new classification framework that represents an ab-
stracted and synthesized view of the types of factors that have been asserted
as influencing project outcomes.

[Melo2019] Hugo Melo, Roberta Coelho, and Christoph Treude. Unveiling
exception handling guidelines adopted by java developers. In Proc. In-
ternational Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2 2019, DOI 10.1109/saner.2019.8668001.
Abstract: Despite being an old language feature, Java exception handling

99

code is one of the least understood parts of many systems. Several stud-
ies have analyzed the characteristics of exception handling code, trying to
identify common practices or even link such practices to software bugs. Few
works, however, have investigated exception handling issues from the point
of view of developers. None of the works have focused on discovering ex-
ception handling guidelines adopted by current systems—which are likely to
be a driver of common practices. In this work, we conducted a qualitative
study based on semi-structured interviews and a survey whose goal was to
investigate the guidelines that are (or should be) followed by developers in
their projects. Initially, we conducted semi-structured interviews with seven
experienced developers, which were used to inform the design of a survey
targeting a broader group of Java developers (i.e., a group of active Java
developers from top-starred projects on GitHub). We emailed 863 develop-
ers and received 98 valid answers. The study shows that exception handling
guidelines usually exist (70%) and are usually implicit and undocumented
(54%). Our study identifies 48 exception handling guidelines related to seven
different categories. We also investigated how such guidelines are dissemi-
nated to the project team and how compliance between code and guidelines
is verified; we could observe that according to more than half of respondents
the guidelines are both disseminated and verified through code inspection or
code review. Our findings provide software development teams with a means
to improve exception handling guidelines based on insights from the state of
practice of 87 software projects.

[Meneely2011] Andrew Meneely, Pete Rotella, and Laurie Williams. Does
adding manpower also affect quality? an empirical, longitudinal analysis.
In Proc. International Symposium on Foundations of Software Engineer-
ing/International Symposium on the Foundations of Software Engineering
(SIGSOFT/FSE). ACM Press, 2011, DOI 10.1145/2025113.2025128.
Abstract: With each new developer to a software development team comes
a greater challenge to manage the communication, coordination, and knowl-
edge transfer amongst teammates. Fred Brooks discusses this challenge in
The Mythical Man-Month by arguing that rapid team expansion can lead
to a complex team organization structure. While Brooks focuses on produc-
tivity loss as the negative outcome, poor product quality is also a substan-
tial concern. But if team expansion is unavoidable, can any quality impacts
be mitigated? Our objective is to guide software engineering managers by
empirically analyzing the effects of team size, expansion, and structure on
product quality. We performed an empirical, longitudinal case study of a
large Cisco networking product over a five year history. Over that time, the
team underwent periods of no expansion, steady expansion, and accelerated
expansion. Using team-level metrics, we quantified characteristics of team
expansion, including team size, expansion rate, expansion acceleration, and
modularity with respect to department designations. We examined statistical
correlations between our monthly team-level metrics and monthly product-
level metrics. Our results indicate that increased team size and linear growth

100

are correlated with later periods of better product quality. However, periods
of accelerated team expansion are correlated with later periods of reduced
software quality. Furthermore, our linear regression prediction model based
on team metrics was able to predict the product’s post-release failure rate
within a 95% prediction interval for 38 out of 40 months. Our analysis pro-
vides insight for project managers into how the expansion of development
teams can impact product quality.

[Meng2013] Na Meng, Miryung Kim, and Kathryn S. McKinley. Lase: lo-
cating and applying systematic edits by learning from examples. In Proc.
International Conference on Software Engineering (ICSE). IEEE, 5 2013,
DOI 10.1109/icse.2013.6606596.
Abstract: Adding features and fixing bugs often require systematic edits
that make similar, but not identical, changes to many code locations. Find-
ing all the relevant locations and making the correct edits is a tedious and
error-prone process for developers. This paper addresses both problems using
edit scripts learned from multiple examples. We design and implement a tool
called LASE that (1) creates a context-aware edit script from two or more
examples, and uses the script to (2) automatically identify edit locations
and to (3) transform the code. We evaluate LASE on an oracle test suite of
systematic edits from Eclipse JDT and SWT. LASE finds edit locations with
99% precision and 89% recall, and transforms them with 91% accuracy. We
also evaluate LASE on 37 example systematic edits from other open source
programs and find LASE is accurate and effective. Furthermore, we con-
firmed with developers that LASE found edit locations which they missed.
Our novel algorithm that learns from multiple examples is critical to achiev-
ing high precision and recall; edit scripts created from only one example
produce too many false positives, false negatives, or both. Our results in-
dicate that LASE should help developers in automating systematic editing.
Whereas most prior work either suggests edit locations or performs simple
edits, LASE is the first to do both for nontrivial program edits.

[Menzies2016] Tim Menzies, William Nichols, Forrest Shull, and Lucas Lay-
man. Are delayed issues harder to resolve? revisiting cost-to-fix of defects
throughout the lifecycle. Empirical Software Engineering, 22(4):1903–1935,
11 2016, DOI 10.1007/s10664-016-9469-x.
Abstract: Many practitioners and academics believe in a delayed issue ef-
fect (DIE); i.e. the longer an issue lingers in the system, the more effort it
requires to resolve. This belief is often used to justify major investments in
new development processes that promise to retire more issues sooner. This
paper tests for the delayed issue effect in 171 software projects conducted
around the world in the period from 2006–2014. To the best of our knowledge,
this is the largest study yet published on this effect. We found no evidence
for the delayed issue effect; i.e. the effort to resolve issues in a later phase
was not consistently or substantially greater than when issues were resolved
soon after their introduction. This paper documents the above study and
explores reasons for this mismatch between this common rule of thumb and

101

empirical data. In summary, DIE is not some constant across all projects.
Rather, DIE might be an historical relic that occurs intermittently only in
certain kinds of projects. This is a significant result since it predicts that
new development processes that promise to faster retire more issues will not
have a guaranteed return on investment (depending on the context where
applied), and that a long-held truth in software engineering should not be
considered a global truism.

[Meyer2014] André N. Meyer, Thomas Fritz, Gail C. Murphy, and Thomas
Zimmermann. Software developers' perceptions of productivity. In Proc. In-
ternational Symposium on the Foundations of Software Engineering (FSE).
ACM, 11 2014, DOI 10.1145/2635868.2635892.
Abstract: The better the software development community becomes at cre-
ating software, the more software the world seems to demand. Although there
is a large body of research about measuring and investigating productivity
from an organizational point of view, there is a paucity of research about how
software developers, those at the front-line of software construction, think
about, assess and try to improve their productivity. To investigate software
developers’ perceptions of software development productivity, we conducted
two studies: a survey with 379 professional software developers to help elicit
themes and an observational study with 11 professional software developers
to investigate emergent themes in more detail. In both studies, we found
that developers perceive their days as productive when they complete many
or big tasks without significant interruptions or context switches. Yet, the
observational data we collected shows our participants performed significant
task and activity switching while still feeling productive. We analyze such
apparent contradictions in our findings and use the analysis to propose ways
to better support software developers in a retrospection and improvement of
their productivity through the development of new tools and the sharing of
best practices.

[Meyer2021] Andre N. Meyer, Earl T. Barr, Christian Bird, and Thomas
Zimmermann. Today was a good day: The daily life of software developers.
IEEE Transactions on Software Engineering, 47(5):863–880, 5 2021, DOI
10.1109/tse.2019.2904957.
Abstract: What is a good workday for a software developer? What is a
typical workday? We seek to answer these two questions to learn how to
make good days typical. Concretely, answering these questions will help to
optimize development processes and select tools that increase job satisfaction
and productivity. Our work adds to a large body of research on how software
developers spend their time. We report the results from 5,971 responses of
professional developers at Microsoft, who reflected about what made their
workdays good and typical, and self-reported about how they spent their
time on various activities at work. We developed conceptual frameworks to
help define and characterize developer workdays from two new perspectives:
good and typical. Our analysis confirms some findings in previous work, in-
cluding the fact that developers actually spend little time on development

102

and developers’ aversion for meetings and interruptions. It also discovered
new findings, such as that only 1.7 percent of survey responses mentioned
emails as a reason for a bad workday, and that meetings and interruptions
are only unproductive during development phases; during phases of planning,
specification and release, they are common and constructive. One key find-
ing is the importance of agency, developers’ control over their workday and
whether it goes as planned or is disrupted by external factors. We present ac-
tionable recommendations for researchers and managers to prioritize process
and tool improvements that make good workdays typical. For instance, in
light of our finding on the importance of agency, we recommend that, where
possible, managers empower developers to choose their tools and tasks.

[Miedema2021] Daphne Miedema, Efthimia Aivaloglou, and George Fletcher.
Identifying SQL misconceptions of novices: findings from a think-aloud
study. In Proc. Conference on International Computing Education Research
(ICER). ACM, 8 2021, DOI 10.1145/3446871.3469759.
Abstract: SQL is the most commonly taught database query language.
While previous research has investigated the errors made by novices dur-
ing SQL query formulation, the underlying causes for these errors have re-
mained unexplored. Understanding the basic misconceptions held by novices
which lead to these errors would help improve how we teach query languages
to our students. In this paper we aim to identify the misconceptions that
might be the causes of documented SQL errors that novices make. To this
end, we conducted a qualitative think-aloud study to gather information on
the thinking process of university students while solving query formulation
problems. With the queries in hand, we analyzed the underlying causes for
the errors made by our participants. In this paper we present the identified
SQL misconceptions organized into four top-level categories: misconceptions
based in previous course knowledge, generalization-based misconceptions,
language-based misconceptions, and misconceptions due to an incomplete or
incorrect mental model. A deep exploration of misconceptions can uncover
gaps in instruction. By drawing attention to these, we aim to improve SQL
education.

[Miller2016] Craig S. Miller and Amber Settle. Some trouble with trans-
parency: an analysis of student errors with object-oriented Python. In Proc.
Conference on International Computing Education Research (ICER). ACM,
8 2016, DOI 10.1145/2960310.2960327.
Abstract: We investigated implications of transparent mechanisms in
the context of an introductory object-oriented programming course using
Python. Here transparent mechanisms are those that reveal how the instance
object in Python relates to its instance data. We asked students to write a
new method for a provided Python class in an attempt to answer two re-
search questions: 1) to what extent do Python’s transparent OO mechanisms
lead to student difficulties? and 2) what are common pitfalls in OO program-
ming using Python that instructors should address? Our methodology also
presented the correct answer to the students and solicited their comments

103

on their submission. We conducted a content analysis to classify errors in
the student submissions. We find that most students had difficulty with the
instance (self) object, either by omitting the parameter in the method defini-
tion, by failing to use the instance object when referencing attributes of the
object, or both. Reference errors in general were more common than other
errors, including misplaced returns and indentation errors. These issues may
be connected to problems with parameter passing and using dot-notation,
which we argue are prerequisites for OO development in Python.

[Miller2020] Barton Miller, Mengxiao Zhang, and Elisa Heymann. The rele-
vance of classic fuzz testing: Have we solved this one? IEEE Transactions on
Software Engineering, pages 1–1, 2020, DOI 10.1109/tse.2020.3047766.
Abstract: As fuzz testing has passed its 30th anniversary, and in the face
of the incredible progress in fuzz testing techniques and tools, the question
arises if the classic, basic fuzz technique is still useful and applicable? In
that tradition, we have updated the basic fuzz tools and testing scripts and
applied them to a large collection of Unix utilities on Linux, FreeBSD, and
MacOS. As before, our failure criteria was whether the program crashed or
hung. We found that 9 crash or hang out of 74 utilities on Linux, 15 out of
78 utilities on FreeBSD, and 12 out of 76 utilities on MacOS. A total of 24
different utilities failed across the three platforms. We note that these failure
rates are somewhat higher than our in previous 1995, 2000, and 2006 studies
of the reliability of command line utilities. In the basic fuzz tradition, we
debugged each failed utility and categorized the causes the failures. Classic
categories of failures, such as pointer and array errors and not checking re-
turn codes, were still broadly present in the current results. In addition, we
found a couple of new categories of failures appearing. We present examples
of these failures to illustrate the programming practices that allowed them to
happen. As a side note, we tested the limited number of utilities available in
a modern programming language (Rust) and found them to be of no better
reliability than the standard ones.

[Mitropoulos2019] Dimitris Mitropoulos, Panos Louridas, Vitalis Salis, and
Diomidis Spinellis. Time present and time past: Analyzing the evo-
lution of JavaScript code in the wild. In Proc. International Con-
ference on Mining Software Repositories (MSR). IEEE, 5 2019, DOI
10.1109/msr.2019.00029.
Abstract: JavaScript is one of the web’s key building blocks. It is used by
the majority of web sites and it is supported by all modern browsers. We
present the first large-scale study of client-side JavaScript code over time.
Specifically, we have collected and analyzed a dataset containing daily snap-
shots of JavaScript code coming from Alexa’s Top 10000 web sites (7.5 GB
per day) for nine consecutive months, to study different temporal aspects of
web client code. We found that scripts change often; typically every few days,
indicating a rapid pace in web applications development. We also found that
the lifetime of web sites themselves, measured as the time between JavaScript

104

changes, is also short, in the same time scale. We then performed a quali-
tative analysis to investigate the nature of the changes that take place. We
found that apart from standard changes such as the introduction of new
functions, many changes are related to online configuration management. In
addition, we examined JavaScript code reuse over time and especially the
widespread reliance on third-party libraries. Furthermore, we observed how
quality issues evolve by employing established static analysis tools to identify
potential software bugs, whose evolution we tracked over time. Our results
show that quality issues seem to persist over time, while vulnerable libraries
tend to decrease.

[Mo2021] Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, and Qiong Feng.
Architecture anti-patterns: Automatically detectable violations of design
principles. IEEE Transactions on Software Engineering, 47(5):1008–1028, 5
2021, DOI 10.1109/tse.2019.2910856.
Abstract: In large-scale software systems, error-prone or change-prone files
rarely stand alone. They are typically architecturally connected and their
connections usually exhibit architecture problems causing the propagation
of error-proneness or change-proneness. In this paper, we propose and em-
pirically validate a suite of architecture anti-patterns that occur in all large-
scale software systems and are involved in high maintenance costs. We define
these architecture anti-patterns based on fundamental design principles and
Baldwin and Clark’s design rule theory. We can automatically detect these
anti-patterns by analyzing a project’s structural relationships and revision
history. Through our analyses of 19 large-scale software projects, we demon-
strate that these architecture anti-patterns have significant impact on files’
bug-proneness and change-proneness. In particular, we show that 1) files in-
volved in these architecture anti-patterns are more error-prone and change-
prone; 2) the more anti-patterns a file is involved in, the more error-prone
and change-prone it is; and 3) while all of our defined architecture anti-
patterns contribute to file’s error-proneness and change-proneness, Unstable
Interface and Crossing contribute the most by far.

[Mockus2010] Audris Mockus. Organizational volatility and its ef-
fects on software defects. In Proc. International Symposium on the
Foundations of Software Engineering (FSE). ACM Press, 2010, DOI
10.1145/1882291.1882311.
Abstract: The key premise of an organization is to allow more efficient
production, including production of high quality software. To achieve that,
an organization defines roles and reporting relationships. Therefore, changes
in organization’s structure are likely to affect product’s quality. We propose
and investigate a relationship between developer-centric measures of orga-
nizational change and the probability of customer-reported defects in the
context of a large software project. We find that the proximity to an or-
ganizational change is significantly associated with reductions in software
quality. We also replicate results of several prior studies of software quality
supporting findings that code, change, and developer characteristics affect

105

fault-proneness. In contrast to prior studies we find that distributed devel-
opment decreases quality. Furthermore, recent departures from an organiza-
tion were associated with increased probability of customer-reported defects,
thus demonstrating that in the observed context the organizational change
reduces product quality.

[Moe2010] Nils Brede Moe, Torgeir Dingsøyr, and Tore Dyb̊a. A team-
work model for understanding an agile team: A case study of a Scrum
project. Information and Software Technology, 52(5):480–491, 5 2010, DOI
10.1016/j.infsof.2009.11.004.
Abstract: Context: Software development depends significantly on team
performance, as does any process that involves human interaction. Objective:
Most current development methods argue that teams should self-manage.
Our objective is thus to provide a better understanding of the nature of self-
managing agile teams, and the teamwork challenges that arise when intro-
ducing such teams. Method: We conducted extensive fieldwork for 9months
in a software development company that introduced Scrum. We focused on
the human sensemaking, on how mechanisms of teamwork were understood
by the people involved. Results: We describe a project through Dickinson
and McIntyre’s teamwork model, focusing on the interrelations between es-
sential teamwork components. Problems with team orientation, team leader-
ship and coordination in addition to highly specialized skills and correspond-
ing division of work were important barriers for achieving team effectiveness.
Conclusion: Transitioning from individual work to self-managing teams re-
quires a reorientation not only by developers but also by management. This
transition takes time and resources, but should not be neglected. In addi-
tion to Dickinson and McIntyre’s teamwork components, we found trust and
shared mental models to be of fundamental importance.

[Mokhov2018] Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones.
Build systems à la carte. Proceedings of the ACM on Programming Lan-
guages, 2(ICFP):1–29, 7 2018, DOI 10.1145/3236774.
Abstract: Build systems are awesome, terrifying—and unloved. They are
used by every developer around the world, but are rarely the object of study.
In this paper we offer a systematic, and executable, framework for developing
and comparing build systems, viewing them as related points in landscape
rather than as isolated phenomena. By teasing apart existing build systems,
we can recombine their components, allowing us to prototype new build
systems with desired properties.

[Moldon2021] Lukas Moldon, Markus Strohmaier, and Johannes Wachs. How
gamification affects software developers: Cautionary evidence from a natu-
ral experiment on GitHub. In Proc. International Conference on Software
Engineering (ICSE). IEEE, 5 2021, DOI 10.1109/icse43902.2021.00058.
Abstract: We examine how the behavior of software developers changes in
response to removing gamification elements from GitHub, an online platform
for collaborative programming and software development. We find that the

106

unannounced removal of daily activity streak counters from the user inter-
face (from user profile pages) was followed by significant changes in behavior.
Long-running streaks of activity were abandoned and became less common.
Weekend activity decreased and days in which developers made a single con-
tribution became less common. Synchronization of streaking behavior in the
platform’s social network also decreased, suggesting that gamification is a
powerful channel for social influence. Focusing on a set of software develop-
ers that were publicly pursuing a goal to make contributions for 100 days
in a row, we find that some of these developers abandon this quest follow-
ing the removal of the public streak counter. Our findings provide evidence
for the significant impact of gamification on the behavior of developers on
large collaborative programming and software development platforms. They
urge caution: gamification can steer the behavior of software developers in
unexpected and unwanted directions.

[Moraes2021] João Pedro Moraes, Ivanilton Polato, Igor Wiese, Filipe
Saraiva, and Gustavo Pinto. From one to hundreds: multi-licensing in the
JavaScript ecosystem. Empirical Software Engineering, 26(3), 3 2021, DOI
10.1007/s10664-020-09936-2.
Abstract: Open source licenses create a legal framework that plays a crucial
role in the widespread adoption of open source projects. Without a license,
any source code available on the internet could not be openly (re)distributed.
Although recent studies provide evidence that most popular open source
projects have a license, developers might lack confidence or expertise when
they need to combine software licenses, leading to a mistaken project license
unification.This license usage is challenged by the high degree of reuse that
occurs in the heart of modern software development practices, in which third-
party libraries and frameworks are easily and quickly integrated into a soft-
ware codebase.This scenario creates what we call “multi-licensed” projects,
which happens when one project has components that are licensed under
more than one license. Although these components exist at the file-level,
they naturally impact licensing decisions at the project-level. In this paper,
we conducted a mix-method study to shed some light on these questions. We
started by parsing 1,426,263 (source code and non-source code) files available
on 1,552 JavaScript projects, looking for license information. Among these
projects, we observed that 947 projects (61%) employ more than one license.
On average, there are 4.7 licenses per studied project (max: 256). Among the
reasons for multi-licensing is to incorporate the source code of third-party
libraries into the project’s codebase. When doing so, we observed that 373
of the multi-licensed projects introduced at least one license incompatibility
issue. We also surveyed with 83 maintainers of these projects aimed to cross-
validate our findings. We observed that 63% of the surveyed maintainers are
not aware of the multi-licensing implications. For those that are aware, they
adopt multiple licenses mostly to conform with third-party libraries’ licenses.

[MoreiraSoares2020] Daricélio Moreira Soares, Manoel Limeira Lima Júnior,
Leonardo Murta, and Alexandre Plastino. What factors influence the life-

107

time of pull requests? Software: Practice and Experience, 51(6):1173–1193,
12 2020, DOI 10.1002/spe.2946.
Abstract: When external contributors want to collaborate with an open-
source project, they fork the repository, make changes, and send a pull re-
quest to the core team. However, the lifetime of a pull request, defined by the
time interval between its opening and its closing, has a high variation, poten-
tially affecting the contributor engagement. In this context, understanding
the root causes of pull request lifetime is important to both the external con-
tributors and the core team. The former can adopt strategies that increase
the chances of fast review, while the latter can establish priorities in the
reviewing process, alleviating the pending tasks and improving the software
quality. In this work, we mined association rules from 97,463 pull requests
from 30 projects in order to find characteristics that have affected the pull
requests lifetime. In addition, we present a qualitative analysis, helping to
understand the patterns discovered from the association rules. The results
indicate that: (i) contributions with shorter lifetimes tend to be accepted;
(ii) structural characteristics, such as number of commits, changed files, and
lines of code, have influence, in an isolated or combined way, on the pull
request lifetime; (iii) the files changed and the directories to which they
belong can be robust predictors for pull request lifetime; (iv) the profile of
external contributors and their social relationships have influence on lifetime;
and (v) the number of comments in a pull request, as well as the developer
responsible for the review, are important predictors for its lifetime.

[Muhammad2019] Hisham Muhammad, Lucas C. Villa Real, and Michael
Homer. Taxonomy of package management in programming languages and
operating systems. In Proc. Workshop on Programming Languages and Op-
erating Systems (PLOS). ACM, 10 2019, DOI 10.1145/3365137.3365402.
Abstract: Package management is instrumental for programming languages
and operating systems, and yet it is neglected by both areas as an implemen-
tation detail. For this reason, it lacks the same kind of conceptual organiza-
tion: we lack terminology to classify them or to reason about their design
trade-offs. In this paper, we share our experience in both OS and language-
specific package manager development, categorizing families of package man-
agers and discussing their design implications beyond particular implemen-
tations. We also identify possibilities in the still largely unexplored area of
package manager interoperability.

[MurphyHill2021] Emerson Murphy-Hill, Ciera Jaspan, Caitlin Sadowski,
David Shepherd, Michael Phillips, Collin Winter, Andrea Knight, Edward
Smith, and Matthew Jorde. What predicts software developers’ productiv-
ity? IEEE Transactions on Software Engineering, 47(3):582–594, 3 2021,
DOI 10.1109/tse.2019.2900308.
Abstract: Organizations have a variety of options to help their software de-
velopers become their most productive selves, from modifying office layouts,
to investing in better tools, to cleaning up the source code. But which op-
tions will have the biggest impact? Drawing from the literature in software

108

engineering and industrial/organizational psychology to identify factors that
correlate with productivity, we designed a survey that asked 622 developers
across 3 companies about these productivity factors and about self-rated pro-
ductivity. Our results suggest that the factors that most strongly correlate
with self-rated productivity were non-technical factors, such as job enthu-
siasm, peer support for new ideas, and receiving useful feedback about job
performance. Compared to other knowledge workers, our results also suggest
that software developers’ self-rated productivity is more strongly related to
task variety and ability to work remotely.

[Nagappan2008] Nachiappan Nagappan, E. Michael Maximilien, Thiru-
malesh Bhat, and Laurie Williams. Realizing quality improvement
through test driven development: results and experiences of four indus-
trial teams. Empirical Software Engineering, 13(3):289–302, 2 2008, DOI
10.1007/s10664-008-9062-z.
Abstract: Test-driven development (TDD) is a software development prac-
tice that has been used sporadically for decades. With this practice, a soft-
ware engineer cycles minute-by-minute between writing failing unit tests
and writing implementation code to pass those tests. Test-driven develop-
ment has recently re-emerged as a critical enabling practice of agile software
development methodologies. However, little empirical evidence supports or
refutes the utility of this practice in an industrial context. Case studies were
conducted with three development teams at Microsoft and one at IBM that
have adopted TDD. The results of the case studies indicate that the pre-
release defect density of the four products decreased between 40% and 90%
relative to similar projects that did not use the TDD practice. Subjectively,
the teams experienced a 15–35% increase in initial development time after
adopting TDD.

[Nagappan2015] Meiyappan Nagappan, Romain Robbes, Yasutaka Kamei,
Éric Tanter, Shane McIntosh, Audris Mockus, and Ahmed E. Hassan. An
empirical study of goto in C code from GitHub repositories. In Proc. In-
ternational Symposium on the Foundations of Software Engineering (FSE).
ACM, 8 2015, DOI 10.1145/2786805.2786834.
Abstract: It is nearly 50 years since Dijkstra argued that goto obscures the
flow of control in program execution and urged programmers to abandon
the goto statement. While past research has shown that goto is still in use,
little is known about whether goto is used in the unrestricted manner that
Dijkstra feared, and if it is ’harmful’ enough to be a part of a post-release
bug. We, therefore, conduct a two part empirical study - (1) qualitatively an-
alyze a statistically rep- resentative sample of 384 files from a population of
almost 250K C programming language files collected from over 11K GitHub
repositories and find that developers use goto in C files for error handling
(80.21±5%) and cleaning up resources at the end of a procedure (40.36±5%);
and (2) quantitatively analyze the commit history from the release branches
of six OSS projects and find that no goto statement was re- moved/modified

109

in the post-release phase of four of the six projects. We conclude that devel-
opers limit themselves to using goto appropriately in most cases, and not in
an unrestricted manner like Dijkstra feared, thus suggesting that goto does
not appear to be harmful in practice.

[Nakshatri2016] Suman Nakshatri, Maithri Hegde, and Sahithi Thandra.
Analysis of exception handling patterns in Java projects. In Proc. Inter-
national Conference on Mining Software Repositories (MSR). ACM, 5 2016,
DOI 10.1145/2901739.2903499.
Abstract: Exception handling is a powerful tool provided by many pro-
gramming languages to help developers deal with unforeseen conditions. Java
is one of the few programming languages to enforce an additional compila-
tion check on certain sub- classes of the Exception class through checked
exceptions. As part of this study, empirical data was extracted from soft-
ware projects developed in Java. The intent is to explore how developers re-
spond to checked exceptions and identify common patterns used by them to
deal with exceptions, checked or otherwise. Bloch’s book “Effective Java” [1]
was used as reference for best practices in exception handling. These recom-
mendations were compared against results from the empirical data. Results
of this study indicate that most programmers ignore checked exceptions and
leave them un- noticed. Additionally, it is observed that classes higher in the
exception class hierarchy are more frequently used as compared to specific
exception subclasses.

[Near2016] Joseph P. Near and Daniel Jackson. Finding security bugs in
web applications using a catalog of access control patterns. In Proc. Inter-
national Conference on Software Engineering (ICSE). ACM, 5 2016, DOI
10.1145/2884781.2884836.
Abstract: We propose a specification-free technique for finding missing se-
curity checks in web applications using a catalog of access control patterns in
which each pattern models a common access control use case. Our implemen-
tation, SPACE, checks that every data exposure allowed by an application’s
code matches an allowed exposure from a security pattern in our catalog.
The only user-provided input is a mapping from application types to the
types of the catalog; the rest of the process is entirely automatic. In an
evaluation on the 50 most watched Ruby on Rails applications on Github,
SPACE reported 33 possible bugs—23 previously unknown security bugs,
and 10 false positives.

[NguyenDuc2021] Anh Nguyen-Duc, Kai-Kristian Kemell, and Pekka Abra-
hamsson. The entrepreneurial logic of startup software development: A
study of 40 software startups. Empirical Software Engineering, 26(5), 7
2021, DOI 10.1007/s10664-021-09987-z.
Abstract: Context: Software startups are an essential source of innovation
and software-intensive products. The need to understand product develop-
ment in startups and to provide relevant support are highlighted in software
research. While state-of-the-art literature reveals how startups develop their

110

software, the reasons why they adopt these activities are underexplored. Ob-
jective: This study investigates the tactics behind software engineering (SE)
activities by analyzing key engineering events during startup journeys. We
explore how entrepreneurial mindsets may be associated with SE knowledge
areas and with each startup case. Method: Our theoretical foundation is
based on causation and effectuation models. We conducted semi-structured
interviews with 40 software startups. We used two-round open coding and
thematic analysis to describe and identify entrepreneurial software develop-
ment patterns. Additionally, we calculated an effectuation index for each
startup case. Results: We identified 621 events merged into 32 codes of en-
trepreneurial logic in SE from the sample. We found a systemic occurrence
of the logic in all areas of SE activities. Minimum Viable Product (MVP),
Technical Debt (TD), and Customer Involvement (CI) tend to be associated
with effectual logic, while testing activities at different levels are associated
with causal logic. The effectuation index revealed that startups are either
effectuation-driven or mixed-logics-driven. Conclusions: Software startups
fall into two types that differentiate between how traditional SE approaches
may apply to them. Effectuation seems the most relevant and essential model
for explaining and developing suitable SE practices for software startups.

[Nielebock2018] Sebastian Nielebock, Dariusz Krolikowski, Jacob Krüger,
Thomas Leich, and Frank Ortmeier. Commenting source code: is it worth it
for small programming tasks? Empirical Software Engineering, 24(3):1418–
1457, 11 2018, DOI 10.1007/s10664-018-9664-z.
Abstract: Maintaining a program is a time-consuming and expensive task
in software engineering. Consequently, several approaches have been pro-
posed to improve the comprehensibility of source code. One of such ap-
proaches are comments in the code that enable developers to explain the
program with their own words or predefined tags. Some empirical studies
indicate benefits of comments in certain situations, while others find no
benefits at all. Thus, the real effect of comments on software development
remains uncertain. In this article, we describe an experiment in which 277
participants, mainly professional software developers, performed small pro-
gramming tasks on differently commented code. Based on quantitative and
qualitative feedback, we i) partly replicate previous studies, ii) investigate
performances of differently experienced participants when confronted with
varying types of comments, and iii) discuss the opinions of developers on
comments. Our results indicate that comments seem to be considered more
important in previous studies and by our participants than they are for small
programming tasks. While other mechanisms, such as proper identifiers, are
considered more helpful by our participants, they also emphasize the neces-
sity of comments in certain situations.

[Nussli2012] Marc-Antoine Nüssli and Patrick Jermann. Effects of sharing
text selections on gaze cross-recurrence and interaction quality in a pair
programming task. In Proc. Conference on Computer Supported Coopera-
tive Work (CSCW). ACM Press, 2012, DOI 10.1145/2145204.2145371.

111

Abstract: We present a dual eye-tracking study that demonstrates the ef-
fect of sharing selection among collaborators in a remote pair-programming
scenario. Forty pairs of engineering students completed several program un-
derstanding tasks while their gaze was synchronously recorded. The coupling
of the programmers’ focus of attention was measured by a cross-recurrence
analysis of gaze that captures how much programmers look at the same se-
quence of spots within a short time span. A high level of gaze cross-recurrence
is typical for pairs who actively engage in grounding efforts to build and
maintain shared understanding. As part of their grounding efforts, program-
mers may use text selection to perform collaborative references. Broadcast
selections serve as indexing sites for the selector as they attract non-selector’s
gaze shortly after they become visible. Gaze cross-recurrence is highest when
selectors accompany their selections with speech to produce a multimodal
reference.

[Olejniczak2020] Anthony J. Olejniczak and Molly J. Wilson. Who’s writing
open access (OA) articles? characteristics of OA authors at ph.d.-granting
institutions in the united states. Quantitative Science Studies, 1(4):1429–
1450, 12 2020, DOI 10.1162/qss_a_00091.
Abstract: The open access (OA) publication movement aims to present
research literature to the public at no cost and with no restrictions. While
the democratization of access to scholarly literature is a primary focus of the
movement, it remains unclear whether OA has uniformly democratized the
corpus of freely available research, or whether authors who choose to publish
in OA venues represent a particular subset of scholars—those with access to
resources enabling them to afford article processing charges (APCs). We
investigated the number of OA articles with article processing charges (APC
OA) authored by 182,320 scholars with known demographic and institutional
characteristics at American research universities across 11 broad fields of
study. The results show, in general, that the likelihood for a scholar to author
an APC OA article increases with male gender, employment at a prestigious
institution (AAU member universities), association with a STEM discipline,
greater federal research funding, and more advanced career stage (i.e., higher
professorial rank). Participation in APC OA publishing appears to be skewed
toward scholars with greater access to resources and job security.

[Oliveira2020] Edson Oliveira, Eduardo Fernandes, Igor Steinmacher, Marco
Cristo, Tayana Conte, and Alessandro Garcia. Code and commit
metrics of developer productivity: a study on team leaders percep-
tions. Empirical Software Engineering, 25(4):2519–2549, 4 2020, DOI
10.1007/s10664-020-09820-z.
Abstract: Context Developer productivity is essential to the success of soft-
ware development organizations. Team leaders use developer productivity in-
formation for managing tasks in a software project. Developer productivity
metrics can be computed from software repositories data to support leaders’
decisions. We can classify these metrics in code-based metrics, which rely
on the amount of produced code, and commit-based metrics, which rely on

112

commit activity. Although metrics can assist a leader, organizations usually
neglect their usage and end up sticking to the leaders’ subjective perceptions
only. Objective We aim to understand whether productivity metrics can com-
plement the leaders’ perceptions. We also aim to capture leaders’ impressions
about relevance and adoption of productivity metrics in practice. Method
This paper presents a multi-case empirical study performed in two organi-
zations active for more than 18 years. Eight leaders of nine projects have
ranked the developers of their teams by productivity. We quantitatively as-
sessed the correlation of leaders’ rankings versus metric-based rankings. As
a complement, we interviewed leaders for qualitatively understanding the
leaders’ impressions about relevance and adoption of productivity metrics
given the computed correlations. Results Our quantitative data suggest a
greater correlation of the leaders’ perceptions with code-based metrics when
compared to commit-based metrics. Our qualitative data reveal that leaders
have positive impressions of code-based metrics and potentially would adopt
them. Conclusions Data triangulation of productivity metrics and leaders’
perceptions can strengthen the organization conviction about productive de-
velopers and can reveal productive developers not yet perceived by team
leaders and probably underestimated in the organization.

[Olsson2021] Jesper Olsson, Erik Risfelt, Terese Besker, Antonio Martini, and
Richard Torkar. Measuring affective states from technical debt. Empirical
Software Engineering, 26(5), 7 2021, DOI 10.1007/s10664-021-09998-w.
Abstract: Context: Software engineering is a human activity. Despite this,
human aspects are under-represented in technical debt research, perhaps
because they are challenging to evaluate. Objective: This study’s objective
was to investigate the relationship between technical debt and affective states
(feelings, emotions, and moods) from software practitioners. Method: Forty
participants (N=40) from twelve companies took part in a mixed-methods
approach, consisting of a repeated-measures (r=5) experiment (n=200), a
survey, and semi-structured interviews. From the qualitative data, it is clear
that technical debt activates a substantial portion of the emotional spectrum
and is psychologically taxing. Further, the practitioners’ reactions to techni-
cal debt appear to fall in different levels of maturity. Results: The statistical
analysis shows that different design smells (strong indicators of technical
debt) negatively or positively impact affective states. Conclusions: We ar-
gue that human aspects in technical debt are important factors to consider,
as they may result in, e.g., procrastination, apprehension, and burnout.

[Overney2020] Cassandra Overney, Jens Meinicke, Christian Kästner, and
Bogdan Vasilescu. How to not get rich: an empirical study of donations
in open source. In Proc. International Conference on Software Engineering
(ICSE). ACM, 6 2020, DOI 10.1145/3377811.3380410.
Abstract: Open source is ubiquitous and many projects act as critical in-
frastructure, yet funding and sustaining the whole ecosystem is challenging.
While there are many different funding models for open source and con-
certed efforts through foundations, donation platforms like PayPal, Patreon,

113

and OpenCollective are popular and low-bar platforms to raise funds for
open-source development. With a mixed-method study, we investigate the
emerging and largely unexplored phenomenon of donations in open source.
Specifically, we quantify how commonly open-source projects ask for dona-
tions, statistically model characteristics of projects that ask for and receive
donations, analyze for what the requested funds are needed and used, and
assess whether the received donations achieve the intended outcomes. We
find 25,885 projects asking for donations on GitHub, often to support en-
gineering activities; however, we also find no clear evidence that donations
influence the activity level of a project. In fact, we find that donations are
used in a multitude of ways, raising new research questions about effective
funding.

[Palomba2021] Fabio Palomba, Damian Andrew Tamburri, Francesca Arcelli
Fontana, Rocco Oliveto, Andy Zaidman, and Alexander Serebrenik. Beyond
technical aspects: How do community smells influence the intensity of code
smells? IEEE Transactions on Software Engineering, 47(1):108–129, 1 2021,
DOI 10.1109/tse.2018.2883603.
Abstract: Code smells are poor implementation choices applied by devel-
opers during software evolution that often lead to critical flaws or failure.
Much in the same way, community smells reflect the presence of organi-
zational and socio-technical issues within a software community that may
lead to additional project costs. Recent empirical studies provide evidence
that community smells are often—if not always—connected to circumstances
such as code smells. In this paper we look deeper into this connection by con-
ducting a mixed-methods empirical study of 117 releases from 9 open-source
systems. The qualitative and quantitative sides of our mixed-methods study
were run in parallel and assume a mutually-confirmative connotation. On
the one hand, we survey 162 developers of the 9 considered systems to inves-
tigate whether developers perceive relationship between community smells
and the code smells found in those projects. On the other hand, we perform
a fine-grained analysis into the 117 releases of our dataset to measure the
extent to which community smells impact code smell intensity (i.e., critical-
ity). We then propose a code smell intensity prediction model that relies on
both technical and community-related aspects. The results of both sides of
our mixed-methods study lead to one conclusion: community-related factors
contribute to the intensity of code smells. This conclusion supports the joint
use of community and code smells detection as a mechanism for the joint
management of technical and social problems around software development
communities.

[Paltoglou2021] Katerina Paltoglou, Vassilis E. Zafeiris, N.A. Diamantidis,
and E.A. Giakoumakis. Automated refactoring of legacy JavaScript code to
ES6 modules. Journal of Systems and Software, 181:111049, 11 2021, DOI
10.1016/j.jss.2021.111049.
Abstract: The JavaScript language did not specify, until ECMAScript 6

114

(ES6), native features for streamlining encapsulation and modularity. De-
veloper community filled the gap with a proliferation of design patterns and
module formats, with impact on code reusability, portability and complexity
of build configurations. This work studies the automated refactoring of legacy
ES5 code to ES6 modules with fine-grained reuse of module contents through
the named import/export language constructs. The focus is on reducing the
coupling of refactored modules through destructuring exported module ob-
jects to fine-grained module features and enhancing module dependencies by
leveraging the ES6 syntax. We employ static analysis to construct a model of
a JavaScript project, the Module Dependence Graph (MDG), that represents
modules and their dependencies. On the basis of MDG we specify the refac-
toring procedure for module migration to ES6. A prototype implementation
has been empirically evaluated on 19 open source projects. Results high-
light the relevance of the refactoring with a developer intent for fine-grained
reuse. The analysis of refactored code shows an increase in the number of
reusable elements per project and reduction in the coupling of refactored
modules. The soundness of the refactoring is empirically validated through
code inspection and execution of projects’ test suites.

[Pan2008] Kai Pan, Sunghun Kim, and E. James Whitehead. Toward an un-
derstanding of bug fix patterns. Empirical Software Engineering, 14(3):286–
315, 8 2008, DOI 10.1007/s10664-008-9077-5.
Abstract: Twenty-seven automatically extractable bug fix patterns are de-
fined using the syntax components and context of the source code involved
in bug fix changes. Bug fix patterns are extracted from the configuration
management repositories of seven open source projects, all written in Java
(Eclipse, Columba, JEdit, Scarab, ArgoUML, Lucene, and MegaMek). De-
fined bug fix patterns cover 45.7% to 63.3% of the total bug fix hunk pairs in
these projects. The frequency of occurrence of each bug fix pattern is com-
puted across all projects. The most common individual patterns are MC-
DAP (method call with different actual parameter values) at 14.9–25.5%,
IF-CC (change in if conditional) at 5.6–18.6%, and AS-CE (change of as-
signment expression) at 6.0–14.2%. A correlation analysis on the extracted
pattern instances on the seven projects shows that six have very similar bug
fix pattern frequencies. Analysis of if conditional bug fix sub-patterns shows
a trend towards increasing conditional complexity in if conditional fixes.
Analysis of five developers in the Eclipse projects shows overall consistency
with project-level bug fix pattern frequencies, as well as distinct variations
among developers in their rates of producing various bug patterns. Overall,
data in the paper suggest that developers have difficulty with specific code
situations at surprisingly consistent rates. There appear to be broad mecha-
nisms causing the injection of bugs that are largely independent of the type
of software being produced.

[Pankratius2012] Victor Pankratius, Felix Schmidt, and Gilda Garreton.
Combining functional and imperative programming for multicore soft-
ware: an empirical study evaluating Scala and Java. In Proc. Interna-

115

tional Conference on Software Engineering (ICSE). IEEE, 6 2012, DOI
10.1109/icse.2012.6227200.
Abstract: Recent multi-paradigm programming languages combine func-
tional and imperative programming styles to make software development
easier. Given today’s proliferation of multicore processors, parallel program-
mers are supposed to benefit from this combination, as many difficult prob-
lems can be expressed more easily in a functional style while others match an
imperative style. Due to a lack of empirical evidence from controlled studies,
however, important software engineering questions are largely unanswered.
Our paper is the first to provide thorough empirical results by using Scala
and Java as a vehicle in a controlled comparative study on multicore soft-
ware development. Scala combines functional and imperative programming
while Java focuses on imperative shared-memory programming. We study
thirteen programmers who worked on three projects, including an industrial
application, in both Scala and Java. In addition to the resulting 39 Scala
programs and 39 Java programs, we obtain data from an industry software
engineer who worked on the same project in Scala. We analyze key issues
such as effort, code, language usage, performance, and programmer satisfac-
tion. Contrary to popular belief, the functional style does not lead to bad
performance. Average Scala run-times are comparable to Java, lowest run-
times are sometimes better, but Java scales better on parallel hardware. We
confirm with statistical significance Scala’s claim that Scala code is more
compact than Java code, but clearly refute other claims of Scala on lower
programming effort and lower debugging effort. Our study also provides ex-
planations for these observations and shows directions on how to improve
multi-paradigm languages in the future.

[Parnin2012] Chris Parnin and Spencer Rugaber. Programmer information
needs after memory failure. In Proc. International Conference on Program
Comprehension (ICPC). IEEE, 6 2012, DOI 10.1109/icpc.2012.6240479.
Abstract: Despite its vast capacity and associative powers, the human
brain does not deal well with interruptions. Particularly in situations where
information density is high, such as during a programming task, recovering
from an interruption requires extensive time and effort. Although modern
program development environments have begun to recognize this problem,
none of these tools take into account the brain’s structure and limitations.
In this paper, we present a conceptual framework for understanding the
strengths and weaknesses of human memory, particularly with respect to it
ability to deal with work interruptions. The framework explains empirical
results obtained from experiments in which programmers were interrupted
while working. Based on the framework, we discuss programmer information
needs that development tools must satisfy and suggest several memory aids
such tools could provide. We also describe our prototype implementation of
these memory aids.

[Passos2021] Leonardo Passos, Rodrigo Queiroz, Mukelabai Mukelabai,
Thorsten Berger, Sven Apel, Krzysztof Czarnecki, and Jesus Alejan-

116

dro Padilla. A study of feature scattering in the linux kernel. IEEE
Transactions on Software Engineering, 47(1):146–164, 1 2021, DOI
10.1109/tse.2018.2884911.
Abstract: Feature code is often scattered across a software system. Scat-
tering is not necessarily bad if used with care, as witnessed by systems with
highly scattered features that evolved successfully. Feature scattering, of-
ten realized with a pre-processor, circumvents limitations of programming
languages and software architectures. Unfortunately, little is known about
the principles governing scattering in large and long-living software systems.
We present a longitudinal study of feature scattering in the Linux kernel,
complemented by a survey with 74, and interviews with nine Linux kernel de-
velopers. We analyzed almost eight years of the kernel’s history, focusing on
its largest subsystem: device drivers. We learned that the ratio of scattered
features remained nearly constant and that most features were introduced
without scattering. Yet, scattering easily crosses subsystem boundaries, and
highly scattered outliers exist. Scattering often addresses a performance-
maintenance tradeoff (alleviating complicated APIs), hardware design lim-
itations, and avoids code duplication. While developers do not consciously
enforce scattering limits, they actually improve the system design and refac-
tor code, thereby mitigating pre-processor idiosyncrasies or reducing its use.

[Patitsas2016] Elizabeth Patitsas, Jesse Berlin, Michelle Craig, and Steve
Easterbrook. Evidence that computer science grades are not bimodal. In
Proc. Conference on International Computing Education Research (ICER).
ACM, 8 2016, DOI 10.1145/2960310.2960312.
Abstract: It is commonly thought that CS grades are bimodal. We statis-
tically analyzed 778 distributions of final course grades from a large research
university, and found only 5.8% of the distributions passed tests of multi-
modality. We then devised a psychology experiment to understand why CS
educators believe their grades to be bimodal. We showed 53 CS professors a
series of histograms displaying ambiguous distributions and asked them to
categorize the distributions. A random half of participants were primed to
think about the fact that CS grades are commonly thought to be bimodal;
these participants were more likely to label ambiguous distributions as “bi-
modal”. Participants were also more likely to label distributions as bimodal
if they believed that some students are innately predisposed to do better at
CS. These results suggest that bimodal grades are instructional folklore in
CS, caused by confirmation bias and instructor beliefs about their students.

[Patra2021] Jibesh Patra and Michael Pradel. Semantic bug seeding:
a learning-based approach for creating realistic bugs. In Proc. Euro-
pean Software Engineering Conference/International Symposium on the
Foundations of Software Engineering (ESEC/FSE). ACM, 8 2021, DOI
10.1145/3468264.3468623.
Abstract: When working on techniques to address the wide-spread prob-
lem of software bugs, one often faces the need for a large number of realistic

117

bugs in real-world programs. Such bugs can either help evaluate an ap-
proach, e.g., in form of a bug benchmark or a suite of program mutations, or
even help build the technique, e.g., in learning-based bug detection. Because
gathering a large number of real bugs is difficult, a common approach is to
rely on automatically seeded bugs. Prior work seeds bugs based on syntactic
transformation patterns, which often results in unrealistic bugs and typically
cannot introduce new, application-specific code tokens. This paper presents
SemSeed, a technique for automatically seeding bugs in a semantics-aware
way. The key idea is to imitate how a given real-world bug would look like in
other programs by semantically adapting the bug pattern to the local con-
text. To reason about the semantics of pieces of code, our approach builds
on learned token embeddings that encode the semantic similarities of identi-
fiers and literals. Our evaluation with real-world JavaScript software shows
that the approach effectively reproduces real bugs and clearly outperforms
a semantics-unaware approach. The seeded bugs are useful as training data
for learning-based bug detection, where they significantly improve the bug
detection ability. Moreover, we show that SemSeed-created bugs comple-
ment existing mutation testing operators, and that our approach is efficient
enough to seed hundreds of thousands of bugs within an hour.

[Peitek2021] Norman Peitek, Sven Apel, Chris Parnin, Andre Brechmann,
and Janet Siegmund. Program comprehension and code complexity metrics:
An fMRI study. In Proc. International Conference on Software Engineering
(ICSE). IEEE, 5 2021, DOI 10.1109/icse43902.2021.00056.
Abstract: Background: Researchers and practitioners have been using code
complexity metrics for decades to predict how developers comprehend a pro-
gram. While it is plausible and tempting to use code metrics for this purpose,
their validity is debated, since they rely on simple code properties and rarely
consider particularities of human cognition. Aims: We investigate whether
and how code complexity metrics reflect difficulty of program comprehen-
sion. Method: We have conducted a functional magnetic resonance imaging
(fMRI) study with 19 participants observing program comprehension of short
code snippets at varying complexity levels. We dissected four classes of code
complexity metrics and their relationship to neuronal, behavioral, and sub-
jective correlates of program comprehension, overall analyzing more than
41 metrics. Results: While our data corroborate that complexity metrics
can-to a limited degree-explain programmers’ cognition in program compre-
hension, fMRI allowed us to gain insights into why some code properties are
difficult to process. In particular, a code’s textual size drives programmers’
attention, and vocabulary size burdens programmers’ working memory. Con-
clusion: Our results provide neuro-scientific evidence supporting warnings of
prior research questioning the validity of code complexity metrics and pin
down factors relevant to program comprehension. Future Work: We out-
line several follow-up experiments investigating fine-grained effects of code
complexity and describe possible refinements to code complexity metrics.

[Peng2021] Yun Peng, Yu Zhang, and Mingzhe Hu. An empirical study for

118

common language features used in Python projects. In Proc. International
Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 3 2021, DOI 10.1109/saner50967.2021.00012.
Abstract: As a dynamic programming language, Python is widely used in
many fields. For developers, various language features affect programming
experience. For researchers, they affect the difficulty of developing tasks such
as bug finding and compilation optimization. Former research has shown that
programs with Python dynamic features are more change-prone. However,
we know little about the use and impact of Python language features in
real-world Python projects. To resolve these issues, we systematically ana-
lyze Python language features and propose a tool named PYSCAN to auto-
matically identify the use of 22 kinds of common Python language features
in 6 categories in Python source code. We conduct an empirical study on
35 popular Python projects from eight application domains, covering over
4.3 million lines of code, to investigate the the usage of these language fea-
tures in the project. We find that single inheritance, decorator, keyword
argument, for loops and nested classes are top 5 used language features.
Meanwhile different domains of projects may prefer some certain language
features. For example, projects in DevOps use exception handling frequently.
We also conduct in-depth manual analysis to dig extensive using patterns
of frequently but differently used language features: exceptions, decorators
and nested classes/functions. We find that developers care most about Im-
portError when handling exceptions. With the empirical results and in-depth
analysis, we conclude with some suggestions and a discussion of implications
for three groups of persons in Python community: Python designers, Python
compiler designers and Python developers.

[PerezDeRosso2013] Santiago Perez De Rosso and Daniel Jackson. What's
wrong with Git? In Proc. Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (ONWARD). ACM Press, 2013,
DOI 10.1145/2509578.2509584.
Abstract: It is commonly asserted that the success of a software develop-
ment project, and the usability of the final product, depend on the quality of
the concepts that underlie its design. Yet this hypothesis has not been sys-
tematically explored by researchers, and conceptual design has not played
the central role in the research and teaching of software engineering that
one might expect. As part of a new research project to explore conceptual
design, we are engaging in a series of case studies. This paper reports on the
early stages of our first study, on the Git version control system. Despite
its widespread adoption, Git puzzles even experienced developers and is not
regarded as easy to use. In an attempt to understand the root causes of its
complexity, we analyze its conceptual model and identify some undesirable
properties; we then propose a reworking of the conceptual model that forms
the basis of (the first version of) Gitless, an ongoing effort to redesign Git
and experiment with the effects of conceptual simplifications.

[PerezDeRosso2016] Santiago Perez De Rosso and Daniel Jackson. Purposes,

119

concepts, misfits, and a redesign of Git. In Proc. International Conference on
Object-Oriented Programming Systems Languages and Applications (OOP-
SLA). ACM, 10 2016, DOI 10.1145/2983990.2984018.
Abstract: Git is a widely used version control system that is powerful but
complicated. Its complexity may not be an inevitable consequence of its
power but rather evidence of flaws in its design. To explore this hypothesis,
we analyzed the design of Git using a theory that identifies concepts, pur-
poses, and misfits. Some well-known difficulties with Git are described, and
explained as misfits in which underlying concepts fail to meet their intended
purpose. Based on this analysis, we designed a reworking of Git (called Git-
less) that attempts to remedy these flaws. To correlate misfits with issues
reported by users, we conducted a study of Stack Overflow questions. And
to determine whether users experienced fewer complications using Gitless in
place of Git, we conducted a small user study. Results suggest our approach
can be profitable in identifying, analyzing, and fixing design problems.

[Petre2013] Marian Petre. UML in practice. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, 5 2013, DOI
10.1109/icse.2013.6606618.
Abstract: UML has been described by some as “the lingua franca of soft-
ware engineering”. Evidence from industry does not necessarily support such
endorsements. How exactly is UML being used in industry—if it is? This
paper presents a corpus of interviews with 50 professional software engineers
in 50 companies and identifies 5 patterns of UML use.

[Philip2012] Kavita Philip, Medha Umarji, Megha Agarwala, Susan Elliott
Sim, Rosalva Gallardo-Valencia, Cristina V. Lopes, and Sukanya Ratano-
tayanon. Software reuse through methodical component reuse and amethod-
ical snippet remixing. In Proc. Conference on Computer Supported Cooper-
ative Work (CSCW). ACM Press, 2012, DOI 10.1145/2145204.2145407.
Abstract: Every method for developing software is a prescriptive model.
Applying a deconstructionist analysis to methods reveals that there are two
texts, or sets of assumptions and ideals: a set that is privileged by the method
and a second set that is left out, or marginalized by the method. We apply
this analytical lens to software reuse, a technique in software development
that seeks to expedite one’s own project by using programming artifacts cre-
ated by others. By analyzing the methods prescribed by Component-Based
Software Engineering (CBSE), we arrive at two texts: Methodical CBSE and
Amethodical Remixing. Empirical data from four studies on code search on
the web draws attention to four key points of tension: status of component
boundaries; provenance of source code; planning and process; and evaluation
criteria for candidate code. We conclude the paper with a discussion of the
implications of this work for the limits of methods, structure of organizations
that reuse software, and the design of search engines for source code.

[Piantadosi2020] Valentina Piantadosi, Fabiana Fierro, Simone Scalabrino,
Alexander Serebrenik, and Rocco Oliveto. How does code readability change

120

during software evolution? Empirical Software Engineering, 25(6):5374–
5412, 9 2020, DOI 10.1007/s10664-020-09886-9.
Abstract: Code reading is one of the most frequent activities in software
maintenance. Such an activity aims at acquiring information from the code
and, thus, it is a prerequisite for program comprehension: developers need to
read the source code they are going to modify before implementing changes.
As the code changes, so does its readability; however, it is not clear yet
how code readability changes during software evolution. To understand how
code readability changes when software evolves, we studied the history of
25 open source systems. We modeled code readability evolution by defining
four states in which a file can be at a certain point of time (non-existing,
other-name, readable, and unreadable). We used the data gathered to infer
the probability of transitioning from one state to another one. In addition,
we also manually checked a significant sample of transitions to compute the
performance of the state-of-the-art readability prediction model we used to
calculate the transition probabilities. With this manual analysis, we found
that the tool correctly classifies all the transitions in the majority of the cases,
even if there is a loss of accuracy compared to the single-version readability
estimation. Our results show that most of the source code files are created
readable. Moreover, we observed that only a minority of the commits change
the readability state. Finally, we manually carried out qualitative analysis to
understand what makes code unreadable and what developers do to prevent
this. Using our results we propose some guidelines (i) to reduce the risk of
code readability erosion and (ii) to promote best practices that make code
readable.

[Pietri2019] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. The
software heritage graph dataset: public software development under one roof.
In Proc. International Conference on Mining Software Repositories (MSR).
IEEE, 5 2019, DOI 10.1109/msr.2019.00030.
Abstract: Software Heritage is the largest existing public archive of soft-
ware source code and accompanying development history: it currently spans
more than five billion unique source code files and one billion unique com-
mits, coming from more than 80 million software projects. This paper in-
troduces the Software Heritage graph dataset: a fully-deduplicated Merkle
DAG representation of the Software Heritage archive. The dataset links to-
gether file content identifiers, source code directories, Version Control System
(VCS) commits tracking evolution over time, up to the full states of VCS
repositories as observed by Software Heritage during periodic crawls. The
dataset’s contents come from major development forges (including GitHub
and GitLab), FOSS distributions (e.g., Debian), and language-specific pack-
age managers (e.g., PyPI). Crawling information is also included, providing
timestamps about when and where all archived source code artifacts have
been observed in the wild. The Software Heritage graph dataset is available in
multiple formats, including downloadable CSV dumps and Apache Parquet
files for local use, as well as a public instance on Amazon Athena interactive

121

query service for ready-to-use powerful analytical processing. Source code
file contents are cross-referenced at the graph leaves, and can be retrieved
through individual requests using the Software Heritage archive API.

[Pizard2021] Sebastián Pizard, Fernando Acerenza, Ximena Otegui, Silvana
Moreno, Diego Vallespir, and Barbara Kitchenham. Training students in
evidence-based software engineering and systematic reviews: a systematic
review and empirical study. Empirical Software Engineering, 26(3), 3 2021,
DOI 10.1007/s10664-021-09953-9.
Abstract: Context Although influential in academia, evidence-based soft-
ware engineering (EBSE) has had little impact on industry practice. We
found that other disciplines have identified lack of training as a significant
barrier to Evidence-Based Practice. Objective To build and assess an EBSE
training proposal suitable for students with more than 3 years of computer
science/software engineering university-level training. Method We performed
a systematic literature review (SLR) of EBSE teaching initiatives and used
the SLR results to help us to develop and evaluate an EBSE training pro-
posal. The course was based on the theory of learning outcomes and incor-
porated a large practical content related to performing an SLR. We ran the
course with 10 students and based course evaluation on student performance
and opinions of both students and teachers. We assessed knowledge of EBSE
principles from the mid-term and final tests, as well as evaluating the SLRs
produced by the student teams. We solicited student opinions about the
course and its value via a student survey, a team survey, and a focus group.
The teachers’ viewpoint was collected in a debriefing meeting. Results Our
SLR identified 14 relevant primary studies. The primary studies emphasized
the importance of practical examples (usually based on the SLR process)
and used a variety of evaluation methods, but lacked any formal education
methodology. We identified 54 learning outcomes covering aspects of EBSE
and the SLR method. All 10 students passed the course. Our course evalu-
ation showed that a large percentage of the learning outcomes established
for training were accomplished. Conclusions The course proved suitable for
students to understand the EBSE paradigm and to be able to apply it to a
limited-scope practical assignment. Our learning outcomes, course structure,
and course evaluation process should help to improve the effectiveness and
comparability of future studies of EBSE training. However, future courses
should increase EBSE training related to the use of SLR results.

[Porter2013] Leo Porter, Cynthia Bailey Lee, and Beth Simon. Halv-
ing fail rates using peer instruction. In Proc. Technical Symposium
on Computer Science Education (SIGCSE). ACM Press, 2013, DOI
10.1145/2445196.2445250.
Abstract: Peer Instruction (PI) is a teaching method that supports
student-centric classrooms, where students construct their own understand-
ing through a structured approach featuring questions with peer discussions.
PI has been shown to increase learning in STEM disciplines such as physics
and biology. In this report we look at another indicator of student success

122

the rate at which students pass the course or, conversely, the rate at which
they fail. Evaluating 10 years of instruction of 4 different courses spanning
16 PI course instances, we find that adoption of the PI methodology in the
classroom reduces fail rates by a per-course average of 61% (20% reduced to
7%) compared to standard instruction (SI). Moreover, we also find statis-
tically significant improvements within-instructor. For the same instructor
teaching the same course, we find PI decreases the fail rate, on average,
by 67% (from 23% to 8%) compared to SI. As an in-situ study, we discuss
the various threats to the validity of this work and consider implications of
wide-spread adoption of PI in computing programs.

[Posnett2011] Daryl Posnett, Abram Hindle, and Premkumar Devanbu. Got
issues? do new features and code improvements affect defects? In Proc.
Working Conference on Reverse Engineering (WCRE). IEEE, 10 2011, DOI
10.1109/wcre.2011.33.
Abstract: There is a perception that when new features are added to a
system that those added and modified parts of the source-code are more
fault prone. Many have argued that new code and new features are defect
prone due to immaturity, lack of testing, as well unstable requirements.
Unfortunately most previous work does not investigate the link between a
concrete requirement or new feature and the defects it causes, in particular
the feature, the changed code and the subsequent defects are rarely investi-
gated. In this paper we investigate the relationship between improvements,
new features and defects recorded within an issue tracker. A manual case
study is performed to validate the accuracy of these issue types. We com-
bine defect issues and new feature issues with the code from version-control
systems that introduces these features, we then explore the relationship of
new features with the fault-proneness of their implementations. We describe
properties and produce models of the relationship between new features and
fault proneness, based on the analysis of issue trackers and version-control
systems. We find, surprisingly, that neither improvements nor new features
have any significant effect on later defect counts, when controlling for size
and total number of changes.

[Prabhu2011] Prakash Prabhu, Yun Zhang, Soumyadeep Ghosh, David I. Au-
gust, Jialu Huang, Stephen Beard, Hanjun Kim, Taewook Oh, Thomas B.
Jablin, Nick P. Johnson, Matthew Zoufaly, Arun Raman, Feng Liu, and
David Walker. A survey of the practice of computational science. In Proc.
Supercomputing. ACM Press, 2011, DOI 10.1145/2063348.2063374.
Abstract: Computing plays an indispensable role in scientific research.
Presently, researchers in science have different problems, needs, and beliefs
about computation than professional programmers. In order to accelerate
the progress of science, computer scientists must understand these problems,
needs, and beliefs. To this end, this paper presents a survey of scientists from
diverse disciplines, practicing computational science at a doctoral-granting
university with very high re search activity. The survey covers many things,

123

among them, prevalent programming practices within this scientific commu-
nity, the importance of computational power in different fields, use of tools
to enhance performance and soft ware productivity, computational resources
leveraged, and prevalence of parallel computation. The results reveal several
patterns that suggest interesting avenues to bridge the gap between scientific
researchers and programming tools developers.

[Prana2018] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung,
Thushari Atapattu, and David Lo. Categorizing the content of GitHub
README files. Empirical Software Engineering, 24(3):1296–1327, 10 2018,
DOI 10.1007/s10664-018-9660-3.
Abstract: README files play an essential role in shaping a developer’s
first impression of a software repository and in documenting the software
project that the repository hosts. Yet, we lack a systematic understanding
of the content of a typical README file as well as tools that can process
these files automatically. To close this gap, we conduct a qualitative study
involving the manual annotation of 4,226 README file sections from 393
randomly sampled GitHub repositories and we design and evaluate a clas-
sifier and a set of features that can categorize these sections automatically.
We find that information discussing the ’What’ and ’How’ of a repository
is very common, while many README files lack information regarding the
purpose and status of a repository. Our multi-label classifier which can pre-
dict eight different categories achieves an F1 score of 0.746. To evaluate
the usefulness of the classification, we used the automatically determined
classes to label sections in GitHub README files using badges and showed
files with and without these badges to twenty software professionals. The
majority of participants perceived the automated labeling of sections based
on our classifier to ease information discovery. This work enables the owners
of software repositories to improve the quality of their documentation and it
has the potential to make it easier for the software development community
to discover relevant information in GitHub README files.

[Pritchard2015] David Pritchard. Frequency distribution of error messages.
In Proc. Workshop on Evaluation and Usability of Programming Languages
and Tools (PLATEAU). ACM, 10 2015, DOI 10.1145/2846680.2846681.
Abstract: Which programming error messages are the most common? We
investigate this question, motivated by writing error explanations for novices.
We consider large data sets in Python and Java that include both syntax and
run-time errors. In both data sets, after grouping essentially identical mes-
sages, the error message frequencies empirically resemble Zipf-Mandelbrot
distributions. We use a maximum-likelihood approach to fit the distribution
parameters. This gives one possible way to contrast languages or compilers
quantitatively.

[Qiu2019] Huilian Sophie Qiu, Alexander Nolte, Anita Brown, Alexander Sere-
brenik, and Bogdan Vasilescu. Going farther together: The impact of
social capital on sustained participation in open source. In Proc. Inter-

124

national Conference on Software Engineering (ICSE). IEEE, 5 2019, DOI
10.1109/icse.2019.00078.
Abstract: Sustained participation by contributors in opensource software
is critical to the survival of open-source projects and can provide career ad-
vancement benefits to individual contributors. However, not all contributors
reap the benefits of open-source participation fully, with prior work showing
that women are particularly underrepresented and at higher risk of disen-
gagement. While many barriers to participation in open-source have been
documented in the literature, relatively little is known about how the social
networks that open-source contributors form impact their chances of long-
term engagement. In this paper we report on a mixed-methods empirical
study of the role of social capital (i.e., the resources people can gain from
their social connections) for sustained participation by women and men in
open-source GitHub projects. After combining survival analysis on a large,
longitudinal data set with insights derived from a user survey, we confirm
that while social capital is beneficial for prolonged engagement for both gen-
ders, women are at disadvantage in teams lacking diversity in expertise.

[Racheva2010] Zornitza Racheva, Maya Daneva, Klaas Sikkel, Andrea Her-
rmann, and Roel Wieringa. Do we know enough about requirements pri-
oritization in agile projects: insights from a case study. In Proc. Inter-
national Requirements Engineering Conference (RE). IEEE, 9 2010, DOI
10.1109/re.2010.27.
Abstract: Requirements prioritization is an essential mechanism of agile
software development approaches. It maximizes the value delivered to the
clients and accommodates changing requirements. This paper presents re-
sults of an exploratory cross-case study on agile prioritization and business
value delivery processes in eight software organizations. We found that some
explicit and fundamental assumptions of agile requirement prioritization ap-
proaches, as described in the agile literature on best practices, do not hold
in all agile project contexts in our study. These are (i) the driving role of the
client in the value creation process, (ii) the prevailing position of business
value as a main prioritization criterion, (iii) the role of the prioritization
process for project goal achievement. This implies that these assumptions
have to be reframed and that the approaches to requirements prioritization
for value creation need to be extended.

[Ragkhitwetsagul2021] Chaiyong Ragkhitwetsagul, Jens Krinke, Matheus
Paixao, Giuseppe Bianco, and Rocco Oliveto. Toxic code snippets on Stack
Overflow. IEEE Transactions on Software Engineering, 47(3):560–581, 3
2021, DOI 10.1109/tse.2019.2900307.
Abstract: Online code clones are code fragments that are copied from soft-
ware projects or online sources to Stack Overflow as examples. Due to an
absence of a checking mechanism after the code has been copied to Stack
Overflow, they can become toxic code snippets, e.g., they suffer from be-
ing outdated or violating the original software license. We present a study
of online code clones on Stack Overflow and their toxicity by incorporating

125

two developer surveys and a large-scale code clone detection. A survey of 201
high-reputation Stack Overflow answerers (33 percent response rate) showed
that 131 participants (65 percent) have ever been notified of outdated code
and 26 of them (20 percent) rarely or never fix the code. 138 answerers (69
percent) never check for licensing conflicts between their copied code snip-
pets and Stack Overflow’s CC BY-SA 3.0. A survey of 87 Stack Overflow
visitors shows that they experienced several issues from Stack Overflow an-
swers: mismatched solutions, outdated solutions, incorrect solutions, and
buggy code. 85 percent of them are not aware of CC BY-SA 3.0 license en-
forced by Stack Overflow, and 66 percent never check for license conflicts
when reusing code snippets. Our clone detection found online clone pairs
between 72,365 Java code snippets on Stack Overflow and 111 open source
projects in the curated Qualitas corpus. We analysed 2,289 non-trivial online
clone candidates. Our investigation revealed strong evidence that 153 clones
have been copied from a Qualitas project to Stack Overflow. We found 100
of them (66 percent) to be outdated, of which 10 were buggy and harmful
for reuse. Furthermore, we found 214 code snippets that could potentially
violate the license of their original software and appear 7,112 times in 2,427
GitHub projects.

[Rahman2011] Foyzur Rahman and Premkumar Devanbu. Ownership, ex-
perience and defects: a fine-grained study of authorship. In Proc. Inter-
national Conference on Software Engineering (ICSE). ACM, 5 2011, DOI
10.1145/1985793.1985860.
Abstract: Recent research indicates that “people” factors such as owner-
ship, experience, organizational structure, and geographic distribution have
a big impact on software quality. Understanding these factors, and properly
deploying people resources can help managers improve quality outcomes.
This paper considers the impact of code ownership and developer experi-
ence on software quality. In a large project, a file might be entirely owned by
a single developer, or worked on by many. Some previous research indicates
that more developers working on a file might lead to more defects. Prior re-
search considered this phenomenon at the level of modules or files, and thus
does not tease apart and study the effect of contributions of different devel-
opers to each module or file. We exploit a modern version control system to
examine this issue at a fine-grained level. Using version history, we examine
contributions to code fragments that are actually repaired to fix bugs. Are
these code fragments “implicated” in bugs the result of contributions from
many? or from one? Does experience matter? What type of experience?
We find that implicated code is more strongly associated with a single de-
veloper’s contribution; our findings also indicate that an author’s specialized
experience in the target file is more important than general experience. Our
findings suggest that quality control efforts could be profitably targeted at
changes made by single developers with limited prior experience on that file.

[Rahman2013] Foyzur Rahman and Premkumar Devanbu. How, and why,
process metrics are better. In Proc. International Conference on Software

126

Engineering (ICSE). IEEE, 5 2013, DOI 10.1109/icse.2013.6606589.
Abstract: Defect prediction techniques could potentially help us to focus
quality-assurance efforts on the most defect-prone files. Modern statistical
tools make it very easy to quickly build and deploy prediction models. Soft-
ware metrics are at the heart of prediction models; understanding how and
especially why different types of metrics are effective is very important for
successful model deployment. In this paper we analyze the applicability and
efficacy of process and code metrics from several different perspectives. We
build many prediction models across 85 releases of 12 large open source
projects to address the performance, stability, portability and stasis of differ-
ent sets of metrics. Our results suggest that code metrics, despite widespread
use in the defect prediction literature, are generally less useful than process
metrics for prediction. Second, we find that code metrics have high stasis;
they don’t change very much from release to release. This leads to stagnation
in the prediction models, leading to the same files being repeatedly predicted
as defective; unfortunately, these recurringly defective files turn out to be
comparatively less defect-dense.

[Rahman2020a] Akond Rahman, Effat Farhana, Chris Parnin, and Laurie
Williams. Gang of eight: a defect taxonomy for infrastructure as code scripts.
In Proc. International Conference on Software Engineering (ICSE). ACM,
6 2020, DOI 10.1145/3377811.3380409.
Abstract: Defects in infrastructure as code (IaC) scripts can have serious
consequences, for example, creating large-scale system outages. A taxonomy
of IaC defects can be useful for understanding the nature of defects, and
identifying activities needed to fix and prevent defects in IaC scripts. The
goal of this paper is to help practitioners improve the quality of infrastruc-
ture as code (IaC) scripts by developing a defect taxonomy for IaC scripts
through qualitative analysis. We develop a taxonomy of IaC defects by ap-
plying qualitative analysis on 1,448 defect-related commits collected from
open source software (OSS) repositories of the Openstack organization. We
conduct a survey with 66 practitioners to assess if they agree with the iden-
tified defect categories included in our taxonomy. We quantify the frequency
of identified defect categories by analyzing 80,425 commits collected from
291 OSS repositories spanning across 2005 to 2019. Our defect taxonomy for
IaC consists of eight categories, including a category specific to IaC called
idempotency (i.e., defects that lead to incorrect system provisioning when
the same IaC script is executed multiple times). We observe the surveyed
66 practitioners to agree most with idempotency. The most frequent defect
category is configuration data i.e., providing erroneous configuration data
in IaC scripts. Our taxonomy and the quantified frequency of the defect
categories may help in advancing the science of IaC script quality.

[Rahman2020b] Mohammad Masudur Rahman, Foutse Khomh, and Marco
Castelluccio. Why are some bugs non-reproducible? an empirical in-
vestigation using data fusion. In Proc. International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 9 2020, DOI

127

10.1109/icsme46990.2020.00063.
Abstract: Software developers attempt to reproduce software bugs to un-
derstand their erroneous behaviours and to fix them. Unfortunately, they
often fail to reproduce (or fix) them, which leads to faulty, unreliable
software systems. However, to date, only a little research has been done
to better understand what makes the software bugs non-reproducible. In
this paper, we conduct a multimodal study to better understand the non-
reproducibility of software bugs. First, we perform an empirical study us-
ing 576 non-reproducible bug reports from two popular software systems
(Firefox, Eclipse) and identify 11 key factors that might lead a reported
bug to non-reproducibility. Second, we conduct a user study involving 13
professional developers where we investigate how the developers cope with
non-reproducible bugs. We found that they either close these bugs or so-
licit for further information, which involves long deliberations and counter-
productive manual searches. Third, we offer several actionable insights on
how to avoid non-reproducibility (e.g., false-positive bug report detector)
and improve reproducibility of the reported bugs (e.g., sandbox for bug re-
production) by combining our analyses from multiple studies (e.g., empirical
study, developer study).

[Rahman2021] Akond Rahman, Md Rayhanur Rahman, Chris Parnin, and
Laurie Williams. Security smells in ansible and chef scripts. ACM Trans-
actions on Software Engineering and Methodology, 30(1):1–31, 1 2021, DOI
10.1145/3408897.
Abstract: Context: Security smells are recurring coding patterns that are
indicative of security weakness and require further inspection. As infrastruc-
ture as code (IaC) scripts, such as Ansible and Chef scripts, are used to
provision cloud-based servers and systems at scale, security smells in IaC
scripts could be used to enable malicious users to exploit vulnerabilities in
the provisioned systems. Goal: The goal of this article is to help practition-
ers avoid insecure coding practices while developing infrastructure as code
scripts through an empirical study of security smells in Ansible and Chef
scripts. Methodology: We conduct a replication study where we apply qual-
itative analysis with 1,956 IaC scripts to identify security smells for IaC
scripts written in two languages: Ansible and Chef. We construct a static
analysis tool called Security Linter for Ansible and Chef scripts (SLAC) to
automatically identify security smells in 50,323 scripts collected from 813
open source software repositories. We also submit bug reports for 1,000 ran-
domly selected smell occurrences. Results: We identify two security smells
not reported in prior work: missing default in case statement and no integrity
check. By applying SLAC we identify 46,600 occurrences of security smells
that include 7,849 hard-coded passwords. We observe agreement for 65 of
the responded 94 bug reports, which suggests the relevance of security smells
for Ansible and Chef scripts amongst practitioners. Conclusion: We observe
security smells to be prevalent in Ansible and Chef scripts, similarly to that
of the Puppet scripts. We recommend practitioners to rigorously inspect the

128

presence of the identified security smells in Ansible and Chef scripts using
(i) code review, and (ii) static analysis tools.

[RakAmnouykit2020] Ingkarat Rak-amnouykit, Daniel McCrevan, Ana Mi-
lanova, Martin Hirzel, and Julian Dolby. Python 3 types in the wild: a tale
of two type systems. In Proc. International Symposium on Dynamic Lan-
guages (ISDL). ACM, 11 2020, DOI 10.1145/3426422.3426981.
Abstract: Python 3 is a highly dynamic language, but it has introduced
a syntax for expressing types with PEP484. This paper ex- plores how de-
velopers use these type annotations, the type system semantics provided by
type checking and inference tools, and the performance of these tools. We
evaluate the types and tools on a corpus of public GitHub repositories. We
review MyPy and PyType, two canonical static type checking and infer-
ence tools, and their distinct approaches to type analysis. We then address
three research questions: (i) How often and in what ways do developers
use Python 3 types? (ii) Which type errors do developers make? (iii) How
do type errors from different tools compare? Surprisingly, when developers
use static types, the code rarely type-checks with either of the tools. MyPy
and PyType exhibit false positives, due to their static nature, but also flag
many useful errors in our corpus. Lastly, MyPy and PyType embody two
distinct type systems, flagging different errors in many cases. Understanding
the usage of Python types can help guide tool-builders and researchers. Un-
derstanding the performance of popular tools can help increase the adoption
of static types and tools by practitioners, ultimately leading to more correct
and more robust Python code.

[Reyes2018] Rolando P. Reyes, Oscar Dieste, Efráın R. Fonseca, and Natalia
Juristo. Statistical errors in software engineering experiments. In Proc. In-
ternational Conference on Software Engineering (ICSE). ACM, 5 2018, DOI
10.1145/3180155.3180161.
Abstract: Background: Statistical concepts and techniques are often ap-
plied incorrectly, even in mature disciplines such as medicine or psychology.
Surprisingly, there are very few works that study statistical problems in
software engineering (SE). Aim: Assess the existence of statistical errors in
SE experiments. Method: Compile the most common statistical errors in
experimental disciplines. Survey experiments published in ICSE to assess
whether errors occur in high quality SE publications. Results: The same
errors as identified in others disciplines were found in ICSE experiments,
where 30 of the reviewed papers included several error types such as: a)
missing statistical hypotheses, b) missing sample size calculation, c) failure
to assess statistical test assumptions, and d) uncorrected multiple testing.
This rather large error rate is greater for research papers where experiments
are confined to the validation section. The origin of the errors can be traced
back to: a) researchers not having sufficient statistical training, and b) a
profusion of exploratory research. Conclusions: This paper provides prelimi-
nary evidence that SE research suffers from the same statistical problems as
other experimental disciplines. However, the SE community appears to be

129

unaware of any shortcomings in its experiments, whereas other disciplines
work hard to avoid these threats. Further research is necessary to find the
underlying causes and set up corrective measures, but there are some poten-
tially effective actions and are a priori easy to implement: a) improve the
statistical training of SE researchers, and b) enforce quality assessment and
reporting guidelines in SE publications.

[Rico2021] Sergio Rico, Elizabeth Bjarnason, Emelie Engström, Martin Höst,
and Per Runeson. A case study of industry–academia communication in a
joint software engineering research project. Journal of Software: Evolution
and Process, 7 2021, DOI 10.1002/smr.2372.
Abstract: Empirical software engineering research relies on good commu-
nication with industrial partners. Conducting joint research both requires
and contributes to bridging the communication gap between industry and
academia (IA) in software engineering. This study aims to explore commu-
nication between the two parties in such a setting. To better understand
what facilitates good IA communication and what project outcomes such
communication promotes, we performed a case study, in the context of a
long-term IA joint project, followed by a validating survey among practi-
tioners and researchers with experience of working in similar settings. We
identified five facilitators of IA communication and nine project outcomes
related to this communication. The facilitators concern the relevance of the
research, practitioners’ attitude and involvement in research, frequency of
communication and longevity of the collaboration. The project outcomes
promoted by this communication include, for researchers, changes in teach-
ing and new scientific venues, and for practitioners, increased awareness,
changes to practice, and new tools and source code. Besides, both parties
gain new knowledge and develop social-networks through IA communica-
tion. Our study presents empirically based insights that can provide advise
on how to improve communication in IA research projects and thus the co-
creation of software engineering knowledge that is anchored in both practice
and research.

[Rigby2011] Peter C. Rigby and Margaret-Anne Storey. Understanding
broadcast based peer review on open source software projects. In Proc.
International Conference on Software Engineering (ICSE). ACM, 5 2011,
DOI 10.1145/1985793.1985867.
Abstract: Software peer review has proven to be a successful technique
in open source software (OSS) development. In contrast to industry, where
reviews are typically assigned to specific individuals, changes are broadcast
to hundreds of potentially interested stakeholders. Despite concerns that re-
views may be ignored, or that discussions will deadlock because too many
uninformed stakeholders are involved, we find that this approach works well
in practice. In this paper, we describe an empirical study to investigate the
mechanisms and behaviours that developers use to find code changes they
are competent to review. We also explore how stakeholders interact with
one another during the review process. We manually examine hundreds of

130

reviews across five high profile OSS projects. Our findings provide insights
into the simple, community-wide techniques that developers use to effectively
manage large quantities of reviews. The themes that emerge from our study
are enriched and validated by interviewing long-serving core developers.

[Rigby2016] Peter C. Rigby, Yue Cai Zhu, Samuel M. Donadelli, and Audris
Mockus. Quantifying and mitigating turnover-induced knowledge loss. In
Proc. International Conference on Software Engineering (ICSE). ACM, 5
2016, DOI 10.1145/2884781.2884851.
Abstract: The utility of source code, as of other knowledge artifacts, is
predicated on the existence of individuals skilled enough to derive value
by using or improving it. Developers leaving a software project deprive the
project of the knowledge of the decisions they have made. Previous research
shows that the survivors and newcomers maintaining abandoned code have
reduced productivity and are more likely to make mistakes. We focus on
quantifying the extent of abandoned source files and adapt methods from
financial risk analysis to assess the susceptibility of the project to developer
turnover. In particular, we measure the historical loss distribution and find
(1) that projects are susceptible to losses that are more than three times
larger than the expected loss. Using historical simulations we find (2) that
projects are susceptible to large losses that are over five times larger than
the expected loss. We use Monte Carlo simulations of disaster loss scenar-
ios and find (3) that simplistic estimates of the “truck factor” exaggerate
the potential for loss. To mitigate loss from developer turnover, we mod-
ify Cataldo et al’s coordination requirements matrices. We find (4) that we
can recommend the correct successor 34% to 48% of the time. We also find
that having successors reduces the expected loss by as much as 15%. Our
approach helps large projects assess the risk of turnover thereby making risk
more transparent and manageable.

[Rigger2020] Manuel Rigger and Zhendong Su. Finding bugs in database
systems via query partitioning. Proceedings of the ACM on Programming
Languages, 4, 11 2020, DOI 10.1145/3428279.
Abstract: Logic bugs in Database Management Systems (DBMSs) are bugs
that cause an incorrect result for a given query, for example, by omitting a
row that should be fetched. These bugs are critical, since they are likely to go
unnoticed by users. We propose Query Partitioning, a general and effective
approach for finding logic bugs in DBMSs. The core idea of Query Partition-
ing is to, starting from a given original query, derive multiple, more complex
queries (called partitioning queries), each of which computes a partition of
the result. The individual partitions are then composed to compute a result
set that must be equivalent to the original query’s result set. A bug in the
DBMS is detected when these result sets differ. Our intuition is that due to
the increased complexity, the partitioning queries are more likely to stress
the DBMS and trigger a logic bug than the original query. As a concrete
instance of a partitioning strategy, we propose Ternary Logic Partitioning
(TLP), which is based on the observation that a boolean predicate p can

131

either evaluate to TRUE, FALSE, or NULL. Accordingly, a query can be
decomposed into three partitioning queries, each of which computes its re-
sult on rows or intermediate results for which p, NOT p, and p IS NULL hold.
This technique is versatile, and can be used to test WHERE, GROUP BY,
as well as HAVING clauses, aggregate functions, and DISTINCT queries.
As part of an extensive testing campaign, we found 175 bugs in widely-used
DBMSs such as MySQL, TiDB, SQLite, and CockroachDB, 125 of which
have been fixed. Notably, 77 of these were logic bugs, while the remaining
were error and crash bugs. We expect that the effectiveness and wide ap-
plicability of Query Partitioning will lead to its broad adoption in practice,
and the formulation of additional partitioning strategies.

[Rivers2016] Kelly Rivers, Erik Harpstead, and Ken Koedinger. Learn-
ing curve analysis for programming. In Proc. Conference on Inter-
national Computing Education Research (ICER). ACM, 8 2016, DOI
10.1145/2960310.2960333.
Abstract: The recent surge in interest in using educational data mining on
student written programs has led to discoveries about which compiler errors
students encounter while they are learning how to program. However, less
attention has been paid to the actual code that students produce. In this
paper, we investigate programming data by using learning curve analysis
to determine which programming elements students struggle with the most
when learning in Python. Our analysis extends the traditional use of learning
curve analysis to include less structured data, and also reveals new possibil-
ities for when to teach students new programming concepts. One particular
discovery is that while we find evidence of student learning in some cases (for
example, in function definitions and comparisons), there are other program-
ming elements which do not demonstrate typical learning. In those cases,
we discuss how further changes to the model could affect both demonstrated
learning and our understanding of the different concepts that students learn.

[Robillard2010] Martin P. Robillard and Rob DeLine. A field study of API
learning obstacles. Empirical Software Engineering, 16(6):703–732, 12 2010,
DOI 10.1007/s10664-010-9150-8.
Abstract: Large APIs can be hard to learn, and this can lead to decreased
programmer productivity. But what makes APIs hard to learn? We con-
ducted a mixed approach, multi-phased study of the obstacles faced by Mi-
crosoft developers learning a wide variety of new APIs. The study involved a
combination of surveys and in-person interviews, and collected the opinions
and experiences of over 440 professional developers. We found that some of
the most severe obstacles faced by developers learning new APIs pertained to
the documentation and other learning resources. We report on the obstacles
developers face when learning new APIs, with a special focus on obstacles
related to API documentation. Our qualitative analysis elicited five impor-
tant factors to consider when designing API documentation: documentation
of intent; code examples; matching APIs with scenarios; penetrability of the

132

API; and format and presentation. We analyzed how these factors can be
interpreted to prioritize API documentation development efforts

[Rodeghero2021] Paige Rodeghero, Thomas Zimmermann, Brian Houck,
and Denae Ford. Please turn your cameras on: Remote onboard-
ing of software developers during a pandemic. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, 5 2021, DOI
10.1109/icse-seip52600.2021.00013.
Abstract: The COVID-19 pandemic has impacted the way that software
development teams onboard new hires. Previously, most software develop-
ers worked in physical offices and new hires onboarded to their teams in
the physical office, following a standard onboarding process. However, when
companies transitioned employees to work from home due to the pandemic,
there was little to no time to develop new onboarding procedures. In this
paper, we present a survey of 267 new hires at Microsoft that onboarded to
software development teams during the pandemic. We explored their remote
onboarding process, including the challenges that the new hires encountered
and their social connectedness with their teams. We found that most de-
velopers onboarded remotely and never had an opportunity to meet their
teammates in person. This leads to one of the biggest challenges faced by
these new hires, building a strong social connection with their team. We use
these results to provide recommendations for onboarding remote hires.

[RodriguezPerez2018] Gema Rodŕıguez-Pérez, Gregorio Robles, and
Jesús M. González-Barahona. Reproducibility and credibility in empirical
software engineering: A case study based on a systematic literature review of
the use of the SZZ algorithm. Information and Software Technology, 99:164–
176, 7 2018, DOI 10.1016/j.infsof.2018.03.009.
Abstract: When identifying the origin of software bugs, many studies as-
sume that “a bug was introduced by the lines of code that were modified to
fix it”. However, this assumption does not always hold and at least in some
cases, these modified lines are not responsible for introducing the bug. For
example, when the bug was caused by a change in an external API. The
lack of empirical evidence makes it impossible to assess how important these
cases are and therefore, to which extent the assumption is valid. To advance
in this direction, and better understand how bugs “are born”, we propose
a model for defining criteria to identify the first snapshot of an evolving
software system that exhibits a bug. This model, based on the perfect test
idea, decides whether a bug is observed after a change to the software. Fur-
thermore, we studied the model’s criteria by carefully analyzing how 116
bugs were introduced in two different open source software projects. The
manual analysis helped classify the root cause of those bugs and created
manually curated datasets with bug-introducing changes and with bugs that
were not introduced by any change in the source code. Finally, we used these
datasets to evaluate the performance of four existing SZZ-based algorithms
for detecting bug-introducing changes. We found that SZZ-based algorithms

133

are not very accurate, especially when multiple commits are found; the F-
Score varies from 0.44 to 0.77, while the percentage of true positives does
not exceed 63%. Our results show empirical evidence that the prevalent as-
sumption, “a bug was introduced by the lines of code that were modified
to fix it”, is just one case of how bugs are introduced in a software system.
Finding what introduced a bug is not trivial: bugs can be introduced by
the developers and be in the code, or be created irrespective of the code.
Thus, further research towards a better understanding of the origin of bugs
in software projects could help to improve design integration tests and to
design other procedures to make software development more robust.

[RodriguezPerez2020] Gema Rodŕıguez-Pérez, Gregorio Robles, Alexander
Serebrenik, Andy Zaidman, Daniel M. Germán, and Jesus M. Gonzalez-
Barahona. How bugs are born: a model to identify how bugs are introduced
in software components. Empirical Software Engineering, 25(2):1294–1340,
2 2020, DOI 10.1007/s10664-019-09781-y.
Abstract: When identifying the origin of software bugs, many studies as-
sume that “a bug was introduced by the lines of code that were modified to
fix it”. However, this assumption does not always hold and at least in some
cases, these modified lines are not responsible for introducing the bug. For
example, when the bug was caused by a change in an external API. The
lack of empirical evidence makes it impossible to assess how important these
cases are and therefore, to which extent the assumption is valid. To advance
in this direction, and better understand how bugs “are born”, we propose
a model for defining criteria to identify the first snapshot of an evolving
software system that exhibits a bug. This model, based on the perfect test
idea, decides whether a bug is observed after a change to the software. Fur-
thermore, we studied the model’s criteria by carefully analyzing how 116
bugs were introduced in two different open source software projects. The
manual analysis helped classify the root cause of those bugs and created
manually curated datasets with bug-introducing changes and with bugs that
were not introduced by any change in the source code. Finally, we used these
datasets to evaluate the performance of four existing SZZ-based algorithms
for detecting bug-introducing changes. We found that SZZ-based algorithms
are not very accurate, especially when multiple commits are found; the F-
Score varies from 0.44 to 0.77, while the percentage of true positives does
not exceed 63%. Our results show empirical evidence that the prevalent as-
sumption, “a bug was introduced by the lines of code that were modified
to fix it”, is just one case of how bugs are introduced in a software system.
Finding what introduced a bug is not trivial: bugs can be introduced by
the developers and be in the code, or be created irrespective of the code.
Thus, further research towards a better understanding of the origin of bugs
in software projects could help to improve design integration tests and to
design other procedures to make software development more robust.

[Romano2021] Alan Romano, Zihe Song, Sampath Grandhi, Wei Yang, and
Weihang Wang. An empirical analysis of UI-based flaky tests. In Proc. In-

134

ternational Conference on Software Engineering (ICSE). IEEE, 5 2021, DOI
10.1109/icse43902.2021.00141.
Abstract: Flaky tests have gained attention from the research community
in recent years and with good reason. These tests lead to wasted time and
resources, and they reduce the reliability of the test suites and build systems
they affect. However, most of the existing work on flaky tests focus exclu-
sively on traditional unit tests. This work ignores UI tests that have larger
input spaces and more diverse running conditions than traditional unit tests.
In addition, UI tests tend to be more complex and resource-heavy, making
them unsuited for detection techniques involving rerunning test suites mul-
tiple times. In this paper, we perform a study on flaky UI tests. We analyze
235 flaky UI test samples found in 62 projects from both web and Android
environments. We identify the common underlying root causes of flakiness in
the UI tests, the strategies used to manifest the flaky behavior, and the fix-
ing strategies used to remedy flaky UI tests. The findings made in this work
can provide a foundation for the development of detection and prevention
techniques for flakiness arising in UI tests.

[Rossbach2010] Christopher J. Rossbach, Owen S. Hofmann, and Emmett
Witchel. Is transactional programming actually easier? ACM SIGPLAN
Notices, 45(5):47–56, 5 2010, DOI 10.1145/1837853.1693462.
Abstract: Chip multi-processors (CMPs) have become ubiquitous, while
tools that ease concurrent programming have not. The promise of increased
performance for all applications through ever more parallel hardware requires
good tools for concurrent programming, especially for average programmers.
Transactional memory (TM) has enjoyed recent interest as a tool that can
help programmers program concurrently. The transactional memory (TM)
research community is heavily invested in the claim that programming with
transactional memory is easier than alternatives (like locks), but evidence
for or against the veracity of this claim is scant. In this paper, we describe
a user-study in which 237 undergraduate students in an operating systems
course implement the same programs using coarse and fine-grain locks, mon-
itors, and transactions. We surveyed the students after the assignment, and
examined their code to determine the types and frequency of programming
errors for each synchronization technique. Inexperienced programmers found
baroque syntax a barrier to entry for transactional programming. On aver-
age, subjective evaluation showed that students found transactions harder
to use than coarse-grain locks, but slightly easier to use than fine-grained
locks. Detailed examination of synchronization errors in the students’ code
tells a rather different story. Overwhelmingly, the number and types of pro-
gramming errors the students made was much lower for transactions than for
locks. On a similar programming problem, over 70% of students made errors
with fine-grained locking, while less than 10% made errors with transactions.

[Russo2020] Daniel Russo and Klaas-Jan Stol. Gender differences in personal-
ity traits of software engineers. IEEE Transactions on Software Engineering,
pages 1–1, 2020, DOI 10.1109/tse.2020.3003413.

135

Abstract: There is a growing body of gender studies in software engineer-
ing to understand diversity and inclusion issues, as diversity is recognized
to be a key issue to healthy teams and communities. A second factor often
linked to team performance is personality, which has received far more at-
tention. Very few studies, however, have focused on the intersection of these
two fields. Hence, we set out to study gender differences in personality traits
of software engineers. Through a survey study we collected personality data,
using the HEXACO model, of 483 software engineers. The data were ana-
lyzed using a Bayesian independent sample t-test and network analysis. The
results suggest that women score significantly higher in Openness to Expe-
rience, Honesty-Humility, and Emotionality than men. Further, men show
higher psychopathic traits than women. Based on these findings, we develop
a number of propositions that can guide future research.

[Sadowski2019] Caitlin Sadowski and Thomas Zimmermann, editors. Re-
thinking Productivity in Software Engineering. Apress, 2019.
Abstract: This open access book collects the wisdom of the 2017 Dagstuhl
seminar on productivity in software engineering, a meeting of community
leaders, who came together with the goal of rethinking traditional defini-
tions and measures of productivity. The results of their work, Rethinking
Productivity in Software Engineering, includes chapters covering definitions
and core concepts related to productivity, guidelines for measuring produc-
tivity in specific contexts, best practices and pitfalls, and theories and open
questions on productivity. You’ll benefit from the many short chapters, each
offering a focused discussion on one aspect of productivity in software engi-
neering.

[Sambasivan2021] Nithya Sambasivan, Shivani Kapania, Hannah Highfill,
Diana Akrong, Praveen Paritosh, and Lora M Aroyo. “everyone wants to do
the model work, not the data work”: Data cascades in high-stakes AI. In
Proc. Conference on Human Factors in Computing Systems (HFCS). ACM,
5 2021, DOI 10.1145/3411764.3445518.
Abstract: AI models are increasingly applied in high-stakes domains like
health and conservation. Data quality carries an elevated significance in high-
stakes AI due to its heightened downstream impact, impacting predictions
like cancer detection, wildlife poaching, and loan allocations. Paradoxically,
data is the most under-valued and de-glamorised aspect of AI. In this paper,
we report on data practices in high-stakes AI, from interviews with 53 AI
practitioners in India, East and West African countries, and USA. We define,
identify, and present empirical evidence on Data Cascades—compounding
events causing negative, downstream effects from data issues—triggered by
conventional AI/ML practices that undervalue data quality. Data cascades
are pervasive (92% prevalence), invisible, delayed, but often avoidable. We
discuss HCI opportunities in designing and incentivizing data excellence as
a first-class citizen of AI, resulting in safer and more robust systems for all.

136

[Sarker2019] Farhana Sarker, Bogdan Vasilescu, Kelly Blincoe, and Vladimir
Filkov. Socio-technical work-rate increase associates with changes in work
patterns in online projects. In Proc. International Conference on Software
Engineering (ICSE). IEEE, 5 2019, DOI 10.1109/icse.2019.00099.
Abstract: Software developers work on a variety of tasks ranging from the
technical, e.g., writing code, to the social, e.g., participating in issue reso-
lution discussions. The amount of work developers perform per week (their
work-rate) also varies and depends on project needs and developer sched-
ules. Prior work has shown that while moderate levels of increased technical
work and multitasking lead to higher productivity, beyond a certain thresh-
old, they can lead to lowered performance. Here, we study how increases
in the short-term work-rate along both the technical and social dimensions
are associated with changes in developers’ work patterns, in particular com-
munication sentiment, technical productivity, and social productivity. We
surveyed active and prolific developers on GitHub to understand the causes
and impacts of increased work-rates. Guided by the responses, we devel-
oped regression models to study how communication and committing pat-
terns change with increased work-rates and fit those models to large-scale
data gathered from traces left by thousands of GitHub developers. From our
survey and models, we find that most developers do experience work-rate-
increase-related changes in behavior. Most notably, our models show that
there is a sizable effect when developers comment much more than their
average: the negative sentiment in their comments increases, suggesting an
increased level of stress. Our models also show that committing patterns
do not change with increased commenting, and vice versa, suggesting that
technical and social activities tend not to be multitasked.

[Scalabrino2018] Simone Scalabrino, Mario Linares-Vásquez, Rocco Oliveto,
and Denys Poshyvanyk. A comprehensive model for code readability.
Journal of Software: Evolution and Process, 30(6):e1958, 6 2018, DOI
10.1002/smr.1958.
Abstract: Unreadable code could compromise program comprehension, and
it could cause the introduction of bugs. Code consists of mostly natural lan-
guage text, both in identifiers and comments, and it is a particular form of
text. Nevertheless, the models proposed to estimate code readability take
into account only structural aspects and visual nuances of source code, such
as line length and alignment of characters. In this paper, we extend our
previous work in which we use textual features to improve code readability
models. We introduce 2 new textual features, and we reassess the readabil-
ity prediction power of readability models on more than 600 code snippets
manually evaluated, in terms of readability, by 5K+ people. We also repli-
cate a study by Buse and Weimer on the correlation between readability
and FindBugs warnings, evaluating different models on 20 software systems,
for a total of 3M lines of code. The results demonstrate that (1) textual
features complement other features and (2) a model containing all the fea-
tures achieves a significantly higher accuracy as compared with all the other

137

state-of-the-art models. Also, readability estimation resulting from a more
accurate model, ie, the combined model, is able to predict more accurately
FindBugs warnings.

[Scalabrino2021] Simone Scalabrino, Gabriele Bavota, Christopher Vendome,
Mario Linares-Vasquez, Denys Poshyvanyk, and Rocco Oliveto. Automati-
cally assessing code understandability. IEEE Transactions on Software En-
gineering, 47(3):595–613, 3 2021, DOI 10.1109/tse.2019.2901468.
Abstract: Understanding software is an inherent requirement for many
maintenance and evolution tasks. Without a thorough understanding of
the code, developers would not be able to fix bugs or add new features
timely. Measuring code understandability might be useful to guide devel-
opers in writing better code, and could also help in estimating the effort
required to modify code components. Unfortunately, there are no metrics
designed to assess the understandability of code snippets. In this work, we
perform an extensive evaluation of 121 existing as well as new code-related,
documentation-related, and developer-related metrics. We try to (i) correlate
each metric with understandability and (ii) build models combining metrics
to assess understandability. To do this, we use 444 human evaluations from
63 developers and we obtained a bold negative result: none of the 121 ex-
perimented metrics is able to capture code understandability, not even the
ones assumed to assess quality attributes apparently related, such as code
readability and complexity. While we observed some improvements while
combining metrics in models, their effectiveness is still far from making them
suitable for practical applications. Finally, we conducted interviews with five
professional developers to understand the factors that influence their ability
to understand code snippets, aiming at identifying possible new metrics.

[Scanniello2017] Giuseppe Scanniello, Michele Risi, Porfirio Tramontana,
and Simone Romano. Fixing faults in C and Java source code. ACM Trans-
actions on Software Engineering and Methodology, 26(2):1–43, 10 2017, DOI
10.1145/3104029.
Abstract: We carried out a family of controlled experiments to investigate
whether the use of abbreviated identifier names, with respect to full-word
identifier names, affects fault fixing in C and Java source code. This family
consists of an original (or baseline) controlled experiment and three replica-
tions. We involved 100 participants with different backgrounds and experi-
ences in total. Overall results suggested that there is no difference in terms
of effort, effectiveness, and efficiency to fix faults, when source code contains
either only abbreviated or only full-word identifier names. We also conducted
a qualitative study to understand the values, beliefs, and assumptions that
inform and shape fault fixing when identifier names are either abbreviated
or full-word. We involved in this qualitative study six professional developers
with 1–3 years of work experience. A number of insights emerged from this
qualitative study and can be considered a useful complement to the quan-
titative results from our family of experiments. One of the most interesting
insights is that developers, when working on source code with abbreviated

138

identifier names, adopt a more methodical approach to identify and fix faults
by extending their focus point and only in a few cases do they expand ab-
breviated identifiers.

[Schweinsberg2021] Martin Schweinsberg, Michael Feldman, Nicola Staub,
Olmo R. van den Akker, Robbie C.M. van Aert, Marcel A.L.M. van Assen,
Yang Liu, Tim Althoff, Jeffrey Heer, Alex Kale, Zainab Mohamed, Hashem
Amireh, Vaishali Venkatesh Prasad, Abraham Bernstein, Emily Robinson,
Kaisa Snellman, S. Amy Sommer, Sarah M.G. Otner, David Robinson,
Nikhil Madan, Raphael Silberzahn, Pavel Goldstein, Warren Tierney, Toshio
Murase, Benjamin Mandl, Domenico Viganola, Carolin Strobl, Cather-
ine B.C. Schaumans, Stijn Kelchtermans, Chan Naseeb, S. Mason Garrison,
Tal Yarkoni, C.S. Richard Chan, Prestone Adie, Paulius Alaburda, Casper
Albers, Sara Alspaugh, Jeff Alstott, Andrew A. Nelson, Eduardo Ariño
de la Rubia, Adbi Arzi, Štěpán Bahńık, Jason Baik, Laura Winther Balling,
Sachin Banker, David AA Baranger, Dale J. Barr, Brenda Barros-Rivera,
Matt Bauer, Enuh Blaise, Lisa Boelen, Katerina Bohle Carbonell, Robert A.
Briers, Oliver Burkhard, Miguel-Angel Canela, Laura Castrillo, Timothy
Catlett, Olivia Chen, Michael Clark, Brent Cohn, Alex Coppock, Natàlia
Cugueró-Escofet, Paul G. Curran, Wilson Cyrus-Lai, David Dai, Giulio
Valentino Dalla Riva, Henrik Danielsson, Rosaria de F.S.M. Russo, Niko
de Silva, Curdin Derungs, Frank Dondelinger, Carolina Duarte de Souza,
B. Tyson Dube, Marina Dubova, Ben Mark Dunn, Peter Adriaan Edels-
brunner, Sara Finley, Nick Fox, Timo Gnambs, Yuanyuan Gong, Erin Grand,
Brandon Greenawalt, Dan Han, Paul H.P. Hanel, Antony B. Hong, David
Hood, Justin Hsueh, Lilian Huang, Kent N. Hui, Keith A. Hultman, Azka
Javaid, Lily Ji Jiang, Jonathan Jong, Jash Kamdar, David Kane, Gregor
Kappler, Erikson Kaszubowski, Christopher M. Kavanagh, Madian Khabsa,
Bennett Kleinberg, Jens Kouros, Heather Krause, Angelos-Miltiadis Kry-
potos, Dejan Lavbič, Rui Ling Lee, Timothy Leffel, Wei Yang Lim, Silvia
Liverani, Bianca Loh, Dorte Lønsmann, Jia Wei Low, Alton Lu, Kyle Mac-
Donald, Christopher R. Madan, Lasse Hjorth Madsen, Christina Maimone,
Alexandra Mangold, Adrienne Marshall, Helena Ester Matskewich, Kimia
Mavon, Katherine L. McLain, Amelia A. McNamara, Mhairi McNeill, Ulf
Mertens, David Miller, Ben Moore, Andrew Moore, Eric Nantz, Ziauddin
Nasrullah, Valentina Nejkovic, Colleen S Nell, Andrew Arthur Nelson, Gus-
tav Nilsonne, Rory Nolan, Christopher E. O'Brien, Patrick O'Neill, Kieran
O'Shea, Toto Olita, Jahna Otterbacher, Diana Palsetia, Bianca Pereira, Ivan
Pozdniakov, John Protzko, Jean-Nicolas Reyt, Travis Riddle, Amal (Ak-
mal) Ridhwan Omar Ali, Ivan Ropovik, Joshua M. Rosenberg, Stephane
Rothen, Michael Schulte-Mecklenbeck, Nirek Sharma, Gordon Shotwell,
Martin Skarzynski, William Stedden, Victoria Stodden, Martin A. Stof-
fel, Scott Stoltzman, Subashini Subbaiah, Rachael Tatman, Paul H. Thi-
bodeau, Sabina Tomkins, Ana Valdivia, Gerrieke B. Druijff van de Woesti-
jne, Laura Viana, Florence Villesèche, W. Duncan Wadsworth, Florian
Wanders, Krista Watts, Jason D Wells, Christopher E. Whelpley, Andy

139

Won, Lawrence Wu, Arthur Yip, Casey Youngflesh, Ju-Chi Yu, Arash Zan-
dian, Leilei Zhang, Chava Zibman, and Eric Luis Uhlmann. Same data,
different conclusions: Radical dispersion in empirical results when inde-
pendent analysts operationalize and test the same hypothesis. Organiza-
tional Behavior and Human Decision Processes, 165:228–249, 7 2021, DOI
10.1016/j.obhdp.2021.02.003.
Abstract: In this crowdsourced initiative, independent analysts used the
same dataset to test two hypotheses regarding the effects of scientists’ gen-
der and professional status on verbosity during group meetings. Not only the
analytic approach but also the operationalizations of key variables were left
unconstrained and up to individual analysts. For instance, analysts could
choose to operationalize status as job title, institutional ranking, citation
counts, or some combination. To maximize transparency regarding the pro-
cess by which analytic choices are made, the analysts used a platform we
developed called DataExplained to justify both preferred and rejected ana-
lytic paths in real time. Analyses lacking sufficient detail, reproducible code,
or with statistical errors were excluded, resulting in 29 analyses in the fi-
nal sample. Researchers reported radically different analyses and dispersed
empirical outcomes, in a number of cases obtaining significant effects in op-
posite directions for the same research question. A Boba multiverse analysis
demonstrates that decisions about how to operationalize variables explain
variability in outcomes above and beyond statistical choices (e.g., covariates).
Subjective researcher decisions play a critical role in driving the reported em-
pirical results, underscoring the need for open data, systematic robustness
checks, and transparency regarding both analytic paths taken and not taken.
Implications for organizations and leaders, whose decision making relies in
part on scientific findings, consulting reports, and internal analyses by data
scientists, are discussed.

[Sedano2017] Todd Sedano, Paul Ralph, and Cecile Peraire. Software devel-
opment waste. In Proc. International Conference on Software Engineering
(ICSE). IEEE, 5 2017, DOI 10.1109/icse.2017.20.
Abstract: Context: Since software development is a complex socio-
technical activity that involves coordinating different disciplines and skill
sets, it provides ample opportunities for waste to emerge. Waste is any
activity that produces no value for the customer or user. Objective: The
purpose of this paper is to identify and describe different types of waste in
software development. Method: Following Constructivist Grounded Theory,
we conducted a two-year five-month participant-observation study of eight
software development projects at Pivotal, a software development consul-
tancy. We also interviewed 33 software engineers, interaction designers, and
product managers, and analyzed one year of retrospection topics. We iter-
ated between analysis and theoretical sampling until achieving theoretical
saturation. Results: This paper introduces the first empirical waste taxon-
omy. It identifies nine wastes and explores their causes, underlying tensions,
and overall relationship to the waste taxonomy found in Lean Software De-

140

velopment. Limitations: Grounded Theory does not support statistical gen-
eralization. While the proposed taxonomy appears widely applicable, orga-
nizations with different software development cultures may experience differ-
ent waste types. Conclusion: Software development projects manifest nine
types of waste: building the wrong feature or product, mismanaging the
backlog, rework, unnecessarily complex solutions, extraneous cognitive load,
psychological distress, waiting/multitasking, knowledge loss, and ineffective
communication.

[Shao2020] Shudi Shao, Zhengyi Qiu, Xiao Yu, Wei Yang, Guoliang Jin,
Tao Xie, and Xintao Wu. Database-access performance antipatterns
in database-backed web applications. In Proc. International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 9 2020, DOI
10.1109/icsme46990.2020.00016.
Abstract: Database-backed web applications are prone to performance
bugs related to database accesses. While much work has been conducted
on database-access antipatterns with some recent work focusing on perfor-
mance impact, there still lacks a comprehensive view of database-access per-
formance antipatterns in database-backed web applications. To date, no ex-
isting work systematically reports known antipatterns in the literature, and
no existing work has studied database-access performance bugs in major
types of web applications that access databases differently.To address this
issue, we first summarize all known database-access performance antipat-
terns found through our literature survey, and we report all of them in this
paper. We further collect database-access performance bugs from web ap-
plications that access databases through language-provided SQL interfaces,
which have been largely ignored by recent work, to check how extensively
the known antipatterns can cover these bugs. For bugs not covered by the
known antipatterns, we extract new database-access performance antipat-
terns based on real-world performance bugs from such web applications.
Our study in total reports 24 known and 10 new database-access perfor-
mance antipatterns. Our results can guide future work to develop effective
tool support for different types of web applications.

[Sharma2021] Pankajeshwara Nand Sharma, Bastin Tony Roy Savarimuthu,
and Nigel Stanger. Extracting rationale for open source software devel-
opment decisions—a study of python email archives. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, 5 2021, DOI
10.1109/icse43902.2021.00095.
Abstract: A sound Decision-Making (DM) process is key to the successful
governance of software projects. In many Open Source Software Develop-
ment (OSSD) communities, DM processes lie buried amongst vast amounts
of publicly available data. Hidden within this data lie the rationale for deci-
sions that led to the evolution and maintenance of software products. While
there have been some efforts to extract DM processes from publicly available
data, the rationale behind ’how’ the decisions are made have seldom been

141

explored. Extracting the rationale for these decisions can facilitate trans-
parency (by making them known), and also promote accountability on the
part of decision-makers. This work bridges this gap by means of a large-
scale study that unearths the rationale behind decisions from Python de-
velopment email archives comprising about 1.5 million emails. This paper
makes two main contributions. First, it makes a knowledge contribution by
unearthing and presenting the rationale behind decisions made. Second, it
makes a methodological contribution by presenting a heuristics-based ratio-
nale extraction system called Rationale Miner that employs multiple heuris-
tics, and follows a data-driven, bottom-up approach to infer the rationale
behind specific decisions (e.g., whether a new module is implemented based
on core developer consensus or benevolent dictator’s pronouncement). Our
approach can be applied to extract rationale in other OSSD communities
that have similar governance structures.

[Sharp2016] Helen Sharp, Yvonne Dittrich, and Cleidson R. B. de Souza.
The role of ethnographic studies in empirical software engineering.
IEEE Transactions on Software Engineering, 42(8):786–804, 8 2016, DOI
10.1109/tse.2016.2519887.
Abstract: Ethnography is a qualitative research method used to study
people and cultures. It is largely adopted in disciplines outside software en-
gineering, including different areas of computer science. Ethnography can
provide an in-depth understanding of the socio-technological realities sur-
rounding everyday software development practice, i.e., it can help to un-
cover not only what practitioners do, but also why they do it. Despite its
potential, ethnography has not been widely adopted by empirical software
engineering researchers, and receives little attention in the related literature.
The main goal of this paper is to explain how empirical software engineering
researchers would benefit from adopting ethnography. This is achieved by
explicating four roles that ethnography can play in furthering the goals of
empirical software engineering: to strengthen investigations into the social
and human aspects of software engineering; to inform the design of soft-
ware engineering tools; to improve method and process development; and to
inform research programmes. This article introduces ethnography, explains
its origin, context, strengths and weaknesses, and presents a set of dimen-
sions that position ethnography as a useful and usable approach to empirical
software engineering research. Throughout the paper, relevant examples of
ethnographic studies of software practice are used to illustrate the points
being made.

[Sholler2019] Dan Sholler, Igor Steinmacher, Denae Ford, Mara Averick, Mike
Hoye, and Greg Wilson. Ten simple rules for helping newcomers become con-
tributors to open projects. PLOS Computational Biology, 15(9):e1007296, 9
2019, DOI 10.1371/journal.pcbi.1007296.
Abstract: To survive and thrive, a community must attract new members,
retain them, and help them be productive. As openness becomes the norm in
research, software development, and education, knowing how to do this has

142

become a essential skill for principal investigators and community managers
alike. A growing body of knowledge in sociology, anthropology, education,
and software engineering can guide decisions about how to facilitate this.

[Shrestha2020] Nischal Shrestha, Colton Botta, Titus Barik, and Chris
Parnin. Here we go again: why is it difficult for developers to learn another
programming language? In Proc. International Conference on Software En-
gineering (ICSE). ACM, 6 2020, DOI 10.1145/3377811.3380352.
Abstract: Once a programmer knows one language, they can leverage con-
cepts and knowledge already learned, and easily pick up another program-
ming language. But is that always the case? To understand if programmers
have difficulty learning additional programming languages, we conducted an
empirical study of Stack Overflow questions across 18 different programming
languages. We hypothesized that previous knowledge could potentially in-
terfere with learning a new programming language. From our inspection of
450 Stack Overflow questions, we found 276 instances of interference that
occurred due to faulty assumptions originating from knowledge about a dif-
ferent language. To understand why these difficulties occurred, we conducted
semi-structured interviews with 16 professional programmers. The interviews
revealed that programmers make failed attempts to relate a new program-
ming language with what they already know. Our findings inform design
implications for technical authors, toolsmiths, and language designers, such
as designing documentation and automated tools that reduce interference,
anticipating uncommon language transitions during language design, and
welcoming programmers not just into a language, but its entire ecosystem.

[Simon2021] Simon and Juha Sorva. How concrete should an abstract be? In
Proc. Conference on Innovation and Technology in Computer Science Edu-
cation (ITiCSE). ACM, 6 2021, DOI 10.1145/3430665.3456342.
Abstract: For many decades the abstract has served as a standalone sum-
mary of an academic publication, one that succinctly informs readers of what
they might expect to find upon reading the paper. While some publication
venues require abstracts to conform with a specified structure, many others,
including ITiCSE, leave the structure entirely to the paper’s authors. In this
paper we report on the components identified in the abstracts of ITiCSE’s
full papers and working group reports. We examine the abstracts of all 1496
of these publications from 25 years of ITiCSE to determine what structural
elements they employ. We also construct something of an ethos of computing
education by compiling assertions from the introductions of many abstracts.
We find, among other things, that very few abstracts include all of the com-
ponents that are recommended in a structured abstract; that a number of
abstracts consist of nothing but background; that nearly half of abstracts
do not include any results; and that nearly five percent of abstracts include
references, despite often not having an associated reference list. As an ex-
ample from the ethos, we find that industry wants people with soft skills,
and it is important that we teach our students these skills. Our analysis will

143

guide future ITiCSE authors as they consider how to formulate their own
abstracts.

[Sliwerski2005] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller.
When do changes induce fixes? In Proc. International Confer-
ence on Mining Software Repositories (MSR). ACM Press, 2005, DOI
10.1145/1083142.1083147.
Abstract: As a software system evolves, programmers make changes
that sometimes cause problems. We analyze CVS archives for fix-inducing
changes—changes that lead to problems, indicated by fixes. We show how to
automatically locate fix-inducing changes by linking a version archive (such
as CVS) to a bug database (such as Bugzilla). In a first investigation of
the Mozilla and Eclipse history, it turns out that fix-inducing changes show
distinct patterns with respect to their size and the day of week they were
applied.

[Sobrinho2021] Elder Vicente de Paulo Sobrinho, Andrea De Lucia, and
Marcelo de Almeida Maia. A systematic literature review on bad smells–5
w's: Which, when, what, who, where. IEEE Transactions on Software En-
gineering, 47(1):17–66, 1 2021, DOI 10.1109/tse.2018.2880977.
Abstract: Bad smells are sub-optimal code structures that may represent
problems needing attention. We conduct an extensive literature review on
bad smells relying on a large body of knowledge from 1990 to 2017. We
show that some smells are much more studied in the literature than oth-
ers, and also that some of them are intrinsically inter-related (which). We
give a perspective on how the research has been driven across time (when).
In particular, while the interest in duplicated code emerged before the ref-
erence publications by Fowler and Beck and by Brown et al., other types
of bad smells only started to be studied after these seminal publications,
with an increasing trend in the last decade. We analyzed aims, findings, and
respective experimental settings, and observed that the variability of these
elements may be responsible for some apparently contradictory findings on
bad smells (what). Moreover, we could observe that, in general, papers tend
to study different types of smells at once. However, only a small percentage
of those papers actually investigate possible relations between the respective
smells (co-studies), i.e., each smell tends to be studied in isolation. Despite
of a few relations between some types of bad smells have been investigated,
there are other possible relations for further investigation. We also report
that authors have different levels of interest in the subject, some of them
publishing sporadically and others continuously (who). We observed that
scientific connections are ruled by a large “small world” connected graph
among researchers and several small disconnected graphs. We also found that
the communities studying duplicated code and other types of bad smells are
largely separated. Finally, we observed that some venues are more likely to
disseminate knowledge on Duplicate Code (which often is listed as a confer-
ence topic on its own), while others have a more balanced distribution among

144

other smells (where). Finally, we provide a discussion on future directions
for bad smell research.

[Soremekun2021] Ezekiel Soremekun, Lukas Kirschner, Marcel Böhme,
and Andreas Zeller. Locating faults with program slicing: an em-
pirical analysis. Empirical Software Engineering, 26(3), 4 2021, DOI
10.1007/s10664-020-09931-7.
Abstract: Statistical fault localization is an easily deployed technique for
quickly determining candidates for faulty code locations. If a human pro-
grammer has to search the fault beyond the top candidate locations, though,
more traditional techniques of following dependencies along dynamic slices
may be better suited. In a large study of 457 bugs (369 single faults and
88 multiple faults) in 46 open source C programs, we compare the effec-
tiveness of statistical fault localization against dynamic slicing. For single
faults, we find that dynamic slicing was eight percentage points more effec-
tive than the best performing statistical debugging formula; for 66% of the
bugs, dynamic slicing finds the fault earlier than the best performing statis-
tical debugging formula. In our evaluation, dynamic slicing is more effective
for programs with single fault, but statistical debugging performs better on
multiple faults. Best results, however, are obtained by a hybrid approach :
If programmers first examine at most the top five most suspicious locations
from statistical debugging, and then switch to dynamic slices, on average,
they will need to examine 15% (30 lines) of the code. These findings hold
for 18 most effective statistical debugging formulas and our results are in-
dependent of the number of faults (i.e. single or multiple faults) and error
type (i.e. artificial or real errors).

[SotoValero2021] César Soto-Valero, Nicolas Harrand, Martin Monperrus,
and Benoit Baudry. A comprehensive study of bloated dependencies in
the maven ecosystem. Empirical Software Engineering, 26(3), 3 2021, DOI
10.1007/s10664-020-09914-8.
Abstract: Build automation tools and package managers have a profound
influence on software development. They facilitate the reuse of third-party
libraries, support a clear separation between the application’s code and its
external dependencies, and automate several software development tasks.
However, the wide adoption of these tools introduces new challenges related
to dependency management. In this paper, we propose an original study
of one such challenge: the emergence of bloated dependencies. Bloated de-
pendencies are libraries that the build tool packages with the application’s
compiled code but that are actually not necessary to build and run the ap-
plication. This phenomenon artificially grows the size of the built binary and
increases maintenance effort. We propose a tool, called DepClean, to analyze
the presence of bloated dependencies in Maven artifacts. We analyze 9,639
Java artifacts hosted on Maven Central, which include a total of 723,444
dependency relationships. Our key result is that 75.1% of the analyzed de-
pendency relationships are bloated. In other words, it is feasible to reduce the
number of dependencies of Maven artifacts up to 1/4 of its current count. We

145

also perform a qualitative study with 30 notable open-source projects. Our
results indicate that developers pay attention to their dependencies and are
willing to remove bloated dependencies: 18/21 answered pull requests were
accepted and merged by developers, removing 131 dependencies in total.

[Spadini2019] Davide Spadini, Fabio Palomba, Tobias Baum, Stefan Hanen-
berg, Magiel Bruntink, and Alberto Bacchelli. Test-driven code review: An
empirical study. In Proc. International Conference on Software Engineering
(ICSE). IEEE, 5 2019, DOI 10.1109/icse.2019.00110.
Abstract: Test-Driven Code Review (TDR) is a code review practice in
which a reviewer inspects a patch by examining the changed test code be-
fore the changed production code. Although this practice has been mentioned
positively by practitioners in informal literature and interviews, there is no
systematic knowledge of its effects, prevalence, problems, and advantages. In
this paper, we aim at empirically understanding whether this practice has
an effect on code review effectiveness and how developers’ perceive TDR.
We conduct (i) a controlled experiment with 93 developers that perform
more than 150 reviews, and (ii) 9 semi-structured interviews and a survey
with 103 respondents to gather information on how TDR is perceived. Key
results from the experiment show that developers adopting TDR find the
same proportion of defects in production code, but more in test code, at the
expenses of fewer maintainability issues in production code. Furthermore, we
found that most developers prefer to review production code as they deem
it more critical and tests should follow from it. Moreover, general poor test
code quality and no tool support hinder the adoption of TDR.

[Spadini2020] Davide Spadini, Gül Çalikli, and Alberto Bacchelli. Primers
or reminders?: the effects of existing review comments on code review. In
Proc. International Conference on Software Engineering (ICSE). ACM, 6
2020, DOI 10.1145/3377811.3380385.
Abstract: In contemporary code review, the comments put by reviewers
on a specific code change are immediately visible to the other reviewers in-
volved. Could this visibility prime new reviewers’ attention (due to the hu-
man’s proneness to availability bias), thus biasing the code review outcome?
In this study, we investigate this topic by conducting a controlled exper-
iment with 85 developers who perform a code review and a psychological
experiment. With the psychological experiment, we find that ≈70% of par-
ticipants are prone to availability bias. However, when it comes to the code
review, our experiment results show that participants are primed only when
the existing code review comment is about a type of bug that is not normally
considered; when this comment is visible, participants are more likely to find
another occurrence of this type of bug. Moreover, this priming effect does not
influence reviewers’ likelihood of detecting other types of bugs. Our findings
suggest that the current code review practice is effective because existing re-
view comments about bugs in code changes are not negative primers, rather
positive reminders for bugs that would otherwise be overlooked during code
review. Data and materials: https://doi.org/10.5281/zenodo.3653856

146

[Spasic2020] Mirko Spasić and Milena Vujošević Janičić. Verification sup-
ported refactoring of embedded SQL. Software Quality Journal, 29(3):629–
665, 6 2020, DOI 10.1007/s11219-020-09517-y.
Abstract: Improving code quality without changing its functionality, e.g.,
by refactoring or optimization, is an everyday programming activity. Good
programming practice requires that each such change should be followed by a
check if the change really preserves the code behavior. If such a check is per-
formed by testing, it can be time consuming and still cannot guarantee the
absence of differences in behavior between two versions of the code. Hence,
tools that could automatically verify code equivalence would be of great help.
An area that we are focused on is embedded sql programming. There are a
number of approaches for dealing with equivalence of either pairs of impera-
tive code fragments or pairs of sql statements. However, in database-driven
applications, simultaneous changes (changes that include both sql and a host
language code) are also present and important. Such changes can preserve
the overall equivalence without preserving equivalence of these two parts
considered separately. In this paper, we propose an automated approach for
dealing with equivalence of programs after such changes, a problem that is
hardly tackled in literature. Our approach uses our custom first-order logic
modeling of sql queries that corresponds to imperative semantics. The ap-
proach generates equivalence conditions that can be efficiently checked using
smt solvers or first-order logic provers. We implemented the proposed ap-
proach as a framework sqlav, which is publicly available and open source.

[Spiegler2021] Simone V. Spiegler, Christoph Heinecke, and Stefan Wagner.
An empirical study on changing leadership in agile teams. Empirical Soft-
ware Engineering, 26(3), 3 2021, DOI 10.1007/s10664-021-09949-5.
Abstract: An increasing number of companies aim to enable their devel-
opment teams to work in an agile manner. When introducing agile teams,
companies face several challenges. This paper explores the kind of leader-
ship needed to support teams to work in an agile way. One theoretical agile
leadership concept describes a Scrum Master who is supposed to empower
the team to lead itself. Empirical findings on such a leadership role are con-
troversial. We still have not understood how leadership unfolds in a team
that is by definition self-organizing. Further exploration is needed to better
understand leadership in agile teams. Our goal is to explore how leadership
changes while the team matures using the example of the Scrum Master.
Through a grounded theory study containing 75 practitioners from 11 di-
visions at the Robert Bosch GmbH we identified a set of nine leadership
roles that are transferred from the Scrum Master to the Development Team
while it matures. We uncovered that a leadership gap and a supportive in-
ternal team climate are enablers of the role transfer process, whereas role
conflicts may diminish the role transfer. To make the Scrum Master change
in a mature team, team members need to receive trust and freedom to take
on a leadership role which was previously filled by the Scrum Master. We
conclude with practical implications for managers, Product Owners, Devel-

147

opment Teams and Scrum Masters which they can apply in real settings.

[Spinellis2016] Diomidis Spinellis, Panos Louridas, and Maria Kecha-
gia. The evolution of c programming practices. In Proc. Interna-
tional Conference on Software Engineering (ICSE). ACM, 5 2016, DOI
10.1145/2884781.2884799.
Abstract: Tracking long-term progress in engineering and applied science
allows us to take stock of things we have achieved, appreciate the factors
that led to them, and set realistic goals for where we want to go. We for-
mulate seven hypotheses associated with the long term evolution of C pro-
gramming in the Unix operating system, and examine them by extracting,
aggregating, and synthesising metrics from 66 snapshots obtained from a
synthetic software configuration management repository covering a period
of four decades. We found that over the years developers of the Unix op-
erating system appear to have evolved their coding style in tandem with
advancements in hardware technology, promoted modularity to tame rising
complexity, adopted valuable new language features, allowed compilers to al-
locate registers on their behalf, and reached broad agreement regarding code
formatting. The progress we have observed appears to be slowing or even
reversing prompting the need for new sources of innovation to be discovered
and followed.

[Spinellis2021] Diomidis Spinellis and Paris Avgeriou. Evolution of
the unix system architecture: An exploratory case study. IEEE
Transactions on Software Engineering, 47(6):1134–1163, 6 2021, DOI
10.1109/tse.2019.2892149.
Abstract: Unix has evolved for almost five decades, shaping modern operat-
ing systems, key software technologies, and development practices. Studying
the evolution of this remarkable system from an architectural perspective can
provide insights on how to manage the growth of large, complex, and long-
lived software systems. Along main Unix releases leading to the FreeBSD
lineage we examine core architectural design decisions, the number of fea-
tures, and code complexity, based on the analysis of source code, reference
documentation, and related publications. We report that the growth in size
has been uniform, with some notable outliers, while cyclomatic complexity
has been religiously safeguarded. A large number of Unix-defining design
decisions were implemented right from the very early beginning, with most
of them still playing a major role. Unix continues to evolve from an ar-
chitectural perspective, but the rate of architectural innovation has slowed
down over the system’s lifetime. Architectural technical debt has accrued in
the forms of functionality duplication and unused facilities, but in terms of
cyclomatic complexity it is systematically being paid back through what ap-
pears to be a self-correcting process. Some unsung architectural forces that
shaped Unix are the emphasis on conventions over rigid enforcement, the
drive for portability, a sophisticated ecosystem of other operating systems
and development organizations, and the emergence of a federated architec-
ture, often through the adoption of third-party subsystems. These findings

148

have led us to form an initial theory on the architecture evolution of large,
complex operating system software.

[Staples2013] Mark Staples, Rafal Kolanski, Gerwin Klein, Corey Lewis,
June Andronick, Toby Murray, Ross Jeffery, and Len Bass. Formal spec-
ifications better than function points for code sizing. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, 5 2013, DOI
10.1109/icse.2013.6606692.
Abstract: Size and effort estimation is a significant challenge for the man-
agement of large-scale formal verification projects. We report on an initial
study of relationships between the sizes of artefacts from the development of
seL4, a formally-verified embedded systems microkernel. For each API func-
tion we first determined its COSMIC Function Point (CFP) count (based
on the seL4 user manual), then sliced the formal specifications and source
code, and performed a normalised line count on these artefact slices. We
found strong and significant relationships between the sizes of the artefact
slices, but no significant relationships between them and the CFP counts.
Our finding that CFP is poorly correlated with lines of code is based on
just one system, but is largely consistent with prior literature. We find CFP
is also poorly correlated with the size of formal specifications. Nonetheless,
lines of formal specification correlate with lines of source code, and this may
provide a basis for size prediction in future formal verification projects. In
future work we will investigate proof sizing.

[Stefik2011] Andreas Stefik, Susanna Siebert, Melissa Stefik, and Kim Slat-
tery. An empirical comparison of the accuracy rates of novices using the
Quorum, Perl, and Randomo programming languages. In Proc. Work-
shop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU). ACM Press, 2011, DOI 10.1145/2089155.2089159.
Abstract: We present here an empirical study comparing the accuracy rates
of novices writing software in three programming languages: Quorum, Perl,
and Randomo. The first language, Quorum, we call an evidence-based pro-
gramming language, where the syntax, semantics, and API designs change
in correspondence to the latest academic research and literature on program-
ming language usability. Second, while Perl is well known, we call Randomo
a Placebo-language, where some of the syntax was chosen with a random
number generator and the ASCII table. We compared novices that were
programming for the first time using each of these languages, testing how
accurately they could write simple programs using common program con-
structs (e.g., loops, conditionals, functions, variables, parameters). Results
showed that while Quorum users were afforded significantly greater accuracy
compared to those using Perl and Randomo, Perl users were unable to write
programs more accurately than those using a language designed by chance.

[Stefik2013] Andreas Stefik and Susanna Siebert. An empirical investigation
into programming language syntax. ACM Transactions on Computing Edu-
cation, 13(4):1–40, 11 2013, DOI 10.1145/2534973.

149

Abstract: Recent studies in the literature have shown that syntax remains
a significant barrier to novice computer science students in the field. While
this syntax barrier is known to exist, whether and how it varies across pro-
gramming languages has not been carefully investigated. For this article, we
conducted four empirical studies on programming language syntax as part
of a larger analysis into the, so called, programming language wars. We first
present two surveys conducted with students on the intuitiveness of syn-
tax, which we used to garner formative clues on what words and symbols
might be easy for novices to understand. We followed up with two studies
on the accuracy rates of novices using a total of six programming languages:
Ruby, Java, Perl, Python, Randomo, and Quorum. Randomo was designed
by randomly choosing some keywords from the ASCII table (a metaphorical
placebo). To our surprise, we found that languages using a more traditional
C-style syntax (both Perl and Java) did not afford accuracy rates signifi-
cantly higher than a language with randomly generated keywords, but that
languages which deviate (Quorum, Python, and Ruby) did. These results,
including the specifics of syntax that are particularly problematic for novices,
may help teachers of introductory programming courses in choosing appro-
priate first languages and in helping students to overcome the challenges
they face with syntax.

[Stol2018] Klaas-Jan Stol and Brian Fitzgerald. The ABC of software engi-
neering research. ACM Transactions on Software Engineering and Method-
ology, 27(3):1–51, 10 2018, DOI 10.1145/3241743.
Abstract: A variety of research methods and techniques are available to SE
researchers, and while several overviews exist, there is consistency neither
in the research methods covered nor in the terminology used. Furthermore,
research is sometimes critically reviewed for characteristics inherent to the
methods. We adopt a taxonomy from the social sciences, termed here the
ABC framework for SE research, which offers a holistic view of eight archety-
pal research strategies. ABC refers to the research goal that strives for gen-
eralizability over Actors (A) and precise measurement of their Behavior (B),
in a realistic Context (C). The ABC framework uses two dimensions widely
considered to be key in research design: the level of obtrusiveness of the
research and the generalizability of research findings. We discuss metaphors
for each strategy and their inherent limitations and potential strengths. We
illustrate these research strategies in two key SE domains, global software
engineering and requirements engineering, and apply the framework on a
sample of 75 articles. Finally, we discuss six ways in which the framework
can advance SE research.

[Stolee2011] Kathryn T. Stolee and Sebastian Elbaum. Refactoring
pipe-like mashups for end-user programmers. In Proc. International
Conference on Software Engineering (ICSE). ACM, 5 2011, DOI
10.1145/1985793.1985805.
Abstract: Mashups are becoming increasingly popular as end users are able
to easily access, manipulate, and compose data from many web sources. We

150

have observed, however, that mashups tend to suffer from deficiencies that
propagate as mashups are reused. To address these deficiencies, we would
like to bring some of the benefits of software engineering techniques to the
end users creating these programs. In this work, we focus on identifying code
smells indicative of the deficiencies we observed in web mashups programmed
in the popular Yahoo! Pipes environment. Through an empirical study, we
explore the impact of those smells on end-user programmers and observe that
users generally prefer mashups without smells. We then introduce refactor-
ings targeting those smells, reducing the complexity of the mashup programs,
increasing their abstraction, updating broken data sources and dated compo-
nents, and standardizing their structures to fit the community development
patterns. Our assessment of a large sample of mashups shows that smells are
present in 81% of them and that the proposed refactorings can reduce the
number of smelly mashups to 16%, illustrating the potential of refactoring
to support the thousands of end users programming mashups.

[Stray2021] Viktoria Stray, Raluca Florea, and Lucas Paruch. Exploring hu-
man factors of the agile software tester. Software Quality Journal, 6 2021,
DOI 10.1007/s11219-021-09561-2.
Abstract: Although extensive research has been conducted on the charac-
teristics of the agile developer, little attention has been given to the features
of the software-testing role. This paper explores the human factors of the
software testers working in agile projects through a qualitative study focus-
ing on how these factors are perceived. We interviewed 22 agile software
practitioners working in three international companies: 14 testers, five de-
velopers, and three designers. Additionally, we observed 11 meetings and
daily work of 13 participants in one of the companies. Our findings show
that the views on the human factors shaping the agile software tester’s role
were crystallized into seven traits, which the agile team members saw as
central for the software-testing role: the ability to see the whole picture,
good communication skills, detail-orientation, structuredness, creativeness,
curiosity, and adaptability. The testers spent half their day communicating
and learned how to mitigate the fact that they had to bring bad news to
other project members. They also facilitated communication between the
business side and development. Based on our results, we propose the seven
traits as dimensions to consider for organizations recruiting agile software
testers, as well as a reference for IT and non-IT professionals considering a
software-testing career.

[Stylos2007] Jeffrey Stylos and Steven Clarke. Usability implications of requir-
ing parameters in objects' constructors. In Proc. International Conference on
Software Engineering (ICSE). IEEE, 5 2007, DOI 10.1109/icse.2007.92.
Abstract: The usability of APIs is increasingly important to programmer
productivity. Based on experience with usability studies of specific APIs,
techniques were explored for studying the usability of design choices common
to many APIs. A comparative study was performed to assess how professional
programmers use APIs with required parameters in objects’ constructors as

151

opposed to parameterless “default” constructors. It was hypothesized that
required parameters would create more usable and self- documenting APIs
by guiding programmers toward the correct use of objects and preventing er-
rors. However, in the study, it was found that, contrary to expectations, pro-
grammers strongly preferred and were more effective with APIs that did not
require constructor parameters. Participants’ behavior was analyzed using
the cognitive dimensions framework, and revealing that required constructor
parameters interfere with common learning strategies, causing undesirable
premature commitment.

[Taipalus2018] Toni Taipalus, Mikko Siponen, and Tero Vartiainen. Errors
and complications in SQL query formulation. ACM Transactions on Com-
puting Education, 18(3):1–29, 9 2018, DOI 10.1145/3231712.
Abstract: SQL is taught in almost all university level database courses, yet
SQL has received relatively little attention in educational research. In this
study, we present a database management system independent categoriza-
tion of SQL query errors that students make in an introductory database
course. We base the categorization on previous literature, present a class of
logical errors that has not been studied in detail, and review and complement
these findings by analyzing over 33,000 SQL queries submitted by students.
Our analysis verifies error findings presented in previous literature and re-
veals new types of errors, namely logical errors recurring in similar manners
among different students. We present a listing of fundamental SQL query
concepts we have identified and based our exercises on, a categorization of
different errors and complications, and an operational model for designing
SQL exercises.

[Taipalus2021] Toni Taipalus, Hilkka Grahn, and Hadi Ghanbari. Error mes-
sages in relational database management systems: A comparison of effec-
tiveness, usefulness, and user confidence. Journal of Systems and Software,
181:111034, 11 2021, DOI 10.1016/j.jss.2021.111034.
Abstract: The database and the database management system (DBMS) are
two of the main components of any information system. Structured Query
Language (SQL) is the most popular query language for retrieving data from
the database, as well as for many other data management tasks. During sys-
tem development and maintenance, software developers use a considerable
amount of time to interpret compiler error messages. The quality of these
error messages has been demonstrated to affect software development effec-
tiveness, and correctly formulating queries and fixing them when needed is
an important task for many software developers. In this study, we set out
to investigate how participants (N = 152) experienced the qualities of error
messages of four popular DBMSs in terms of error message effectiveness,
perceived usefulness for finding and fixing errors, and error recovery con-
fidence. Our results show differences between the DBMSs by three of the
four metrics, and indicate a discrepancy between objective effectiveness and
subjective usefulness. The results suggest that although error messages have
perceived differences in terms of usefulness for finding and fixing errors, these

152

differences may not necessarily result in differences in query fixing success
rates.

[Tamburri2020] Damian Andrew Tamburri, Kelly Blincoe, Fabio Palomba,
and Rick Kazman. “the canary in the coal mine. . . ” a cautionary tale from
the decline of SourceForge. Software: Practice and Experience, 50(10):1930–
1951, 7 2020, DOI 10.1002/spe.2874.
Abstract: Forges are online collaborative platforms to support the devel-
opment of distributed open source software. While once mighty keepers of
open source vitality, software forges are rapidly becoming less and less rel-
evant. For example, of the top 10 forges in 2011, only one survives today—
SourceForge—the biggest of them all, but its numbers are dropping and its
community is tenuous at best. Through mixed-methods research, this article
chronicles and analyze the software practice and experiences of the project’s
history—in particular its architectural and community/organizational deci-
sions. We discovered a number of suboptimal social and architectural de-
cisions and circumstances that, may have led to SourceForge’s demise. In
addition, we found evidence suggesting that the impact of such decisions
could have been monitored, reduced, and possibly avoided altogether. The
use of sociotechnical insights needs to become a basic set of design and soft-
ware/organization monitoring principles that tell a cautionary tale on what
to measure and what not to do in the context of large-scale software forge
and community design and management.

[Tan2020a] Xin Tan, Minghui Zhou, and Zeyu Sun. A first look at good
first issues on GitHub. In Proc. European Software Engineering Confer-
ence/International Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 11 2020, DOI 10.1145/3368089.3409746.
Abstract: Keeping a good influx of newcomers is critical for open source
software projects’ survival, while newcomers face many barriers to contribut-
ing to a project for the first time. To support newcomers onboarding, GitHub
encourages projects to apply labels such as good first issue (GFI) to tag
issues suitable for newcomers. However, many newcomers still fail to con-
tribute even after many attempts, which not only reduces the enthusiasm of
newcomers to contribute but makes the efforts of project members in vain.
To better support the onboarding of newcomers, this paper reports a pre-
liminary study on this mechanism from its application status, effect, prob-
lems, and best practices. By analyzing 9,368 GFIs from 816 popular GitHub
projects and conducting email surveys with newcomers and project members,
we obtain the following results. We find that more and more projects are ap-
plying this mechanism in the past decade, especially the popular projects.
Compared to common issues, GFIs usually need more days to be solved.
While some newcomers really join the projects through GFIs, almost half of
GFIs are not solved by newcomers. We also discover a series of problems cov-
ering mechanism (e.g., inappropriate GFIs), project (e.g., insufficient GFIs)
and newcomer (e.g., uneven skills) that makes this mechanism ineffective.

153

We discover the practices that may address the problems, including iden-
tifying GFIs that have informative description and available support, and
require limited scope and skill, etc. Newcomer onboarding is an important
but challenging question in open source projects and our work enables a bet-
ter understanding of GFI mechanism and its problems, as well as highlights
ways in improving them.

[Tan2020b] Jie Tan, Daniel Feitosa, Paris Avgeriou, and Mircea Lungu. Evo-
lution of technical debt remediation in python: A case study on the apache
software ecosystem. Journal of Software: Evolution and Process, 33(4), 11
2020, DOI 10.1002/smr.2319.
Abstract: In recent years, the evolution of software ecosystems and the
detection of technical debt received significant attention by researchers from
both industry and academia. While a few studies that analyze various as-
pects of technical debt evolution already exist, to the best of our knowledge,
there is no large-scale study that focuses on the remediation of technical
debt over time in Python projects—that is, one of the most popular pro-
gramming languages at the moment. In this paper, we analyze the evolution
of technical debt in 44 Python open-source software projects belonging to
the Apache Software Foundation. We focus on the type and amount of tech-
nical debt that is paid back. The study required the mining of over 60K
commits, detailed code analysis on 3.7K system versions, and the analysis of
almost 43K fixed issues. The findings show that most of the repayment ef-
fort goes into testing, documentation, complexity, and duplication removal.
Moreover, more than half of the Python technical debt is short term being
repaid in less than 2 months. In particular, the observations that a minority
of rules account for the majority of issues fixed and spent effort suggest that
addressing those kinds of debt in the future is important for research and
practice.

[Tao2021] Yida Tao, Zhihui Chen, Yepang Liu, Jifeng Xuan, Zhiwu Xu, and
Shengchao Qin. Demystifying “bad” error messages in data science libraries.
In Proc. European Software Engineering Conference/International Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE). ACM, 8
2021, DOI 10.1145/3468264.3468560.
Abstract: Error messages are critical starting points for debugging. Unfor-
tunately, they seem to be notoriously cryptic, confusing, and uninformative.
Yet, it still remains a mystery why error messages receive such bad rep-
utations, especially given that they are merely very short pieces of natural
language text. In this paper, we empirically demystify the causes and fixes of
“bad” error messages, by qualitatively studying 201 Stack Overflow threads
and 335 GitHub issues. We specifically focus on error messages encountered
in data science development, which is an increasingly important but not well
studied domain. We found that the causes of “bad” error messages are far
more complicated than poor phrasing or flawed articulation of error mes-
sage content. Many error messages are inherently and inevitably misleading
or uninformative, since libraries do not know user intentions and cannot

154

“see” external errors. Fixes to error-message-related issues mostly involve
source code changes, while exclusive message content updates only take up
a small portion. In addition, whether an error message is informative or help-
ful is not always clear-cut; even error messages that clearly pinpoint faults
and resolutions can still cause confusion for certain users. These findings
thus call for a more in-depth investigation on how error messages should be
evaluated and improved in the future.

[Tew2011] Allison Elliott Tew and Mark Guzdial. The FCS1: a language
independent assessment of CS1 knowledge. In Proc. Technical Sympo-
sium on Computer Science Education (SIGCSE). ACM Press, 2011, DOI
10.1145/1953163.1953200.
Abstract: A primary goal of many CS education projects is to determine
the extent to which a given intervention has had an impact on student
learning. However, computing lacks valid assessments for pedagogical or re-
search purposes. Without such valid assessments, it is difficult to accurately
measure student learning or establish a relationship between the instruc-
tional setting and learning outcomes. We developed the Foundational CS1
(FCS1) Assessment instrument, the first assessment instrument for introduc-
tory computer science concepts that is applicable across a variety of current
pedagogies and programming languages. We applied methods from educa-
tional and psychological test development, adapting them as necessary to
fit the disciplinary context. We conducted a large scale empirical study to
demonstrate that pseudo-code was an appropriate mechanism for achieving
programming language independence. Finally, we established the validity of
the assessment using a multi-faceted argument, combining interview data,
statistical analysis of results on the assessment, and CS1 exam scores.

[Thongtanunam2016] Patanamon Thongtanunam, Shane McIntosh,
Ahmed E. Hassan, and Hajimu Iida. Revisiting code ownership and its
relationship with software quality in the scope of modern code review. In
Proc. International Conference on Software Engineering (ICSE). ACM, 5
2016, DOI 10.1145/2884781.2884852.
Abstract: Code ownership establishes a chain of responsibility for modules
in large software systems. Although prior work uncovers a link between
code ownership heuristics and software quality, these heuristics rely solely
on the authorship of code changes. In addition to authoring code changes,
developers also make important contributions to a module by reviewing
code changes. Indeed, recent work shows that reviewers are highly active
in modern code review processes, often suggesting alternative solutions
or providing updates to the code changes. In this paper, we complement
traditional code ownership heuristics using code review activity. Through
a case study of six releases of the large Qt and OpenStack systems, we
find that: (1) 67%-86% of developers did not author any code changes
for a module, but still actively contributed by reviewing 21%-39% of the
code changes, (2) code ownership heuristics that are aware of reviewing
activity share a relationship with software quality, and (3) the proportion of

155

reviewers without expertise shares a strong, increasing relationship with the
likelihood of having post-release defects. Our results suggest that reviewing
activity captures an important aspect of code ownership, and should be
included in approximations of it in future studies.

[Tomasdottir2020] Krist́ın Fjóla Tómasdóttir, Mauŕıcio Aniche, and Arie van
Deursen. The adoption of JavaScript linters in practice: A case study on
ESLint. IEEE Transactions on Software Engineering, 46(8):863–891, 8 2020,
DOI 10.1109/tse.2018.2871058.
Abstract: A linter is a static analysis tool that warns software developers
about possible code errors or violations to coding standards. By using such
a tool, errors can be surfaced early in the development process when they
are cheaper to fix. For a linter to be successful, it is important to understand
the needs and challenges of developers when using a linter. In this paper, we
examine developers’ perceptions on JavaScript linters. We study why and
how developers use linters along with the challenges they face while using
such tools. For this purpose we perform a case study on ESLint, the most
popular JavaScript linter. We collect data with three different methods where
we interviewed 15 developers from well-known open source projects, analyzed
over 9,500 ESLint configuration files, and surveyed 337 developers from the
JavaScript community. Our results provide practitioners with reasons for
using linters in their JavaScript projects as well as several configuration
strategies and their advantages. We also provide a list of linter rules that are
often enabled and disabled, which can be interpreted as the most important
rules to reason about when configuring linters. Finally, we propose several
feature suggestions for tool makers and future work for researchers.

[Tomassi2019] David A. Tomassi, Naji Dmeiri, Yichen Wang, Antara
Bhowmick, Yen-Chuan Liu, Premkumar T. Devanbu, Bogdan Vasilescu,
and Cindy Rubio-Gonzalez. BugSwarm: Mining and continuously grow-
ing a dataset of reproducible failures and fixes. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, 5 2019, DOI
10.1109/icse.2019.00048.
Abstract: Fault-detection, localization, and repair methods are vital to
software quality; but it is difficult to evaluate their generality, applicabil-
ity, and current effectiveness. Large, diverse, realistic datasets of durably-
reproducible faults and fixes are vital to good experimental evaluation of
approaches to software quality, but they are difficult and expensive to assem-
ble and keep current. Modern continuous-integration (CI) approaches, like
TRAVIS-CI, which are widely used, fully configurable, and executed within
custom-built containers, promise a path toward much larger defect datasets.
If we can identify and archive failing and subsequent passing runs, the con-
tainers will provide a substantial assurance of durable future reproducibility
of build and test. Several obstacles, however, must be overcome to make
this a practical reality. We describe BUGSWARM, a toolset that navigates
these obstacles to enable the creation of a scalable, diverse, realistic, con-
tinuously growing set of durably reproducible failing and passing versions

156

of real-world, open-source systems. The BUGSWARM toolkit has already
gathered 3,091 fail-pass pairs, in Java and Python, all packaged within fully
reproducible containers. Furthermore, the toolkit can be run periodically to
detect fail-pass activities, thus growing the dataset continually.

[Tourani2017] Parastou Tourani, Bram Adams, and Alexander Serebrenik.
Code of conduct in open source projects. In Proc. International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2 2017,
DOI 10.1109/saner.2017.7884606.
Abstract: Open source projects rely on collaboration of members from
all around the world using web technologies like GitHub and Gerrit. This
mixture of people with a wide range of backgrounds including minorities like
women, ethnic minorities, and people with disabilities may increase the risk
of offensive and destroying behaviours in the community, potentially leading
affected project members to leave towards a more welcoming and friendly
environment. To counter these effects, open source projects increasingly are
turning to codes of conduct, in an attempt to promote their expectations
and standards of ethical behaviour. In this first of its kind empirical study of
codes of conduct in open source software projects, we investigated the role,
scope and influence of codes of conduct through a mixture of quantitative and
qualitative analysis, supported by interviews with practitioners. We found
that the top codes of conduct are adopted by hundreds to thousands of
projects, while all of them share 5 common dimensions.

[Trang2021] Simon Trang and Welf H. Weiger. The perils of gamification:
Does engaging with gamified services increase users’ willingness to disclose
personal information? Computers in Human Behavior, 116:106644, 3 2021,
DOI 10.1016/j.chb.2020.106644.
Abstract: The increasing use of gamification in the digital service landscape
has caught the attention of practitioners and marketers alike. Alarmingly,
most of the empirical research has attested to the benefits of such gami-
fied service (e.g. apps) use while neglecting to address potential drawbacks.
This research suggests that users of gamified apps end up being more likely
to share private information with firms, thus threatening their own per-
sonal information privacy. Against this background, the present study links
gamification to information disclosure and demonstrates that if a gamified
service conveys experiences of, for instance, social comparison, it can indeed
lead to greater willingness to disclose personal information. This relationship
can be explained by the users’ increased resource depletion through cogni-
tive absorption (i.e. the concentration of one’s entire affective, cognitive,
and physical resources on the task at hand). The results further indicate
that engaging with gamified apps indeed affects the situational processing
of privacy-related decisions (i.e. calculating benefits vs. risks) and the role
of dispositional antecedents: In states of deep cognitive absorption, users
disclose even more information when they perceive privacy benefits (i.e.,
situational) and even less when they have high privacy concerns (i.e., dispo-
sitional).

157

[Tregubov2017] Alexey Tregubov, Barry Boehm, Natalia Rodchenko, and
Jo Ann Lane. Impact of task switching and work interruptions on software
development processes. In Proc. International Conference on Software and
System Process (ICSSP). ACM, 7 2017, DOI 10.1145/3084100.3084116.
Abstract: Software developers often work on multiple projects and tasks
throughout a work day, which may affect their productivity and quality of
work. Knowing how working on several projects at a time affects productiv-
ity can improve cost and schedule estimations. It also can provide additional
insights for better work scheduling and the development process. We want
to achieve a better productivity without losing the benefits of work interrup-
tions and multitasking for developers involved in the process. To understand
how the development process can be improved, first, we identify work in-
terruptions that mostly have a negative effect on productivity, second, we
need to quantitatively evaluate impact of multitasking (task switching, work
context switching) and work interruptions on productivity. In this research
we study cross-project multitasking among the developers working on mul-
tiple projects in an educational setting. We propose a way to evaluate the
number of cross-project interruptions among software developers using self-
reported work logs. This paper describes the research that found: a) software
developers involved in two or more projects on average spend 17% of their
development effort on cross-project interruptions, b) the amount of effort
spent on interruptions is overestimated by the G. Weinberg’s heuristic, c)
the correlation between the number of projects and effort spent by develop-
ers on cross-project interruptions is relatively weak, and d) there is strong
correlation between the number of projects and the number of interruptions
developers reported.

[Turcotte2020] Alexi Turcotte, Aviral Goel, Filip Křikava, and Jan Vitek.
Designing types for R, empirically. Proceedings of the ACM on Programming
Languages, 4(OOPSLA):1–25, 11 2020, DOI 10.1145/3428249.
Abstract: The R programming language is widely used in a variety of
domains. It was designed to favor an interactive style of programming with
minimal syntactic and conceptual overhead. This design is well suited to
data analysis, but a bad fit for tools such as compilers or program analyzers.
In particular, R has no type annotations, and all operations are dynamically
checked at run-time. The starting point for our work are the two questions:
what expressive power is needed to accurately type R code? and which type
system is the R community willing to adopt? Both questions are difficult
to answer without actually experimenting with a type system. The goal of
this paper is to provide data that can feed into that design process. To this
end, we perform a large corpus analysis to gain insights in the degree of
polymorphism exhibited by idiomatic R code and explore potential benefits
that the R community could accrue from a simple type system. As a starting
point, we infer type signatures for 25,215 functions from 412 packages among
the most widely used open source R libraries. We then conduct an evaluation
on 8,694 clients of these packages, as well as on end-user code from the Kaggle

158

data science competition website.

[Uesbeck2020] P. Merlin Uesbeck, Cole S. Peterson, Bonita Sharif, and An-
dreas Stefik. A randomized controlled trial on the effects of embedded com-
puter language switching. In Proc. European Software Engineering Confer-
ence/International Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM, 11 2020, DOI 10.1145/3368089.3409701.
Abstract: Polyglot programming, the use of multiple programming lan-
guages during the development process, is common practice in modern soft-
ware development. This study investigates this practice through a random-
ized controlled trial conducted under the context of database programming.
Participants in the study were given coding tasks written in Java and one of
three SQL-like embedded languages. One was plain SQL in strings, one was
in Java only, and the third was a hybrid embedded language that was closer
to the host language. We recorded 109 valid data points. Results showed sig-
nificant differences in how developers of different experience levels code using
polyglot techniques. Notably, less experienced programmers wrote correct
programs faster in the hybrid condition (frequent, but less severe, switches),
while more experienced developers that already knew both languages per-
formed better in traditional SQL (less frequent but more complete switches).
The results indicate that the productivity impact of polyglot programming
is complex and experience level dependent.

[Vanhanen2007] Jari Vanhanen and Harri Korpi. Experiences of using pair
programming in an agile project. In Proc. Hawaii International Conference
on System Sciences (HICSS). IEEE, 2007, DOI 10.1109/hicss.2007.218.
Abstract: The interest in pair programming (PP) has increased recently,
e.g. by the popularization of agile software development. However, many
practicalities of PP are poorly understood. We present experiences of using
PP extensively in an industrial project. The fact that the team had a lim-
ited number of high-end workstations forced it in a positive way to quick
deployment and rigorous use of PP. The developers liked PP and learned
it easily. Initially, the pairs were not rotated frequently but adopting daily,
random rotation improved the situation. Frequent rotation seemed to im-
prove knowledge transfer. The driver/navigator roles were switched seldom,
but still the partners communicated actively. The navigator rarely spotted
defects during coding, but the released code contained almost no defects.
Test-driven development and design in pairs possibly decreased defects. The
developers considered that PP improved quality and knowledge transfer, and
was better suited for complex tasks than for easy tasks

[Venigalla2021] Akhila Sri Manasa Venigalla and Sridhar Chimalakonda. On
the comprehension of application programming interface usability in game
engines. Software: Practice and Experience, 51(8):1728–1744, 5 2021, DOI
10.1002/spe.2985.
Abstract: Extensive development of games for various purposes including
education and entertainment has resulted in increased development of game

159

engines. Game engines are being used on a large scale as they support and
simplify game development to a greater extent. Game developers using game
engines are often compelled to use various application programming inter-
faces (APIs) of game engines in the process of game development. Thus,
both quality and ease of development of games are greatly influenced by
APIs defined in game engines. Hence, understanding API usability in game
engines could greatly help in choosing better game engines among the ones
that are available for game development and also could help developers in
designing better game engines. In this article, we thus aim to evaluate API
usability of 95 publicly available game engine repositories on GitHub, writ-
ten primarily in C++ programming language. We test API usability of these
game engines against the eight structural API usability metrics—AMNOI,
AMNCI, AMGI, APXI, APLCI, AESI, ATSI, and ADI. We see this research
as a first step toward the direction of improving usability of APIs in game
engines. We present the results of the study, which indicate that about 25%
of the game engines considered have minimal API usability, with respect to
the considered metrics. It was observed that none of the considered reposi-
tories have ideal (all metric scores equal to 1) API usability, indicating the
need for developers to consider API usability metrics while designing game
engines.

[Wang2016] Xinyu Wang, Sumit Gulwani, and Rishabh Singh. FIDEX: filter-
ing spreadsheet data using examples. In Proc. International Conference on
Object-Oriented Programming Systems Languages and Applications (OOP-
SLA). ACM, 10 2016, DOI 10.1145/2983990.2984030.
Abstract: Data filtering in spreadsheets is a common problem faced by
millions of end-users. The task of data filtering requires a computational
model that can separate intended positive and negative string instances.
We present a system, FIDEX, that can efficiently learn desired data filter-
ing expressions from a small set of positive and negative string examples.
There are two key ideas of our approach. First, we design an expressive DSL
to represent disjunctive filter expressions needed for several real-world data
filtering tasks. Second, we develop an efficient synthesis algorithm for in-
crementally learning consistent filter expressions in the DSL from very few
positive and negative examples. A DAG-based data structure is used to suc-
cinctly represent a large number of filter expressions, and two corresponding
operators are defined for algorithmically handling positive and negative ex-
amples, namely, the intersection and subtraction operators. FIDEX is able
to learn data filters for 452 out of 460 real-world data filtering tasks in real
time (0.22s), using only 2.2 positive string instances and 2.7 negative string
instances on average.

[Wang2020] Peipei Wang, Chris Brown, Jamie A. Jennings, and Kathryn T.
Stolee. An empirical study on regular expression bugs. In Proc. Interna-
tional Conference on Mining Software Repositories (MSR). ACM, 6 2020,
DOI 10.1145/3379597.3387464.
Abstract: Understanding the nature of regular expression (regex) issues

160

is important to tackle practical issues developers face in regular expression
usage. Knowledge about the nature and frequency of various types of regu-
lar expression issues, such as those related to performance, API misuse, and
code smells, can guide testing, inform documentation writers, and motivate
refactoring efforts. However, beyond ReDoS (Regular expression Denial of
Service), little is known about to what extent regular expression issues af-
fect software development and how these issues are addressed in practice.
This paper presents a comprehensive empirical study of 350 merged regex-
related pull requests from Apache, Mozilla, Facebook, and Google GitHub
repositories. Through classifying the root causes and manifestations of those
bugs, we show that incorrect regular expression behavior is the dominant
root cause of regular expression bugs (165/356, 46.3%). The remaining root
causes are incorrect API usage (9.3%) and other code issues that require
regular expression changes in the fix (29.5%). By studying the code changes
of regex-related pull requests, we observe that fixing regular expression bugs
is nontrivial as it takes more time and more lines of code to fix them com-
pared to the general pull requests. The results of this study contribute to a
broader understanding of the practical problems faced by developers when
using regular expressions.

[Washburn2016] Michael Washburn, Pavithra Sathiyanarayanan, Meiyappan
Nagappan, Thomas Zimmermann, and Christian Bird. What went right and
what went wrong: an analysis of 155 postmortems from game development.
In Proc. International Conference on Software Engineering (ICSE). ACM,
5 2016, DOI 10.1145/2889160.2889253.
Abstract: In game development, software teams often conduct post-
mortems to reflect on what went well and what went wrong in a project.
The postmortems are shared publicly on gaming sites or at developer con-
ferences. In this paper, we present an analysis of 155 postmortems published
on the gaming site Gamasutra.com. We identify characteristics of game de-
velopment, link the characteristics to positive and negative experiences in
the postmortems and distill a set of best practices and pitfalls for game
development.

[WeillTessier2021] Pierre Weill-Tessier, Alexandra Lucia Costache, and Neil
C. C. Brown. Usage of the Java language by novices over time: im-
plications for tool and language design. In Proc. Technical Sympo-
sium on Computer Science Education (SIGCSE). ACM, 3 2021, DOI
10.1145/3408877.3432408.
Abstract: Java is a popular programming language for teaching at univer-
sity level. BlueJ is a popular tool for teaching Java to beginners. We provide
several analyses of Java use in BlueJ to answer three questions: what use is
made of different parts of Java by beginners when learning to program; how
has this pattern of use changed between 2013 and 2019 in a longstanding
language such as Java; and to what extent do beginners follow the specific
style that BlueJ is designed to guide them into? These analyses allow us

161

to see what features are important in object-oriented introductory program-
ming languages, which could inform language and tool designers—and see
to what extent the design of these programming tools can have an effect
on the way the language is used. We find that many beginners disobey the
guidelines that BlueJ promotes, and that patterns of Java use are generally
stable over time—but we do see decreased exception use and a change in
target application domains away from GUI programming towards text pro-
cessing. We conclude that programming languages for novices could have
fewer built-in types but should retain rich libraries.

[Weintrop2017] David Weintrop and Uri Wilensky. Comparing block-based
and text-based programming in high school computer science classrooms.
ACM Transactions on Computing Education, 18(1):1–25, 12 2017, DOI
10.1145/3089799.
Abstract: The number of students taking high school computer science
classes is growing. Increasingly, these students are learning with graphical,
block-based programming environments either in place of or prior to tradi-
tional text-based programming languages. Despite their growing use in for-
mal settings, relatively little empirical work has been done to understand the
impacts of using block-based programming environments in high school class-
rooms. In this article, we present the results of a 5-week, quasi-experimental
study comparing isomorphic block-based and text-based programming en-
vironments in an introductory high school programming class. The findings
from this study show students in both conditions improved their scores be-
tween pre- and postassessments; however, students in the blocks condition
showed greater learning gains and a higher level of interest in future com-
puting courses. Students in the text condition viewed their programming
experience as more similar to what professional programmers do and as
more effective at improving their programming ability. No difference was
found between students in the two conditions with respect to confidence or
enjoyment. The implications of these findings with respect to pedagogy and
design are discussed, along with directions for future work.

[Weir2021] Charles Weir, Ingolf Becker, and Lynne Blair. A passion for
security: Intervening to help software developers. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, 5 2021, DOI
10.1109/icse-seip52600.2021.00011.
Abstract: While the techniques to achieve secure, privacy-preserving soft-
ware are now well understood, evidence shows that many software devel-
opment teams do not use them: they lack the ’security maturity’ to assess
security needs and decide on appropriate tools and processes; and they lack
the ability to negotiate with product management for the required resources.
This paper describes a measuring approach to assess twelve aspects of this
security maturity; its use to assess the impact of a lightweight package of
workshops designed to increase security maturity; and a novel approach
within that package to support developers in resource negotiation. Based
on trials in eight organizations, involving over 80 developers, this paper

162

demonstrates that (1) development teams can notably improve their secu-
rity maturity even in the absence of security specialists; and (2) suitably
guided, developers can find effective ways to promote security to product
management. Empowering developers to make their own decisions and pro-
mote security in this way offers a powerful grassroots approach to improving
the security of software worldwide.

[Wessel2020] Mairieli Wessel, Alexander Serebrenik, Igor Wiese, Igor Stein-
macher, and Marco A. Gerosa. Effects of adopting code review bots
on pull requests to OSS projects. In Proc. International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 9 2020, DOI
10.1109/icsme46990.2020.00011.
Abstract: Software bots, which are widely adopted by Open Source Soft-
ware (OSS) projects, support developers on several activities, including code
review. However, as with any new technology adoption, bots may impact
group dynamics. Since understanding and anticipating such effects is im-
portant for planning and management, we investigate how several activity
indicators change after the adoption of a code review bot. We employed a
regression discontinuity design on 1,194 software projects from GitHub. Our
results indicate that the adoption of code review bots increases the num-
ber of monthly merged pull requests, decreases monthly non-merged pull
requests, and decreases communication among developers. Practitioners and
maintainers may leverage our results to understand, or even predict, bot
effects on their projects’ social interactions.

[Wicherts2011] Jelte M. Wicherts, Marjan Bakker, and Dylan Molenaar.
Willingness to share research data is related to the strength of the evidence
and the quality of reporting of statistical results. PLoS ONE, 6(11):e26828,
11 2011, DOI 10.1371/journal.pone.0026828.
Abstract: Background The widespread reluctance to share published re-
search data is often hypothesized to be due to the authors’ fear that re-
analysis may expose errors in their work or may produce conclusions that
contradict their own. However, these hypotheses have not previously been
studied systematically. Methods and Findings We related the reluctance to
share research data for reanalysis to 1148 statistically significant results re-
ported in 49 papers published in two major psychology journals. We found
the reluctance to share data to be associated with weaker evidence (against
the null hypothesis of no effect) and a higher prevalence of apparent errors
in the reporting of statistical results. The unwillingness to share data was
particularly clear when reporting errors had a bearing on statistical signifi-
cance. Conclusions Our findings on the basis of psychological papers suggest
that statistical results are particularly hard to verify when reanalysis is more
likely to lead to contrasting conclusions. This highlights the importance of
establishing mandatory data archiving policies.

[Wilkerson2012] Jerod W. Wilkerson, Jay F. Nunamaker, and Rick Mercer.
Comparing the defect reduction benefits of code inspection and test-driven

163

development. IEEE Transactions on Software Engineering, 38(3):547–560,
5 2012, DOI 10.1109/tse.2011.46.
Abstract: This study is a quasi experiment comparing the software defect
rates and implementation costs of two methods of software defect reduction:
code inspection and test-driven development. We divided participants, con-
sisting of junior and senior computer science students at a large Southwestern
university, into four groups using a two-by-two, between-subjects, factorial
design and asked them to complete the same programming assignment using
either test-driven development, code inspection, both, or neither. We com-
pared resulting defect counts and implementation costs across groups. We
found that code inspection is more effective than test-driven development at
reducing defects, but that code inspection is also more expensive. We also
found that test-driven development was no more effective at reducing defects
than traditional programming methods.

[Xu2015] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pa-
supathy, and Rukma Talwadker. Hey, you have given me too many knobs!:
understanding and dealing with over-designed configuration in system soft-
ware. In Proc. International Symposium on the Foundations of Software
Engineering (FSE). ACM, 8 2015, DOI 10.1145/2786805.2786852.
Abstract: Configuration problems are not only prevalent, but also severely
impair the reliability of today’s system software. One fundamental reason is
the ever-increasing complexity of configuration, reflected by the large number
of configuration parameters (“knobs”). With hundreds of knobs, configur-
ing system software to ensure high reliability and performance becomes a
daunting, error-prone task. This paper makes a first step in understanding a
fundamental question of configuration design: “do users really need so many
knobs?” To provide the quantitatively answer, we study the configuration
settings of real-world users, including thousands of customers of a commer-
cial storage system (Storage-A), and hundreds of users of two widely-used
open-source system software projects. Our study reveals a series of inter-
esting findings to motivate software architects and developers to be more
cautious and disciplined in configuration design. Motivated by these find-
ings, we provide a few concrete, practical guidelines which can significantly
reduce the configuration space. Take Storage-A as an example, the guidelines
can remove 51.9% of its parameters and simplify 19.7% of the remaining ones
with little impact on existing users. Also, we study the existing configuration
navigation methods in the context of “too many knobs” to understand their
effectiveness in dealing with the over-designed configuration, and to provide
practices for building navigation support in system software.

[Yasmin2020] Jerin Yasmin, Yuan Tian, and Jinqiu Yang. A first look at
the deprecation of RESTful APIs: An empirical study. In Proc. Interna-
tional Conference on Software Maintenance and Evolution (ICSME). IEEE,
9 2020, DOI 10.1109/icsme46990.2020.00024.
Abstract: REpresentational State Transfer (REST) is considered as one
standard software architectural style to build web APIs that can integrate

164

software systems over the internet. However, while connecting systems,
RESTful APIs might also break the dependent applications that rely on
their services when they introduce breaking changes, e.g., an older version
of the API is no longer supported. To warn developers promptly and thus
prevent critical impact on downstream applications, a deprecated-removed
model should be followed, and deprecation-related information such as al-
ternative approaches should also be listed. While API deprecation analysis
as a theme is not new, most existing work focuses on non-web APIs, such
as the ones provided by Java and Android.To investigate RESTful API dep-
recation, we propose a framework called RADA (RESTful API Deprecation
Analyzer). RADA is capable of automatically identifying deprecated API el-
ements and analyzing impacted operations from an OpenAPI specification,
a machine-readable profile for describing RESTful web service. We apply
RADA on 2,224 OpenAPI specifications of 1,368 RESTful APIs collected
from APIs.guru, the largest directory of OpenAPI specifications. Based on
the data mined by RADA, we perform an empirical study to investigate how
the deprecated-removed protocol is followed in RESTful APIs and charac-
terize practices in RESTful API deprecation. The results of our study reveal
several severe deprecation-related problems in existing RESTful APIs. Our
implementation of RADA and detailed empirical results are publicly avail-
able for future intelligent tools that could automatically identify and migrate
usage of deprecated RESTful API operations in client code.

[Yin2011] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and
Lakshmi Bairavasundaram. How do fixes become bugs? In Proc. Inter-
national Symposium on Foundations of Software Engineering/International
Symposium on the Foundations of Software Engineering (SIGSOFT/FSE).
ACM Press, 2011, DOI 10.1145/2025113.2025121.
Abstract: Software bugs affect system reliability. When a bug is exposed
in the field, developers need to fix them. Unfortunately, the bug-fixing pro-
cess can also introduce errors, which leads to buggy patches that further
aggravate the damage to end users and erode software vendors’ reputation.
This paper presents a comprehensive characteristic study on incorrect bug-
fixes from large operating system code bases including Linux, OpenSolaris,
FreeBSD and also a mature commercial OS developed and evolved over the
last 12 years, investigating not only themistake patterns during bug-fixing
but also the possible human reasons in the development process when these
incorrect bug-fixes were introduced. Our major findings include: (1) at least
14.8%–24.4% of sampled fixes for post-release bugs in these large OSes are
incorrect and have made impacts to end users. (2) Among several common
bug types, concurrency bugs are the most difficult to fix correctly: 39% of
concurrency bug fixes are incorrect. (3) Developers and reviewers for incor-
rect fixes usually do not have enough knowledge about the involved code. For
example, 27% of the incorrect fixes are made by developers who have never
touched the source code files associated with the fix. Our results provide
useful guidelines to design new tools and also to improve the development

165

process. Based on our findings, the commercial software vendor whose OS
code we evaluated is building a tool to improve the bug fixing and code
reviewing process.

[Young2021] Jean-Gabriel Young, Amanda Casari, Katie McLaughlin,
Milo Z. Trujillo, Laurent Hebert-Dufresne, and James P. Bagrow. Which
contributions count? analysis of attribution in open source. In Proc. Inter-
national Conference on Mining Software Repositories (MSR). IEEE, 5 2021,
DOI 10.1109/msr52588.2021.00036.
Abstract: Open source software projects usually acknowledge contributions
with text files, websites, and other idiosyncratic methods. These data sources
are hard to mine, which is why contributorship is most frequently measured
through changes to repositories, such as commits, pushes, or patches. Re-
cently, some open source projects have taken to recording contributor ac-
tions with standardized systems; this opens up a unique opportunity to
understand how community-generated notions of contributorship map onto
codebases as the measure of contribution. Here, we characterize contributor
acknowledgment models in open source by analyzing thousands of projects
that use a model called All Contributors to acknowledge diverse contribu-
tions like outreach, finance, infrastructure, and community management.
We analyze the life cycle of projects through this model’s lens and con-
trast its representation of contributorship with the picture given by other
methods of acknowledgment, including GitHub’s top committers indicator
and contributions derived from actions taken on the platform. We find that
community-generated systems of contribution acknowledgment make work
like idea generation or bug finding more visible, which generates a more
extensive picture of collaboration. Further, we find that models requiring
explicit attribution lead to more clearly defined boundaries around what is
and is not a contribution.

[Yu2021] Zhongxing Yu, Chenggang Bai, Lionel Seinturier, and Martin Mon-
perrus. Characterizing the usage, evolution and impact of java annotations
in practice. IEEE Transactions on Software Engineering, 47(5):969–986, 5
2021, DOI 10.1109/tse.2019.2910516.
Abstract: Annotations have been formally introduced into Java since Java
5. Since then, annotations have been widely used by the Java community for
different purposes, such as compiler guidance and runtime processing. De-
spite the ever-growing use, there is still limited empirical knowledge about
the actual usage of annotations in practice, the changes made to annotations
during software evolution, and the potential impact of annotations on code
quality. To fill this gap, we perform the first large-scale empirical study about
Java annotations on 1,094 notable open-source projects hosted on GitHub.
Our study systematically investigates annotation usage, annotation evolu-
tion, and annotation impact, and generates 10 novel and important findings.
We also present the implications of our findings, which shed light for devel-
opers, researchers, tool builders, and language or library designers in order
to improve all facets of Java annotation engineering.

166

[Yuan2014] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues,
Xu Zhao, Pranay U. Jain, and Michael Stumm. Simple testing can prevent
most critical failures—an analysis of production failures in distributed data-
intensive systems. In Proc. Symposium on Operating System Design and
Implementation (OSDI), 2014, DOI 10.13140/2.1.2044.2889.
Abstract: Large, production quality distributed systems still fail periodi-
cally, and do so sometimes catastrophically, where most or all users experi-
ence an outage or data loss. We present the result of a comprehensive study
investigating 198 randomly selected, user-reported failures that occurred
on Cassandra, HBase, Hadoop Distributed File System (HDFS), Hadoop
MapReduce, and Redis, with the goal of understanding how one or multiple
faults eventually evolve into a user-visible failures. We found that from a
testing point of view, almost all failures require only 3 or fewer nodes to
reproduce, which is good news considering that these services typically run
on a very large number of nodes. However, multiple inputs are needed to
trigger the failures with the order between them being important. Finally,
we found the error logs of these systems typically contain sufficient data
on both the errors and the input events that triggered the failure, enabling
the diagnose and the reproduction of the production failures—often with
unit tests. We found the majority of catastrophic failures could easily have
been prevented by performing simple testing on error handling code—the
last line of defense—even without an understanding of the software design.
We extracted three simple rules from the bugs that have lead to some of the
catastrophic failures, and developed a static checker, Aspirator, capable of
locating these bugs. Over 30% of the catastrophic failures would have been
prevented had Aspirator been used and the identified bugs fixed. Running
Aspirator on the code of 9 distributed systems located 143 bugs and bad
practices that have been fixed or confirmed by the developers.

[Zampetti2020] Fiorella Zampetti, Carmine Vassallo, Sebastiano Panichella,
Gerardo Canfora, Harald Gall, and Massimiliano Di Penta. An
empirical characterization of bad practices in continuous integra-
tion. Empirical Software Engineering, 25(2):1095–1135, 1 2020, DOI
10.1007/s10664-019-09785-8.
Abstract: Continuous Integration (CI) has been claimed to introduce sev-
eral benefits in software development, including high software quality and
reliability. However, recent work pointed out challenges, barriers and bad
practices characterizing its adoption. This paper empirically investigates
what are the bad practices experienced by developers applying CI. The in-
vestigation has been conducted by leveraging semi-structured interviews of
13 experts and mining more than 2,300 Stack Overflow posts. As a result, we
compiled a catalog of 79 CI bad smells belonging to 7 categories related to
different dimensions of a CI pipeline management and process. We have also
investigated the perceived importance of the identified bad smells through a
survey involving 26 professional developers, and discussed how the results of
our study relate to existing knowledge about CI bad practices. Whilst some

167

results, such as the poor usage of branches, confirm existing literature, the
study also highlights uncovered bad practices, e.g., related to static analysis
tools or the abuse of shell scripts, and contradict knowledge from existing
literature, e.g., about avoiding nightly builds. We discuss the implications of
our catalog of CI bad smells for (i) practitioners, e.g., favor specific, portable
tools over hacking, and do not ignore nor hide build failures, (ii) educators,
e.g., teach CI culture, not just technology, and teach CI by providing ex-
amples of what not to do, and (iii) researchers, e.g., developing support for
failure analysis, as well as automated CI bad smell detectors.

[Zavgorodniaia2021] Albina Zavgorodniaia, Raj Shrestha, Juho Leinonen,
Arto Hellas, and John Edwards. Morning or evening? an ex-
amination of circadian rhythms of CS1 students. In Proc. Interna-
tional Conference on Software Engineering (ICSE). IEEE, 5 2021, DOI
10.1109/icse-seet52601.2021.00036.
Abstract: Circadian rhythms are the cycles of our internal clock that play
a key role in governing when we sleep and when we are active. A related con-
cept is chronotype, which is a person’s natural tendency toward activity at
certain times of day and typically governs when the individual is most alert
and productive. In this work we investigate chronotypes in the setting of an
Introductory Computer Programming (CS1) course. Using keystroke data
collected from students we investigate the existence of chronotypes through
unsupervised learning. The chronotypes we find align with those of typical
populations reported in the literature and our results support correlations of
certain chronotypes to academic achievement. We also find a lack of support
for the still-popular stereotype of a computer programmer as a night owl.
The analyses are conducted on data from two universities, one in the US and
one in Europe, that use different teaching methods. In comparison of the two
contexts, we look into programming assignment design and administration
that may promote better programming practices among students in terms
of procrastination and effort.

[Zhang2020] Haoxiang Zhang, Shaowei Wang, Tse-Hsun Chen, and
Ahmed E. Hassan. Reading answers on stack overflow: Not enough!
IEEE Transactions on Software Engineering, pages 1–1, 2020, DOI
10.1109/tse.2019.2954319.
Abstract: Stack Overflow is one of the most active communities for de-
velopers to share their programming knowledge. Answers posted on Stack
Overflow help developers solve issues during software development. In ad-
dition to posting answers, users can also post comments to further discuss
their associated answers. As of Aug 2017, there are 32.3 million comments
that are associated with answers, forming a large collection of crowdsourced
repository of knowledge on top of the commonly-studied Stack Overflow an-
swers. In this study, we wish to understand how the commenting activities
contribute to the crowdsourced knowledge. We investigate what users discuss
in comments, and analyze the characteristics of the commenting dynamics,
(i.e., the timing of commenting activities and the roles of commenters). We

168

find that: 1) the majority of comments are informative and thus can enhance
their associated answers from a diverse range of perspectives. However, some
comments contain content that is discouraged by Stack Overflow. 2) The ma-
jority of commenting activities occur after the acceptance of an answer. More
than half of the comments are fast responses occurring within one day of the
creation of an answer, while later comments tend to be more informative.
Most comments are rarely integrated back into their associated answers, even
though such comments are informative. 3) Insiders (i.e., users who posted
questions/answers before posting a comment in a question thread) post the
majority of comments within one month, and outsiders (i.e., users who never
posted any question/answer before posting a comment) post the majority of
comments after one month. Inexperienced users tend to raise limitations and
concerns while experienced users tend to enhance the answer through com-
menting. Our study provides insights into the commenting activities in terms
of their content, timing, and the individuals who perform the commenting.
For the purpose of long-term knowledge maintenance and effective informa-
tion retrieval for developers, we also provide actionable suggestions to en-
courage Stack Overflow users/engineers/moderators to leverage our insights
for enhancing the current Stack Overflow commenting system for improving
the maintenance and organization of the crowdsourced knowledge.

[Zhang2021a] Jingxuan Zhang, He Jiang, Zhilei Ren, Tao Zhang, and Zhiqiu
Huang. Enriching API documentation with code samples and usage sce-
narios from crowd knowledge. IEEE Transactions on Software Engineering,
47(6):1299–1314, 6 2021, DOI 10.1109/tse.2019.2919304.
Abstract: As one key resource to learn Application Programming Interfaces
(APIs), a lot of API reference documentation lacks code samples with usage
scenarios, thus heavily hindering developers from programming with APIs.
Although researchers have investigated how to enrich API documentation
with code samples from general code search engines, two main challenges re-
main to be resolved, including the quality challenge of acquiring high-quality
code samples and the mapping challenge of matching code samples to us-
age scenarios. In this study, we propose a novel approach named ADECK
towards enriching API documentation with code samples and correspond-
ing usage scenarios by leveraging crowd knowledge from Stack Overflow, a
popular technical Question and Answer (Q&A) website attracting millions
of developers. Given an API related Q&A pair, a code sample in the an-
swer is extensively evaluated by developers and targeted towards resolving
the question under the specified usage scenario. Hence, ADECK can obtain
high-quality code samples and map them to corresponding usage scenar-
ios to address the above challenges. Extensive experiments on the Java SE
and Android API documentation show that the number of code-sample-
illustrated API types in the ADECK-enriched API documentation is 3.35
and 5.76 times as many as that in the raw API documentation. Meanwhile,
the quality of code samples obtained by ADECK is better than that of code
samples by the baseline approach eXoaDocs in terms of correctness, con-

169

ciseness, and usability, e.g., the average correctness values of representative
code samples obtained by ADECK and eXoaDocs are 4.26 and 3.28 on a
5-point scale in the enriched Java SE API documentation. In addition, an
empirical study investigating the impacts of different types of API documen-
tation on the productivity of developers shows that, compared against the
raw and the eXoaDocs-enriched API documentation, the ADECK-enriched
API documentation can help developers complete 23.81 and 14.29 percent
more programming tasks and reduce the average completion time by 9.43
and 11.03 percent.

[Zhang2021b] Haoxiang Zhang, Shaowei Wang, Tse-Hsun Chen, Ying Zou,
and Ahmed E. Hassan. An empirical study of obsolete answers on stack over-
flow. IEEE Transactions on Software Engineering, 47(4):850–862, 4 2021,
DOI 10.1109/tse.2019.2906315.
Abstract: Stack Overflow accumulates an enormous amount of software en-
gineering knowledge. However, as time passes, certain knowledge in answers
may become obsolete. Such obsolete answers, if not identified or documented
clearly, may mislead answer seekers and cause unexpected problems (e.g., us-
ing an out-dated security protocol). In this paper, we investigate how the
knowledge in answers becomes obsolete and identify the characteristics of
such obsolete answers. We find that: 1) More than half of the obsolete an-
swers (58.4 percent) were probably already obsolete when they were first
posted. 2) When an obsolete answer is observed, only a small proportion
(20.5 percent) of such answers are ever updated. 3) Answers to questions
in certain tags (e.g., node.js, ajax, android, and objective-c) are more likely
to become obsolete. Our findings suggest that Stack Overflow should de-
velop mechanisms to encourage the whole community to maintain answers
(to avoid obsolete answers) and answer seekers are encouraged to carefully
go through all information (e.g., comments) in answer threads.

[Zhu2021] Wenhan Zhu and Michael W. Godfrey. Mea culpa: how developers
fix their own simple bugs differently from other developers. In Proc. Inter-
national Conference on Mining Software Repositories (MSR). IEEE, 5 2021,
DOI 10.1109/msr52588.2021.00065.
Abstract: In this work, we study how the authorship of code affects bug-
fixing commits using the SStuBs dataset, a collection of single-statement
bug fix changes in popular Java Maven projects. More specifically, we study
the differences in characteristics between simple bug fixes by the original
author—that is, the developer who submitted the bug-inducing commit—
and by different developers (i.e., non-authors). Our study shows that nearly
half (i.e., 44.3%) of simple bugs are fixed by a different developer. We found
that bug fixes by the original author and by different developers differed qual-
itatively and quantitatively. We observed that bug-fixing time by authors is
much shorter than that of other developers. We also found that bug-fixing
commits by authors tended to be larger in size and scope, and address mul-
tiple issues, whereas bug-fixing commits by other developers tended to be
smaller and more focused on the bug itself. Future research can further study

170

the different patterns in bug-fixing and create more tailored tools based on
the developer’s needs.

[Zieris2020] Franz Zieris and Lutz Prechelt. Explaining pair program-
ming session dynamics from knowledge gaps. In Proc. Interna-
tional Conference on Software Engineering (ICSE). ACM, 6 2020, DOI
10.1145/3377811.3380925.
Abstract: Background: Despite a lot of research on the effectiveness of
Pair Programming (PP), the question when it is useful or less useful re-
mains unsettled. Method: We analyze recordings of many industrial PP
sessions with Grounded Theory Methodology and build on prior work that
identified various phenomena related to within-session knowledge build-up
and transfer. We validate our findings with practitioners. Result: We iden-
tify two fundamentally different types of required knowledge and explain
how different constellations of knowledge gaps in these two respects lead to
different session dynamics. Gaps in project-specific systems knowledge are
more hampering than gaps in general programming knowledge and are dealt
with first and foremost in a PP session. Conclusion: Partner constellations
with complementary knowledge make PP a particularly effective practice. In
PP sessions, differences in system understanding are more important than
differences in general software development knowledge.

171

