
It Will Never Work in Theory: To Do

http://neverworkintheory.org

June 13, 2023

References

[Ahmed2022] Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh,
and Abhik Roychoudhury. Verifix: Verified repair of programming assign-
ments, 2022.
Abstract: Automated feedback generation for introductory programming
assignments is useful for programming education. Most works try to generate
feedback to correct a student program by comparing its behavior with an
instructor’s reference program on selected tests. In this work, our aim is to
generate verifiably correct program repairs as student feedback. The student
assignment is aligned and composed with a reference solution in terms of
control flow, and differences in data variables are automatically summarized
via predicates to relate the variable names. Failed verification attempts for
the equivalence of the two programs are exploited to obtain a collection of
maxSMT queries, whose solutions point to repairs of the student assign-
ment. We have conducted experiments on student assignments curated from
a widely deployed intelligent tutoring system. Our results indicate that we
can generate verified feedback in up to 58% of the assignments. More impor-
tantly, our system indicates when it is able to generate a verified feedback,
which is then usable by novice students with high confidence.

[Ait2022] Adem Ait, Javier Luis Cánovas Izquierdo, and Jordi Cabot. An em-
pirical study on the survival rate of GitHub projects. In Proc. International
Conference on Mining Software Repositories (MSR). ACM, May 2022, DOI
10.1145/3524842.3527941.
Abstract: The number of Open Source projects hosted in social coding
platforms such as GitHub is constantly growing. However, many of these
projects are not regularly maintained and some are even abandoned shortly
after they were created. In this paper we analyze early project development
dynamics in software projects hosted on GitHub, including their survival
rate. To this aim, we collected all 1,127 GitHub repositories from four dif-
ferent ecosystems (i.e., NPM packages, R packages, WordPress plugins and
Laravel packages) created in 2016. We stored their activity in a time se-
ries database and analyzed their activity evolution along their lifespan, from
2016 to now. Our results reveal that the prototypical development process

1



consists of intensive coding-driven active periods followed by long periods
of inactivity. More importantly, we have found that a significant number of
projects die in the first year of existence with the survival rate decreasing
year after year. In fact, the probability of surviving longer than five years is
less than 50% though some types of projects have better chances of survival.

[Amjad2023] Abdul Haddi Amjad, Zubair Shafiq, and Muhammad Ali
Gulzar. Blocking javascript without breaking the web: An empirical in-
vestigation, 2023.
Abstract: Modern websites heavily rely on JavaScript (JS) to implement
legitimate functionality as well as privacy-invasive advertising and track-
ing. Browser extensions such as NoScript block any script not loaded by a
trusted list of endpoints, thus hoping to block privacy-invasive scripts while
avoiding breaking legitimate website functionality. In this paper, we investi-
gate whether blocking JS on the web is feasible without breaking legitimate
functionality. To this end, we conduct a large-scale measurement study of
JS blocking on 100K websites. We evaluate the effectiveness of different JS
blocking strategies in tracking prevention and functionality breakage. Our
evaluation relies on quantitative analysis of network requests, and resource
loads as well as manual qualitative analysis of visual breakage. First, we show
that while blocking all scripts is quite effective at reducing tracking, it sig-
nificantly degrades functionality on approximately two-thirds of the tested
websites. Second, we show that selective blocking of a subset of scripts based
on a curated list achieves a better tradeoff. However, there remain approxi-
mately 15% “mixed” scripts, which essentially merge tracking and legitimate
functionality and thus cannot be blocked without causing website breakage.
Finally, we show that fine-grained blocking of a subset of JS methods, in-
stead of scripts, reduces major breakage by 3.7× while providing the same
level of tracking prevention. Our work highlights the promise and open chal-
lenges in fine-grained JS blocking for tracking prevention without breaking
the web.

[Andersen2020] Leif Andersen, Michael Ballantyne, and Matthias Felleisen.
Adding interactive visual syntax to textual code. Proceedings of the
ACM on Programming Languages, 4(OOPSLA):1–28, Nov 2020, DOI
10.1145/3428290.
Abstract: Many programming problems call for turning geometrical
thoughts into code: tables, hierarchical structures, nests of objects, trees,
forests, graphs, and so on. Linear text does not do justice to such thoughts.
But, it has been the dominant programming medium for the past and will
remain so for the foreseeable future. This paper proposes a novel mechanism
for conveniently extending textual programming languages with problem-
specific visual syntax. It argues the necessity of this language feature, demon-
strates the feasibility with a robust prototype, and sketches a design plan
for adapting the idea to other languages.

2



[Apple2022] Jim Apple. Stretching your data with taffy filters, 2022.
Abstract: Popular approximate membership query structures such as
Bloom filters and cuckoo filters are widely used in databases, security, and
networking. These structures represent sets approximately, and support at
least two operations - insert and lookup; lookup always returns true on ele-
ments inserted into the structure; it also returns true with some probability
0¡ϵ¡1 on elements not inserted into the structure. These latter elements are
called false positives. Compensatory for these false positives, filters can be
much smaller than hash tables that represent the same set. However, unlike
hash tables, cuckoo filters and Bloom filters must be initialized with the in-
tended number of inserts to be performed, and cannot grow larger - inserts
beyond this number fail or significantly increase the false positive proba-
bility. This paper presents designs and implementations of filters than can
grow without inserts failing and without meaningfully increasing the false
positive probability, even if the filters are created with a small initial size.
The resulting code is available on GitHub under a permissive open source
license.

[Arora2023] Chetan Arora, Laura Tubino, Andrew Cain, Kevin Lee, and Va-
sudha Malhotra. Persona-based assessment of software engineering student
research projects: An experience report, 2023.
Abstract: Students enrolled in software engineering degrees are generally
required to undertake a research project in their final year through which
they demonstrate the ability to conduct research, communicate outcomes,
and build in-depth expertise in an area. Assessment in these projects typi-
cally involves evaluating the product of their research via a thesis or a similar
artifact. However, this misses a range of other factors that go into producing
successful software engineers and researchers. Incorporating aspects such as
process, attitudes, project complexity, and supervision support into the as-
sessment can provide a more holistic evaluation of the performance likely to
better align with the intended learning outcomes. In this paper, we present
on our experience of adopting an innovative assessment approach to enhance
learning outcomes and research performance in our software engineering re-
search projects. Our approach adopted a task-oriented approach to portfolio
assessment that incorporates student personas, frequent formative feedback,
delayed summative grading, and standards-aligned outcomes-based assess-
ment. We report upon our continuous improvement journey in adapting tasks
and criteria to address the challenges of assessing student research projects.
Our lessons learnt demonstrate the value of personas to guide the develop-
ment of holistic rubrics, giving meaning to grades and focusing staff and
student attention on attitudes and skills rather than a product only.

[Arteca2022] Ellen Arteca, Sebastian Harner, Michael Pradel, and Frank Tip.
Nessie: automatically testing javascript apis with asynchronous callbacks. In
Proceedings of the 44th International Conference on Software Engineering.
ACM, May 2022, DOI 10.1145/3510003.3510106.
Abstract: Previous algorithms for feedback-directed unit test generation

3



iteratively create sequences of API calls by executing partial tests and by
adding new API calls at the end of the test. These algorithms are challenged
by a popular class of APIs: higher-order functions that receive callback
arguments, which often are invoked asyn-chronously. Existing test generators
cannot effectively test such APIs because they only sequence API calls, but
do not nest one call into the callback function of another. This paper presents
Nessie, the first feedback-directed unit test generator that supports nesting of
API calls and that tests asynchronous callbacks. Nesting API calls enables a
test to use values produced by an API that are available only once a callback
has been invoked, and is often necessary to ensure that methods are invoked
in a specific order. The core contributions of our approach are a tree-based
representation of unit tests with callbacks and a novel algorithm to iteratively
generate such tests in a feedback-directed manner. We evaluate our approach
on ten popular JavaScript libraries with both asynchronous and synchronous
callbacks. The results show that, in a comparison with LambdaTester, a
state of the art test generation technique that only considers sequencing of
method calls, Nessie finds more behavioral differences and achieves slightly
higher coverage. Notably, Nessie needs to generate significantly fewer tests
to achieve and exceed the coverage achieved by the state of the art.

[Asare2022] Owura Asare, Meiyappan Nagappan, and N. Asokan. Is github’s
copilot as bad as humans at introducing vulnerabilities in code?, 2022.
Abstract: Several advances in deep learning have been successfully applied
to the software development process. Of recent interest is the use of neural
language models to build tools, such as Copilot, that assist in writing code. In
this paper we perform a comparative empirical analysis of Copilot-generated
code from a security perspective. The aim of this study is to determine if
Copilot is as bad as human developers - we investigate whether Copilot is
just as likely to introduce the same software vulnerabilities that human de-
velopers did. Using a dataset of C/C++ vulnerabilities, we prompt Copilot
to generate suggestions in scenarios that previously led to the introduction
of vulnerabilities by human developers. The suggestions are inspected and
categorized in a 2-stage process based on whether the original vulnerabil-
ity or the fix is reintroduced. We find that Copilot replicates the original
vulnerable code 3̃3% of the time while replicating the fixed code at a 2̃5%
rate. However this behavior is not consistent: Copilot is more susceptible
to introducing some types of vulnerability than others and is more likely to
generate vulnerable code in response to prompts that correspond to older
vulnerabilities than newer ones. Overall, given that in a substantial propor-
tion of instances Copilot did not generate code with the same vulnerabilities
that human developers had introduced previously, we conclude that Copilot
is not as bad as human developers at introducing vulnerabilities in code.

[Barbosa2022] Leonardo Barbosa, Victor Hugo Santiago, Alberto Luiz
Oliveira Tavares de Souza, and Gustavo Pinto. To what extent cognitive-
driven development improves code readability?, 2022.

4



Abstract: Cognitive-Driven Development (CDD) is a coding design tech-
nique that aims to reduce the cognitive effort that developers place in under-
standing a given code unit (e.g., a class). By following CDD design practices,
it is expected that the coding units to be smaller, and, thus, easier to main-
tain and evolve. However, it is so far unknown whether these smaller code
units coded using CDD standards are, indeed, easier to understand. In this
work we aim to assess to what CDD improves code readability. To achieve
this goal, we conducted a two-phase study. We start by inviting professional
software developers to vote (and justify their rationale) on the most readable
pair of code snippets (from a set of 10 pairs); one of the pairs was coded
using CDD practices. We received 133 answers. In the second phase, we ap-
plied the state-of-the art readability model on the 10-pairs of CDD-guided
refactorings. We observed some conflicting results. On the one hand, devel-
opers perceived that seven (out of 10) CDD-guided refactorings were more
readable than their counterparts; for two other CDD-guided refactorings, de-
velopers were undecided, while only in one of the CDD-guided refactorings,
developers preferred the original code snippet. On the other hand, we noticed
that only one CDD-guided refactorings have better performance readability,
assessed by state-of-the-art readability models. Our results provide initial
evidence that CDD could be an interesting approach for software design.

[Barrak2021] Amine Barrak, Ellis E. Eghan, and Bram Adams. On
the co-evolution of ML pipelines and source code - empirical study of
DVC projects. In 2021 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, Mar 2021, DOI
10.1109/saner50967.2021.00046.
Abstract: The growing popularity of machine learning (ML) applications
has led to the introduction of software engineering tools such as Data Ver-
sioning Control (DVC), MLFlow and Pachyderm that enable versioning ML
data, models, pipelines and model evaluation metrics. Since these versioned
ML artifacts need to be synchronized not only with each other, but also with
the source and test code of the software applications into which the models
are integrated, prior findings on co-evolution and coupling between software
artifacts might need to be revisited. Hence, in order to understand the degree
of coupling between ML-related and other software artifacts, as well as the
adoption of ML versioning features, this paper empirically studies the usage
of DVC in 391 Github projects, 25 of which in detail. Our results show that
more than half of the DVC files in a project are changed at least once every
one-tenth of the project’s lifetime. Furthermore, we observe a tight coupling
between DVC files and other artifacts, with 1/4 pull requests changing source
code and 1/2 pull requests changing tests requiring a change to DVC files.
As additional evidence of the observed complexity associated with adopting
ML-related software engineering tools like DVC, an average of 78% of the
studied projects showed a non-constant trend in pipeline complexity.

[Beasley2022] Zachariah J. Beasley and Ayesha R. Johnson. The impact of
remote pair programming in an upper-level CS course. In Proc. Conference

5



on Innovation and Technology in Computer Science Education (ITiCSE).
ACM, Jul 2022, DOI 10.1145/3502718.3524772.
Abstract: Pair programming is an active learning technique with several
benefits to students, including increasing participation and improving out-
comes, particularly for female computer science students. However, most
of the literature highlights the effects of pair programming in introductory
courses, where students have different prior programming experience and
thus may experience group issues. This work analyzes the effect of pair pro-
gramming in an upper-level computer science course, where students have
a more consistent background education, particularly in languages learned
and coding best practices. Secondly, the effect of remote pair programming
on student outcomes is still an open question of increasing importance with
the advent of Covid-19. This work utilized split sections with a control and
treatment group in a large, public university. In addition to comparing pair
programming to individual programming, results were analyzed by modality
(remote vs. in person) and by gender, focusing on how pair programming
benefits female computer science students in confidence, persistence in the
major, and outcomes. We found that pair programming groups scored higher
on assignments and exams, that remote pair programming groups performed
as well as in person groups, and that female students increased their confi-
dence in asking questions in class and scored 12% higher in the course when
utilizing pair programming.

[Becker2022] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew
Luxton-Reilly, James Prather, and Eddie Antonio Santos. Programming
is hard – or at least it used to be: Educational opportunities and challenges
of ai code generation, 2022.
Abstract: The introductory programming sequence has been the focus of
much research in computing education. The recent advent of several viable
and freely-available AI-driven code generation tools present several immedi-
ate opportunities and challenges in this domain. In this position paper we
argue that the community needs to act quickly in deciding what possible op-
portunities can and should be leveraged and how, while also working on how
to overcome or otherwise mitigate the possible challenges. Assuming that
the effectiveness and proliferation of these tools will continue to progress
rapidly, without quick, deliberate, and concerted efforts, educators will lose
advantage in helping shape what opportunities come to be, and what chal-
lenges will endure. With this paper we aim to seed this discussion within the
computing education community.

[Bendrissou2022] Bachir Bendrissou, Rahul Gopinath, and Andreas Zeller.
“synthesizing input grammars”: a replication study. In Proc. Conference
on Programming Language Design and Implementation (PLDI). ACM, Jun
2022, DOI 10.1145/3519939.3523716.
Abstract: When producing test inputs for a program, test generators
(”fuzzers”) can greatly profit from grammars that formally describe the

6



language of expected inputs. In recent years, researchers thus have stud-
ied means to recover input grammars from programs and their executions.
The GLADE algorithm by Bastani et al., published at PLDI 2017, was
the first black-box approach to claim context-free approximation of input
specification for non-trivial languages such as XML, Lisp, URLs, and more.
Prompted by recent observations that the GLADE algorithm may show lower
performance than reported in the original paper, we have reimplemented the
GLADE algorithm from scratch. Our evaluation confirms that the effective-
ness score (F1) reported in the GLADE paper is overly optimistic, and in
some cases, based on the wrong language. Furthermore, GLADE fares poorly
in several real-world languages evaluated, producing grammars that spend
megabytes to enumerate inputs.

[Bi2021] Tingting Bi, Wei Ding, Peng Liang, and Antony Tang. Architec-
ture information communication in two OSS projects: The why, who, when,
and what. Journal of Systems and Software, 181:111035, Nov 2021, DOI
10.1016/j.jss.2021.111035.
Abstract: Architecture information is vital for Open Source Software (OSS)
development, and mailing list is one of the widely used channels for devel-
opers to share and communicate architecture information. This work in-
vestigates the nature of architecture information communication (i.e., why,
who, when, and what) by OSS developers via developer mailing lists. We
employed a multiple case study approach to extract and analyze the ar-
chitecture information communication from the developer mailing lists of
two OSS projects, ArgoUML and Hibernate, during their development life-
cycle of over 18 years. Our main findings are: (a) architecture negotiation
and interpretation are the two main reasons (i.e., why) of architecture com-
munication; (b) the amount of architecture information communicated in
developer mailing lists decreases after the first stable release (i.e., when);
(c) architecture communications centered around a few core developers (i.e.,
who); (d) and the most frequently communicated architecture elements (i.e.,
what) are Architecture Rationale and Architecture Model. There are a few
similarities of architecture communication between the two OSS projects.
Such similarities point to how OSS developers naturally gravitate towards
the four aspects of architecture communication in OSS development.

[Bijlsma2022] Lex A. Bijlsma, Arjan J. F. Kok, Harrie J. M. Passier,
Harold J. Pootjes, and Sylvia Stuurman. Evaluation of design pattern al-
ternatives in java. Softw. Pract. Exp., 52(5):1305–1315, May 2022, DOI
10.1002/spe.3061.
Abstract: Design patterns are standard solutions to common design prob-
lems. The famous Gang of Four book describes more than twenty design pat-
terns for the object-oriented paradigm. These patterns were developed more
than twenty-five years ago, using the programming language concepts avail-
able at that time. Patterns do not always fit underlying domain concepts.
For example, even when a concrete strategy is a pure function, the classical
strategy pattern represents this as a separate subclass and as such obscures

7



the intent of this pattern with extra complexities due to the inheritance-
based implementation. Due to the ongoing development of oo-languages, a
relevant question is whether the implementation of these patterns can be im-
proved using new language features, such that they fit more closely with the
intent. An additional question is then how we can decide which implemen-
tation is to be preferred. In this article, we investigate both questions, using
the strategy pattern as an example. Our main contribution is that we show
how to reason about different implementations, using both the description
of a design pattern and design principles as guidance.

[Biswas2022] Sumon Biswas, Mohammad Wardat, and Hridesh Rajan. The
art and practice of data science pipelines: A comprehensive study of data
science pipelines in theory, in-the-small, and in-the-large. ICSE 2022:
The 44th International Conference on Software Engineering, 2022, DOI
10.1145/3510003.3510057.
Abstract: Increasingly larger number of software systems today are in-
cluding data science components for descriptive, predictive, and prescriptive
analytics. The collection of data science stages from acquisition, to clean-
ing/curation, to modeling, and so on are referred to as data science pipelines.
To facilitate research and practice on data science pipelines, it is essential
to understand their nature. What are the typical stages of a data science
pipeline? How are they connected? Do the pipelines differ in the theoretical
representations and that in the practice? Today we do not fully understand
these architectural characteristics of data science pipelines. In this work, we
present a three-pronged comprehensive study to answer this for the state-of-
the-art, data science in-the-small, and data science in-the-large. Our study
analyzes three datasets: a collection of 71 proposals for data science pipelines
and related concepts in theory, a collection of over 105 implementations of
curated data science pipelines from Kaggle competitions to understand data
science in-the-small, and a collection of 21 mature data science projects from
GitHub to understand data science in-the-large. Our study has led to three
representations of data science pipelines that capture the essence of our sub-
jects in theory, in-the-small, and in-the-large.

[Bittner2022] Paul Maximilian Bittner, Christof Tinnes, Alexander
Schultheiß, Sören Viegener, Timo Kehrer, and Thomas Thüm. Classifying
edits to variability in source code. In Proc. European Software Engineering
Conference/International Symposium on the Foundations of Software Engi-
neering (ESEC/FSE). ACM, Nov 2022, DOI 10.1145/3540250.3549108.
Abstract: For highly configurable software systems, such as the Linux
kernel, maintaining and evolving variability information along changes to
source code poses a major challenge. While source code itself may be edited,
also feature-to-code mappings may be introduced, removed, or changed.
In practice, such edits are often conducted ad-hoc and without proper
documentation. To support the maintenance and evolution of variability,
it is desirable to understand the impact of each edit on the variability.
We propose the first complete and unambiguous classification of edits to

8



variability in source code by means of a catalog of edit classes. This catalog
is based on a scheme that can be used to build classifications that are
complete and unambiguous by construction. To this end, we introduce a
complete and sound model for edits to variability. In about 21.5ms per
commit, we validate the correctness and suitability of our classification by
classifying each edit in 1.7 million commits in the change histories of 44
open-source software systems automatically. We are able to classify all edits
with syntactically correct feature-to-code mappings and find that all our
edit classes occur in practice.

[Blacher2022] Mark Blacher, Joachim Giesen, Peter Sanders, and Jan
Wassenberg. Vectorized and performance-portable quicksort, 2022.
Abstract: Recent works showed that implementations of Quicksort us-
ing vector CPU instructions can outperform the non-vectorized algorithms
in widespread use. However, these implementations are typically single-
threaded, implemented for a particular instruction set, and restricted to a
small set of key types. We lift these three restrictions: our proposed ’vqsort’
algorithm integrates into the state-of-the-art parallel sorter ’ips4o’, with a
geometric mean speedup of 1.59. The same implementation works on seven
instruction sets (including SVE and RISC-V V) across four platforms. It
also supports floating-point and 16-128 bit integer keys. To the best of our
knowledge, this is the fastest sort for non-tuple keys on CPUs, up to 20
times as fast as the sorting algorithms implemented in standard libraries.
This paper focuses on the practical engineering aspects enabling the speed
and portability, which we have not yet seen demonstrated for a Quicksort im-
plementation. Furthermore, we introduce compact and transpose-free sorting
networks for in-register sorting of small arrays, and a vector-friendly pivot
sampling strategy that is robust against adversarial input.

[Blackwell2019] Alan F. Blackwell, Marian Petre, and Luke Church.
Fifty years of the psychology of programming. International
Journal of Human-Computer Studies, 131:52–63, Nov 2019, DOI
10.1016/j.ijhcs.2019.06.009.
Abstract: Abstract This paper reflects on the evolution (past, present and
future) of the ’psychology of programming’ over the 50 year period of this
anniversary issue. The International Journal of Human-Computer Studies
(IJHCS) has been a key venue for much seminal work in this field, including
its first foundations, and we review the changing research concerns seen
in publications over these five decades. We relate this thematic evolution
to research taking place over the same period within more specialist
communities, especially the Psychology of Programming Interest Group
(PPIG), the Empirical Studies of Programming series (ESP), and the
ongoing community in Visual Languages and Human-Centric Computing
(VL/HCC). Many other communities have interacted with psychology of
programming, both influenced by research published within the specialist
groups, and in turn influencing research priorities. We end with an overview
of the core theories that have been developed over this period, as an

9



introductory resource for new researchers, and also with the authors’ own
analysis of key priorities for future research.

[Boag2022] William Boag, Harini Suresh, Bianca Lepe, and Catherine
D’Ignazio. Tech worker organizing for power and accountability. In 2022
ACM Conference on Fairness, Accountability, and Transparency. ACM, Jun
2022, DOI 10.1145/3531146.3533111.
Abstract: In recent years, there has been a growing interest in the field
of ”AI Ethics” and related areas. This field is purposefully broad, allowing
for the intersection of numerous subfields and disciplines. However, a lot
of work in this area thus far has centered computational methods, leading
to a narrow lens where technical tools are framed as solutions for broader
sociotechnical problems. In this work, we discuss a less-explored mode of
what it can mean to ”do” AI Ethics: tech worker collective action. Through
collective action, the employees of powerful tech companies can act as a
countervailing force against strong corporate impulses to grow or make a
profit to the detriment of other values. In this work, we ground these efforts
in existing scholarship of social movements and labor organizing. We char-
acterize 150 documented collective actions, and explore several case studies
of successful campaigns. Looking forward, we also identify under-explored
types of actions, and provide conceptual frameworks and inspiration for how
to utilize worker organizing as an effective lever for change.

[Bogner2022] Justus Bogner and Manuel Merkel. To type or not to type? a
systematic comparison of the software quality of javascript and typescript
applications on github, 2022.
Abstract: JavaScript (JS) is one of the most popular programming lan-
guages, and widely used for web apps and even backend development. Due
to its dynamic nature, however, JS applications often have a reputation for
poor software quality. As a type-safe superset of JavaScript, TypeScript (TS)
offers features to address this. However, there is currently insufficient em-
pirical evidence to broadly support the claim that TS apps exhibit better
software quality than JS apps. We therefore conducted a repository min-
ing study based on 604 GitHub projects (299 for JS, 305 for TS) with over
16M LoC and collected four facets of software quality: a) code quality (# of
code smells per LoC), b) code understandability (cognitive complexity per
LoC), c) bug proneness (bug fix commit ratio), and d) bug resolution time
(mean time a bug issue is open). For TS, we also collected how frequently
the type-safety ignoring ‘any‘ type was used. The analysis indicates that TS
apps exhibit significantly better code quality and understandability than JS
apps. Contrary to expectations, however, bug proneness and bug resolution
time of our TS sample were not significantly lower than for JS: mean bug fix
commit ratio was more than 60% larger (0.126 vs. 0.206), and TS projects
needed on average more than an additional day to fix bugs (31.86 vs. 33.04
days). Furthermore, reducing the usage of the ‘any‘ type in TS apps was
significantly correlated with all metrics except bug proneness (Spearman’s
rho between 0.17 and 0.26). Our results indicate that the perceived positive

10



influence of TypeScript for avoiding bugs in comparison to JavaScript may
be more complicated than assumed. While using TS seems to have benefits,
it does not automatically lead to less and easier to fix bugs. However, more
research is needed in this area, especially concerning the potential influence
of project complexity and developer experience.

[Borg2022] Markus Borg, Leif Jonsson, Emelie Engström, Béla Bartalos, and
Attila Szabó. Adopting automated bug assignment in practice: A longitu-
dinal case study at ericsson, 2022.
Abstract: The continuous inflow of bug reports is a considerable chal-
lenge in large development projects. Inspired by contemporary work on min-
ing software repositories, we designed a prototype bug assignment solution
based on machine learning in 2011-2016. The prototype evolved into an in-
ternal Ericsson product, TRR, in 2017-2018. TRR’s first bug assignment
without human intervention happened in April 2019. Our study evaluates
the adoption of TRR within its industrial context at Ericsson. Moreover,
we investigate 1) how TRR performs in the field, 2) what value TRR pro-
vides to Ericsson, and 3) how TRR has influenced the ways of working.
We conduct an industrial case study combining interviews with TRR stake-
holders, minutes from sprint planning meetings, and bug tracking data. The
data analysis includes thematic analysis, descriptive statistics, and Bayesian
causal analysis. TRR is now an incorporated part of the bug assignment
process. Considering the abstraction levels of the telecommunications stack,
high-level modules are more positive while low-level modules experienced
some drawbacks. On average, TRR automatically assigns 30% of the incom-
ing bug reports with an accuracy of 75%. Auto-routed TRs are resolved
around 21% faster within Ericsson, and TRR has saved highly seasoned en-
gineers many hours of work. Indirect effects of adopting TRR include process
improvements, process awareness, increased communication, and higher job
satisfaction. TRR has saved time at Ericsson, but the adoption of automated
bug assignment was more intricate compared to similar endeavors reported
from other companies. We primarily attribute the difference to the very large
size of the organization and the complex products. Key facilitators in the
successful adoption include a gradual introduction, product champions, and
careful stakeholder analysis.

[BoumaSims2023] Elijah Bouma-Sims and Yasemin Acar. Beyond the
boolean: How programmers ask about, use, and discuss gender, 2023, DOI
10.1145/3579461.
Abstract: Categorization via gender is omnipresent throughout society,
and thus also computing; gender identity is often requested of users before
they use software or web services. Despite this fact, no research has explored
how software developers approach requesting gender disclosure from users.
To understand how developers think about gender in software, we present
an interview study with 15 software developers recruited from the freelanc-
ing platform Upwork as well as Twitter. We also collected and categorized

11



917 threads that contained keywords relevant to gender from programming-
related sub-forums on the social media service Reddit. 16 posts that dis-
cussed approaches to gender disclosure were further analyzed. We found
that while some developers have an understanding of inclusive gender op-
tions, programmers rarely consider when gender data is necessary or the way
in which they request gender disclosure from users. Our findings have im-
plications for programmers, software engineering educators, and the broader
community concerned with inclusivity.

[Brodley2022] Carla E. Brodley, Benjamin J. Hescott, Jessica Biron, Ali Ress-
ing, Melissa Peiken, Sarah Maravetz, and Alan Mislove. Broadening par-
ticipation in computing via ubiquitous combined majors (CS+X). In Proc.
Technical Symposium on Computer Science Education (SIGCSE). ACM, Feb
2022, DOI 10.1145/3478431.3499352.
Abstract: In 2001, Khoury College of Computer Sciences at Northeastern
University created their first combined majors with Cognitive Psychology,
Mathematics and Physics. This type of degree has often been referred to as
C̈S+Xı̈n the literature and is increasingly relevant as the need for interdisci-
plinary computer scientists grows. As of 2021, students at Northeastern can
choose among three computing majors (Computer Science, Data Science or
Cybersecurity) and 42 combined majors, which combine one of the three
computing degrees with one of 29 distinct majors in other fields. Prior to
2014, combined majors were with the sciences, business and design. Over
the last seven years, we created 29 new combined majors, explicitly creating
combinations with fields where there has traditionally been greater gender
diversity. The resulting increase in student interest and gender diversity over
the last seven years is compelling. As of Fall 2020, 44.6% of the 2,800+ com-
puting majors at Northeastern are pursuing combined majors, 39% of whom
are women. This is substantially higher than the 21.5% reported in IPEDS
for 2019 women computing graduates in the U.S. We did not observe any
significant differences in racial and ethnic diversity between combined and
computing only degrees. In this experience paper, we describe how we cre-
ate and manage combined majors, and we present results on enrollments,
admissions, graduation, internship placements, and how students discover
combined majors.

[Brun2022] Yuriy Brun, Tian Lin, Jessie Elise Somerville, Elisha M. Myers,
and Natalie C. Ebner. Blindspots in python and java APIs result in vul-
nerable code. ACM Transactions on Software Engineering and Methodology,
Nov 2022, DOI 10.1145/3571850.
Abstract: Blindspots in APIs can cause software engineers to introduce
vulnerabilities, but such blindspots are, unfortunately, common. We study
the efect APIs with blindspots have on developers in two languages by repli-
cating a 109-developer, 24-Java-API controlled experiment. Our replication
applies to Python and involves 129 new developers and 22 new APIs. We ind
that using APIs with blindspots statistically signiicantly reduces the devel-
opers’ ability to correctly reason about the APIs in both languages, but that

12



the efect is more pronounced for Python. Interestingly, for Java, the efect in-
creased with complexity of the code relying on the API, whereas for Python,
the opposite was true. This suggests that Python developers are less likely
to notice potential for vulnerabilities in complex code than in simple code,
whereas Java developers are more likely to recognize the extra complexity
and apply more care, but are more careless with simple code. Whether the
developers considered API uses to be more diicult, less clear, and less familiar
did not have an efect on their ability to correctly reason about them. Devel-
opers with better long-term memory recall were more likely to correctly rea-
son about APIs with blindspots, but short-term memory, processing speed,
episodic memory, and memory span had no efect. Surprisingly, professional
experience and expertise did not improve the developers’ ability to reason
about APIs with blindspots across both languages, with long-term profes-
sionals with many years of experience making mistakes as often as relative
novices. Finally, personality traits did not signiicantly afect the Python de-
velopers’ ability to reason about APIs with blindspots, but less extraverted
and more open developers were better at reasoning about Java APIs with
blindspots. Overall, our indings suggest that blindspots in APIs are a serious
problem across languages, and that experience and education alone do not
overcome that problem, suggesting that tools are needed to help developers
recognize blindspots in APIs as they write code that uses those APIs.

[Buffardi2020] Kevin Buffardi. Assessing individual contributions to software
engineering projects with Git logs and user stories. In Proc. Technical Sym-
posium on Computer Science Education (SIGCSE). ACM, Feb 2020, DOI
10.1145/3328778.3366948.
Abstract: Software Engineering courses often incorporate large-scale
projects with collaboration between students working in teams. However, it
is difficult to objectively assess individual students when their projects are a
product of collaborative efforts. This study explores measurements of indi-
viduals’ contributions to their respective teams. I analyzed ten Software En-
gineering team projects (n=42) and evaluations of individual contributions
using automated evaluation of the version control system history (Git logs)
and user stories completed on their project management (Kanban) boards.
Unique insights from meta-data within the Git history and Kanban board
user stories reveal complicated relationships between these measurements
and traditional assessments, such as peer review and subjective instructor
evaluation. From the results, I suggest supplementing and validating tradi-
tional assessments with insights from individuals’ commit history and user
story contributions.

[CanovasIzquierdo2022] Javier Luis Cánovas Izquierdo and Jordi Cabot. On
the analysis of non-coding roles in open source development. Empir. Softw.
Eng., 27(1), Jan 2022, DOI 10.1007/s10664-021-10061-x.
Abstract: The role of non-coding contributors in Open Source Software
(OSS) is poorly understood. Most of current research around OSS devel-
opment focuses on the coding aspects of the project (e.g., commits, pull

13



requests or code reviews) while ignoring the potential of other types of con-
tributions. Often, due to the assumption that these other contributions are
not significant in number and that, in any case, they are handled by the
same people that are also part of the “coding team”. This paper aims to
investigate whether this is actually the case by analyzing the frequency and
diversity of non-coding contributions in OSS development. As a sample of
projects for our study we have taken the 100 most popular projects in the
ecosystem of NPM, a package manager for JavaScript. Our results validate
the importance of dedicated non-coding contributors in OSS and the diver-
sity of OSS communities as, typically, a contributor specializes in a specific
subset of roles. We foresee that projects adopting explicit policies to attract
and onboard them could see a positive impact in their long-term sustain-
ability providing they also put in place the right governance strategies to
facilitate the migration and collaboration among the different roles. As part
of this work, we also provide a replicability package to facilitate further
quantitative role-based analysis by other researchers.

[Chaparro2017] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno,
Massimiliano Di Penta, Andrian Marcus, Gabriele Bavota, and Vincent Ng.
Detecting missing information in bug descriptions. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering. ACM,
Aug 2017, DOI 10.1145/3106237.3106285.
Abstract: Bug reports document unexpected software behaviors experi-
enced by users. To be effective, they should allow bug triagers to easily
understand and reproduce the potential reported bugs, by clearly describ-
ing the Observed Behavior (OB), the Steps to Reproduce (S2R), and the
Expected Behavior (EB). Unfortunately, while considered extremely useful,
reporters often miss such pieces of information in bug reports and, to date,
there is no effective way to automatically check and enforce their presence.
We manually analyzed nearly 3k bug reports to understand to what extent
OB, EB, and S2R are reported in bug reports and what discourse patterns
reporters use to describe such information. We found that (i) while most
reports contain OB (i.e., 93.5%), only 35.2% and 51.4% explicitly describe
EB and S2R, respectively; and (ii) reporters recurrently use 154 discourse
patterns to describe such content. Based on these findings, we designed and
evaluated an automated approach to detect the absence (or presence) of
EB and S2R in bug descriptions. With its best setting, our approach is
able to detect missing EB (S2R) with 85.9% (69.2%) average precision and
93.2% (83%) average recall. Our approach intends to improve bug descrip-
tions quality by alerting reporters about missing EB and S2R at reporting
time.

[Chowdhury2022a] Md Atique Reza Chowdhury, Rabe Abdalkareem, Emad
Shihab, and Bram Adams. On the untriviality of trivial packages: An em-
pirical study of npm JavaScript packages. IEEE Transactions on Software
Engineering, 48(8):2695–2708, Aug 2022, DOI 10.1109/tse.2021.3068901.
Abstract: Nowadays, developing software would be unthinkable without

14



the use of third-party packages. Although such code reuse helps to achieve
rapid continuous delivery of software to end-users, blindly reusing code has
its pitfalls. For example, prior work has investigated the rationale for using
packages that implement simple functionalities, known as trivial packages
(i.e., in terms of the code size and complexity). This prior work showed
that although these trivial packages were simple, they were popular and
prevalent in the npm ecosystem. This popularity and prevalence of trivial
packages peaked our interest in questioning the ’triviality of trivial pack-
ages’. To better understand and examine the triviality of trivial packages,
we mine a large set of JavaScript projects that use trivial npm packages and
evaluate their relative centrality. Specifically, we evaluate the triviality from
two complementary points of view: based on project usage and ecosystem
usage of these trivial packages. Our result shows that trivial packages are
being used in central JavaScript files of a software project. Additionally, by
analyzing all external package API calls in these JavaScript files, we found
that a high percentage of these API calls are attributed to trivial packages.
Therefore, these packages play a significant role in JavaScript files. Further-
more, in the package dependency network, we observed that 16.8 percent
packages are trivial and in some cases removing a trivial package can impact
approximately 29 percent of the ecosystem. Overall, our finding indicates
that although smaller in size and complexity, trivial packages are highly de-
pended on packages by JavaScript projects. Additionally, our study shows
that although they might be called trivial, nothing about trivial packages is
trivial.

[Chowdhury2022b] Partha Das Chowdhury, Mohammad Tahaei, and Awais
Rashid. Better call saltzer & schroeder: A retrospective security analysis of
solarwinds & log4j, 2022.
Abstract: Saltzer & Schroeder’s principles aim to bring security to the
design of computer systems. We investigate SolarWinds Orion update and
Log4j to unpack the intersections where observance of these principles could
have mitigated the embedded vulnerabilities. The common principles that
were not observed include fail safe defaults, economy of mechanism, com-
plete mediation and least privilege. Then we explore the literature on secure
software development interventions for developers to identify usable analysis
tools and frameworks that can contribute towards improved observance of
these principles. We focus on a system wide view of access of codes, checking
access paths and aiding application developers with safe libraries along with
an appropriate security task list for functionalities.

[Coleman2022] Cora Coleman, William G. Griswold, and Nick Mitchell. Do
cloud developers prefer clis or web consoles? clis mostly, though it varies by
task, 2022.
Abstract: Despite the increased importance of Cloud tooling, and many
large-scale studies of Cloud users, research has yet to answer what tool
modalities (e.g. CLI or web console) developers prefer. In formulating our

15



studies, we quickly found that preference varies heavily based on the pro-
gramming task at hand. To address this gap, we conducted a two-part re-
search study that quantifies modality preference as a function of program-
ming task. Part one surveys how preference for three tool modalities (CLI,
IDE, web console) varies across three classes of task (CRUD, debugging,
monitoring). The survey shows, among 60 respondents, developers most pre-
fer the CLI modality, especially for CRUD tasks. Monitoring tasks are the
exception for which developers prefer the web console. Part two observes how
four participants complete a task using the kubectl CLI and the OpenShift
web console. All four participants prefer using the CLI to accomplish the
task.

[Colicev2022] Anatoli Colicev, Tuuli Hakkarainen, and Torben Pedersen.
Multi-project work and project performance: Friends or foes? Strategic
Management Journal, Aug 2022, DOI 10.1002/smj.3443.

[Collaris2022] Dennis Collaris, Hilde J. P. Weerts, Daphne Miedema, Jarke J.
van Wijk, and Mykola Pechenizkiy. Characterizing data scientists’ mental
models of local feature importance. In Nordic Human-Computer Interaction
Conference. ACM, Oct 2022, DOI 10.1145/3546155.3546670.
Abstract: Feature importance is an approach that helps to explain ma-
chine learning model predictions. It works through assigning importance
scores to input features of a particular model. Different techniques exist to
derive these scores, with widely varying underlying assumptions of what
importance means. Little research has been done to verify whether these as-
sumptions match the expectations of the target user, which is imperative to
ensure that feature importance values are not misinterpreted. In this work,
we explore data scientists’ mental models of (local) feature importance and
compare these with the conceptual models of the techniques. We first identify
several properties of local feature importance techniques that could poten-
tially lead to misinterpretations. Subsequently, we explore the expectations
data scientists have about local feature importance through an exploratory
(qualitative and quantitative) survey of 34 data scientists in industry. We
compare the identified expectations to the theory and assumptions behind
the techniques and find that the two are not (always) in agreement.

[Cosden2022] Ian A. Cosden. An rse group model: Operational and orga-
nizational approaches from princeton university’s central research software
engineering group, 2022.
Abstract: The Princeton Research Software Engineering Group has grown
rapidly since its inception in late 2016. The group, housed in the central Re-
search Computing Department, comprised of professional Research Software
Engineers (RSEs), works directly with researchers to create high quality re-
search software to enable new scientific advances. As the group has matured
so has the need for formalizing operational details and procedures. The RSE
group uses an RSE partnership model, where Research Software Engineers
work long-term with a designated academic department, institute, center,

16



consortium, or individual principal investigator (PI). This article describes
the operation of the central Princeton RSE group including funding, part-
ner & project selection, and best practices for defining expectations for a
successful partnership with researchers.

[DalSasso2016] Tommaso Dal Sasso, Andrea Mocci, and Michele Lanza.
What makes a satisficing bug report? In 2016 IEEE International Confer-
ence on Software Quality, Reliability and Security (QRS). IEEE, Aug 2016,
DOI 10.1109/QRS.2016.28.
Abstract: To ensure quality of software systems, developers use bug re-
ports to track defects. It is in the interest of users and developers that bug
reports provide the necessary information to ease the fixing process. Past re-
search found that users do not provide the information that developers deem
ideally useful to fix a bug. This raises an interesting question: What is the
satisficing information to speed up the bug fixing process? We conducted
an observational study on the relation between provided report information
and its lifetime, considering more than 650,000 reports from open-source
systems using popular bug trackers. We distilled a meta-model for a min-
imal bug report, establishing a basic layer of core features. We found that
few fields influence the resolution time and that customized fields have little
impact on it. We performed a survey to investigate what users deem easy to
provide in a bug report.

[DeAlmeida2022] Eduardo Santana de Almeida, Iftekhar Ahmed, and Andre
van der Hoek. Let’s go to the whiteboard (again):perceptions from software
architects on whiteboard architecture meetings, 2022.
Abstract: The whiteboard plays a crucial role in the day-to-day lives of soft-
ware architects, as they frequently will organize meetings at the whiteboard
to discuss a new architecture, some proposed changes to the architecture,
a mismatch between the architecture and the code, and more. While much
has been studied about software architects, the architectures they produce,
and how they produce them, a detailed understanding of these whiteboards
meetings is still lacking. In this paper, we contribute a mixed-methods study
involving semi-structured interviews and a subsequent survey to understand
the perceptions of software architects on whiteboard architecture meetings.
We focus on five aspects: (1) why do they hold these meetings, what is the
impact of the experience levels of the participants in these meetings, how do
the architects document the meetings, what kinds of changes are made after
the meetings have concluded and their results are moved to implementation,
and what role do digital whiteboards plays? In studying these aspects, we
identify 12 observations related to both technical aspects and social aspects
of the meetings. These insights have implications for further research, offer
concrete advice to practitioners, provide guidance for future tool design, and
suggest ways of educating future software architects.

[DeSantana2022] Taijara Loiola de Santana, Paulo Anselmo da Mota Silveira
Neto, Eduardo Santana de Almeida, and Iftekhar Ahmed. Bug analysis in

17



jupyter notebook projects: An empirical study, 2022.
Abstract: Computational notebooks, such as Jupyter, have been widely
adopted by data scientists to write code for analyzing and visualizing data.
Despite their growing adoption and popularity, there has been no thorough
study to understand Jupyter development challenges from the practitioners’
point of view. This paper presents a systematic study of bugs and chal-
lenges that Jupyter practitioners face through a large-scale empirical inves-
tigation. We mined 14,740 commits from 105 GitHub open-source projects
with Jupyter notebook code. Next, we analyzed 30,416 Stack Overflow posts
which gave us insights into bugs that practitioners face when developing
Jupyter notebook projects. Finally, we conducted nineteen interviews with
data scientists to uncover more details about Jupyter bugs and to gain in-
sights into Jupyter developers’ challenges. We propose a bug taxonomy for
Jupyter projects based on our results. We also highlight bug categories, their
root causes, and the challenges that Jupyter practitioners face.

[DeSouzaSantos2022] Ronnie E. de Souza Santos and Paul Ralph. A
grounded theory of coordination in remote-first and hybrid software teams,
2022.
Abstract: While the long-term effects of the COVID-19 pandemic on soft-
ware professionals and organizations are difficult to predict, it seems likely
that working from home, remote-first teams, distributed teams, and hybrid
(part-remote/part-office) teams will be more common. It is therefore im-
portant to investigate the challenges that software teams and organizations
face with new remote and hybrid work. Consequently, this paper reports a
year-long, participant-observation, constructivist grounded theory study in-
vestigating the impact of working from home on software development. This
study resulted in a theory of software team coordination. Briefly, shifting
from in-office to at-home work fundamentally altered coordination within
software teams. While group cohesion and more effective communication
appear protective, coordination is undermined by distrust, parenting and
communication bricolage. Poor coordination leads to numerous problems in-
cluding misunderstandings, help requests, lower job satisfaction among team
members, and more ill-defined tasks. These problems, in turn, reduce over-
all project success and prompt professionals to alter their software develop-
ment processes (in this case, from Scrum to Kanban). Our findings suggest
that software organizations with many remote employees can improve per-
formance by encouraging greater engagement within teams and supporting
employees with family and childcare responsibilities.

[Demirag2022] Didem Demirag and Jeremy Clark. Opening sentences
in academic writing. In Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education. ACM, Feb 2022, DOI
10.1145/3478431.3499378.
Abstract: Traditionally, education in computer science focuses on stake-
holders like teachers, undergraduate students, and employers. However re-
searchers also educate themselves about recent results and new subject mat-

18



ters. An important vehicle in this informal, self-education process is reading
peer-reviewed academic papers—papers that are also used in the curriculum
of graduate-level research courses. Technical writing skills are important in
this domain, as well as engaging the reader with interesting text. This paper
is a study of academic writing. We study in depth the first sentence used
by researchers in opening their academic papers and how this sentence op-
erates to draw the reader in. We use a corpus of 379 papers from a top-tier
cybersecurity conference and use qualitative analysis (coding from grounded
theory) to create a taxonomy of 5 general types and 14 sub-types of opening
sentences. In this paper, we define and illustrate each type through exam-
ples, and reflect on what we learned about writing after examining all of
these sentences.

[DiGrazia2022] Luca Di Grazia and Michael Pradel. The evolution of
type annotations in Python: an empirical study. In Proc. European
Software Engineering Conference/International Symposium on the Foun-
dations of Software Engineering (ESEC/FSE). ACM, Nov 2022, DOI
10.1145/3540250.3549114.
Abstract: Type annotations and gradual type checkers attempt to reveal
errors and facilitate maintenance in dynamically typed programming lan-
guages. Despite the availability of these features and tools, it is currently
unclear how quickly developers are adopting them, what strategies they fol-
low when doing so, and whether adding type annotations reveals more type
errors. This paper presents the first large-scale empirical study of the evo-
lution of type annotations and type errors in Python. The study is based
on an analysis of 1,414,936 type annotation changes, which we extract from
1,123,393 commits among 9,655 projects. Our results show that (i) type an-
notations are getting more popular, and once added, often remain unchanged
in the projects for a long time, (ii) projects follow three evolution patterns
for type annotation usage – regular annotation, type sprints, and occasional
uses – and that the used pattern correlates with the number of contributors,
(iii) more type annotations help find more type errors (0.704 correlation),
but nevertheless, many commits (78.3%) are committed despite having such
errors. Our findings show that better developer training and automated tech-
niques for adding type annotations are needed, as most code still remains
unannotated, and they call for a better integration of gradual type checking
into the development process.

[Dias2021] Edson Dias, Paulo Meirelles, Fernando Castor, Igor Steinmacher,
Igor Wiese, and Gustavo Pinto. What makes a great maintainer of open
source projects? In Proc. International Conference on Software Engineering
(ICSE). IEEE, May 2021, DOI 10.1109/icse43902.2021.00093.
Abstract: Although Open Source Software (OSS) maintainers devote a
significant proportion of their work to coding tasks, great maintainers must
excel in many other activities beyond coding. Maintainers should care about
fostering a community, helping new members to find their place, while also
saying “no” to patches that although are well-coded and well-tested, do not

19



contribute to the goal of the project. To perform all these activities master-
fully, maintainers should exercise attributes that software engineers (working
on closed source projects) do not always need to master. This paper aims to
uncover, relate, and prioritize the unique attributes that great OSS main-
tainers might have. To achieve this goal, we conducted 33 semi-structured
interviews with well-experienced maintainers that are the gatekeepers of no-
table projects such as the Linux Kernel, the Debian operating system, and
the GitLab coding platform. After we analyzed the interviews and curated
a list of attributes, we created a conceptual framework to explain how these
attributes are connected. We then conducted a rating survey with 90 OSS
contributors. We noted that “technical excellence” and “communication” are
the most recurring attributes. When grouped, these attributes fit into four
broad categories: management, social, technical, and personality. While we
noted that “sustain a long term vision of the project” and being “extremely
careful” seem to form the basis of our framework, we noted through our sur-
vey that the communication attribute was perceived as the most essential
one.

[Dickson2022] Paul E. Dickson, Tim Richards, and Brett A. Becker. Expe-
riences implementing and utilizing a notional machine in the classroom. In
Proceedings of the 53rd ACM Technical Symposium on Computer Science
Education. ACM, Feb 2022, DOI 10.1145/3478431.3499320.
Abstract: In the computing education community, discussion is growing
about the benefits of teaching programming by explicitly using notional ma-
chines to help students. To-date most work is largely theoretical and little
work addresses actually using them in a classroom. This paper documents
our experience of creating a notional machine for a specific course and using
it in that classroom. A key point we learned while creating this notional
machine is that many of the difficulties encountered were due to the concept
of a notional machine being tightly coupled to students’ mental models. Al-
though not surprising, the numerous complications this brings are important
to overcome. The potential amount of detail included in the notional machine
is enormously influenced by the students’ mental models, which are likely
specific to a course, and also change throughout a semester – and certainly
across several semesters. We present lessons learned from this experience,
among them that implementing a notional machine and using it in class is
a non-trivial yet possibly beneficial exercise.

[Diercks2022] Philipp Diercks, Dennis Gläser, Ontje Lünsdorf, Michael Selzer,
Bernd Flemisch, and Jörg F. Unger. Evaluation of tools for describing,
reproducing and reusing scientific workflows, 2022.
Abstract: In the field of computational science and engineering, workflows
often entail the application of various software, for instance, for simulation or
pre- and postprocessing. Typically, these components have to be combined in
arbitrarily complex workflows to address a specific research question. In order
for peer researchers to understand, reproduce and (re)use the findings of a
scientific publication, several challenges have to be addressed. For instance,

20



the employed workflow has to be automated and information on all used
software must be available for a reproduction of the results. Moreover, the
results must be traceable and the workflow documented and readable to allow
for external verification and greater trust. In this paper, existing workflow
management systems (WfMSs) are discussed regarding their suitability for
describing, reproducing and reusing scientific workflows. To this end, a set of
general requirements for WfMSs were deduced from user stories that we deem
relevant in the domain of computational science and engineering. On the
basis of an exemplary workflow implementation, publicly hosted at GitHub, a
selection of different WfMSs is compared with respect to these requirements,
to support fellow scientists in identifying the WfMSs that best suit their
requirements.

[Do2022] Lisa Nguyen Quang Do, James R. Wright, and Karim Ali. Why do
software developers use static analysis tools? a user-centered study of devel-
oper needs and motivations. IEEE Transactions on Software Engineering,
48(3):835–847, Mar 2022, DOI 10.1109/tse.2020.3004525.
Abstract: As increasingly complex software is developed every day, a grow-
ing number of companies use static analysis tools to reason about program
properties ranging from simple coding style rules to more advanced software
bugs, to multi-tier security vulnerabilities. While increasingly complex anal-
yses are created, developer support must also be updated to ensure that
the tools are used to their best potential. Past research in the usability of
static analysis tools has primarily focused on usability issues encountered by
software developers, and the causes of those issues in analysis tools. In this
article, we adopt a more user-centered approach, and aim at understanding
why software developers use analysis tools, which decisions they make when
using those tools, what they look for when making those decisions, and the
motivation behind their strategies. This approach allows us to derive new
tool requirements that closely support software developers (e.g., systems for
recommending warnings to fix that take developer knowledge into account),
and also open novel avenues for further static-analysis research such as col-
laborative user interfaces for analysis warnings.

[Dogan2022] Emre Doğan and Eray Tüzün. Towards a taxonomy of code
review smells. Inf. Softw. Technol., 142(106737):106737, Feb 2022, DOI
10.1016/j.infsof.2021.106737.
Abstract: Context: Code review is a crucial step of the software develop-
ment life cycle in order to detect possible problems in source code before
merging the changeset to the codebase. Although there is no consensus on
a formally defined life cycle of the code review process, many companies
and open source software (OSS) communities converge on common rules
and best practices. In spite of minor differences in different platforms, the
primary purpose of all these rules and practices leads to a faster and more
effective code review process. Non-conformance of developers to this process
does not only reduce the advantages of the code review but can also in-
troduce waste in later stages of the software development. Objectives: The

21



aim of this study is to provide an empirical understanding of the bad prac-
tices followed in the code review process, that are code review (CR) smells.
Methods: We first conduct a multivocal literature review in order to gather
code review bad practices discussed in white and gray literature. Then, we
conduct a targeted survey with 32 experienced software practitioners and
perform follow-up interviews in order to get their expert opinion. Based on
this process, a taxonomy of code review smells is introduced. To quantita-
tively demonstrate the existence of these smells, we analyze 226,292 code
reviews collected from eight OSS projects. Results: We observe that a con-
siderable number of code review smells exist in all projects with varying
degrees of ratios. The empirical results illustrate that 72.2% of the code re-
views among eight projects are affected by at least one code review smell.
Conclusion: The empirical analysis shows that the OSS projects are sub-
stantially affected by the code review smells. The provided taxonomy could
provide a foundation for best practices and tool support to detect and avoid
code review smells in practice.

[Dong2023] Yiwen Dong, Zheyang Li, Yongqiang Tian, Chengnian Sun,
Michael W. Godfrey, and Meiyappan Nagappan. Bash in the wild: Language
usage, code smells, and bugs. ACM Transactions on Software Engineering
and Methodology, 32(1):1–22, Jan 2023, DOI 10.1145/3517193.
Abstract: The Bourne-again shell (Bash) is a prevalent scripting language
for orchestrating shell commands and managing resources in Unix-like envi-
ronments. It is one of the mainstream shell dialects that is available on most
GNU Linux systems. However, the unique syntax and semantics of Bash
could easily lead to unintended behaviors if carelessly used. Prior studies pri-
marily focused on improving reliability of Bash scripts or facilitating writing
Bash scripts; there is yet no empirical study on the characteristics of Bash
programs written in reality, e.g., frequently used language features, com-
mon code smells and bugs. In this paper, we perform a large-scale empirical
study of Bash usage, based on analyses over one million open-source Bash
scripts found in Github repositories. We identify and discuss which features
and utilities of Bash are most often used. Using static analysis, we ind that
Bash scripts are often error prone, and the error-proneness has a moderately
positive correlation with the size of the scripts. We also ind that the most
common problem areas concern quoting, resource management, command
options, permissions, and error handling. We envision that these indings can
be beneicial for learning Bash and future research that aims to improve shell
and command-line productivity and reliability.

[Drage2022] Eleanor Drage and Kerry Mackereth. Does AI debias recruit-
ment? race, gender, and AI’s “eradication of difference”. Philos. Technol.,
35(4):89, Oct 2022, DOI 10.1007/s13347-022-00543-1.
Abstract: In this paper, we analyze two key claims offered by recruitment
AI companies in relation to the development and deployment of AI-powered
HR tools: (1) recruitment AI can objectively assess candidates by removing
gender and race from their systems, and (2) this removal of gender and race

22



will make recruitment fairer, help customers attain their DEI goals, and lay
the foundations for a truly meritocratic culture to thrive within an organi-
zation. We argue that these claims are misleading for four reasons: First,
attempts to “strip” gender and race from AI systems often misunderstand
what gender and race are, casting them as isolatable attributes rather than
broader systems of power. Second, the attempted outsourcing of “diversity
work” to AI-powered hiring tools may unintentionally entrench cultures of
problems within organizations. Third, AI hiring tools’ supposedly neutral
assessment of candidates’ traits belie the power relationship between the
observer and the observed. Specifically, the racialized history of character
analysis and its associated processes of classification and categorization play
into longer histories of taxonomical sorting and reflect the current demands
and desires of the job market, even when not explicitly conducted along
the lines of gender and race. Fourth, recruitment AI tools help produce the
“ideal candidate” that they supposedly identify through by constructing as-
sociations between words and people’s bodies. From these four conclusions
outlined above, we offer three key recommendations to AI HR firms, their
customers, and policy makers going forward.

[Dyer2022] Robert Dyer and Jigyasa Chauhan. An exploratory study on
the predominant programming paradigms in Python code. In Proc. Eu-
ropean Software Engineering Conference/International Symposium on the
Foundations of Software Engineering (ESEC/FSE). ACM, Nov 2022, DOI
10.1145/3540250.3549158.
Abstract: Python is a multi-paradigm programming language that fully
supports object-oriented (OO) programming. The language allows writing
code in a non-procedural imperative manner, using procedures, using classes,
or in a functional style. To date, no one has studied what paradigm(s), if any,
are predominant in Python code and projects. In this work, we first define
a technique to classify Python files into predominant paradigm(s). We then
automate our approach and evaluate it against human judgements, show-
ing over 80% agreement. We then analyze over 100k open-source Python
projects, automatically classifying each source file and investigating the
paradigm distributions. The results indicate Python developers tend to heav-
ily favor OO features. We also observed a positive correlation between OO
and procedural paradigms and the size of the project. And despite few files
or projects being predominantly functional, we still found many functional
feature uses.

[Dykstra2022] Josiah Dykstra, Kelly Shortridge, Jamie Met, and Douglas
Hough. Sludge for good: Slowing and imposing costs on cyber attackers,
2022.
Abstract: Choice architecture describes the design by which choices are
presented to people. Nudges are an aspect intended to make ”good” out-
comes easy, such as using password meters to encourage strong passwords.
Sludge, on the contrary, is friction that raises the transaction cost and is
often seen as a negative to users. Turning this concept around, we propose

23



applying sludge for positive cybersecurity outcomes by using it offensively
to consume attackers’ time and other resources. To date, most cyber de-
fenses have been designed to be optimally strong and effective and prohibit
or eliminate attackers as quickly as possible. Our complimentary approach
is to also deploy defenses that seek to maximize the consumption of the
attackers’ time and other resources while causing as little damage as pos-
sible to the victim. This is consistent with zero trust and similar mindsets
which assume breach. The Sludge Strategy introduces cost-imposing cyber
defense by strategically deploying friction for attackers before, during, and
after an attack using deception and authentic design features. We present
the characteristics of effective sludge, and show a continuum from light to
heavy sludge. We describe the quantitative and qualitative costs to attackers
and offer practical considerations for deploying sludge in practice. Finally,
we examine real-world examples of U.S. government operations to frustrate
and impose cost on cyber adversaries.

[Eid2023] Elias Eid and Nancy A. Day. Static profiling of alloy models.
IEEE Transactions on Software Engineering, 49(2):743–759, Feb 2023, DOI
10.1109/tse.2022.3162985.
Abstract: Modeling of software-intensive systems using formal declarative
modeling languages offers a means of managing software complexity through
the use of abstraction and early identification of correctness issues by for-
mal analysis. Alloy is one such language used for modeling systems early in
the development process. Little work has been done to study the styles and
techniques commonly used in Alloy models. We present the first static anal-
ysis study of Alloy models. We investigate research questions that examine a
large corpus of 1,652 Alloy models. To evaluate these research questions, we
create a methodology that leverages the power of ANTLR pattern matching
and the query language XPath. Our research questions are split into two
categories depending on their purpose. The Model Characteristics category
aims to identify what language constructs are used commonly. Modeling
Practices questions are considerably more complex and identify how model-
ers are using Alloy’s constructs. We also evaluate our research questions on
a subset of models from our corpus written by expert modelers. We compare
the results of the expert corpus to the results obtained from the general
corpus to gain insight into how expert modelers use the Alloy language. We
draw conclusions from the findings of our research questions and present ac-
tionable items for educators, language and environment designers, and tool
developers. Actionable items for educators are intended to highlight under-
utilized language constructs and features, and help student modelers avoid
discouraged practices. Actionable items aimed at language designers present
ways to improve the Alloy language by adding constructs or removing un-
used ones based on trends identified in our corpus of models. The actionable
items aimed at environment designers address features to facilitate model
creation. Actionable items for tool developers provide suggestions for back-
end optimizations.

24



[Etemadi2022] Khashayar Etemadi, Aman Sharma, Fernanda Madeiral, and
Martin Monperrus. Augmenting diffs with runtime information, 2022.

[Faria2023] João Pascoal Faria and Rui Abreu. Case studies of development
of verified programs with dafny for accessibility assessment, 2023.
Abstract: Formal verification techniques aim at formally proving the cor-
rectness of a computer program with respect to a formal specification, but
the expertise and effort required for applying formal specification and veri-
fication techniques and scalability issues have limited their practical appli-
cation. In recent years, the tremendous progress with SAT and SMT solvers
enabled the construction of a new generation of tools that promise to make
formal verification more accessible for software engineers, by automating
most if not all of the verification process. The Dafny system is a prominent
example of that trend. However, little evidence exists yet about its accessibil-
ity. To help fill this gap, we conducted a set of 10 case studies of developing
verified implementations in Dafny of some real-world algorithms and data
structures, to determine its accessibility for software engineers. We found
that, on average, the amount of code written for specification and verifi-
cation purposes is of the same order of magnitude as the traditional code
written for implementation and testing purposes (ratio of 1.14)—an “over-
head” that certainly pays off for high-integrity software. The performance
of the Dafny verifier was impressive, with 2.4 proof obligations generated
per line of code written, and 24 ms spent per proof obligation generated and
verified, on average. However, we also found that the manual work needed in
writing auxiliary verification code may be significant and difficult to predict
and master. Hence, further automation and systematization of verification
tasks are possible directions for future advances in the field.

[Farzat2021] Fabio de A. Farzat, Marcio de O. Barros, and Guilherme H.
Travassos. Evolving JavaScript code to reduce load time. IEEE
Transactions on Software Engineering, 47(8):1544–1558, Aug 2021, DOI
10.1109/tse.2019.2928293.
Abstract: JavaScript is one of the most used programming languages for
front-end development of Web applications. The increase in complexity of
front-end features brings concerns about performance, especially the load
and execution time of JavaScript code. In this paper, we propose an evo-
lutionary program improvement technique to reduce the size of JavaScript
programs and, therefore, the time required to load and execute them in Web
applications. To guide the development of this technique, we performed an
experimental study to characterize the patches applied to JavaScript pro-
grams to reduce their size while keeping the functionality required to pass
all test cases in their test suites. We applied this technique to 19 JavaScript
programs varying from 92 to 15,602 LOC and observed reductions from 0.2
to 73.8 percent of the original code, as well as a relationship between the
quality of a program’s test suite and the ability to reduce the size of its
source code.

25



[Feal2020] Álvaro Feal, Paolo Calciati, Narseo Vallina-Rodriguez, Carmela
Troncoso, and Alessandra Gorla. Angel or devil? a privacy study of mo-
bile parental control apps. Proceedings on Privacy Enhancing Technologies,
2020(2):314–335, Apr 2020, DOI 10.2478/popets-2020-0029.
Abstract: Android parental control applications are used by parents to
monitor and limit their children’s mobile behaviour (e.g., mobile apps usage,
web browsing, calling, and texting). In order to offer this service, parental
control apps require privileged access to sys-tem resources and access to sen-
sitive data. This may significantly reduce the dangers associated with kids’
online activities, but it raises important privacy con-cerns. These concerns
have so far been overlooked by organizations providing recommendations re-
garding the use of parental control applications to the public. We conduct
the first in-depth study of the Android parental control app’s ecosystem
from a privacy and regulatory point of view. We exhaustively study 46 apps
from 43 developers which have a combined 20M installs in the Google Play
Store. Using a combination of static and dynamic analysis we find that:
these apps are on average more permissions-hungry than the top 150 apps in
the Google Play Store, and tend to request more dangerous permissions with
new releases; 11% of the apps transmit personal data in the clear; 34% of the
apps gather and send personal information without appropriate consent; and
72% of the apps share data with third parties (including online advertising
and analytics services) without mentioning their presence in their privacy
policies. In summary, parental control applications lack transparency and
lack compliance with reg ulatory requirements. This holds even for those
applications recommended by European and other national security centers.

[Feld2022] Jan Feld, Edwin Ip, Andreas Leibbrandt, and Joseph Vecci. Iden-
tifying and overcoming gender barriers in tech: A field experiment on in-
accurate statistical discrimination. SSRN Electronic Journal, 2022, DOI
10.2139/ssrn.4238277.
Abstract: Women are significantly underrepresented in the technology sec-
tor. We design a field experiment to identify statistical discrimination in job
applicant assessments and test treatments to help improve hiring of the best
applicants. In our experiment, we measure the programming skills of job
applicants for a programming job. Then, we recruit a sample of employers
consisting of human resource and tech professionals and incentivize them to
assess the performance of these applicants based on their resumes. We find
evidence consistent with inaccurate statistical discrimination: while there
are no significant gender differences in performance, employers believe that
female programmers perform worse than male programmers. This belief is
strongest among female employers, who are more prone to selection neglect
than male employers. We also find experimental evidence that statistical
discrimination can be mitigated. In two treatments, in which we provide
assessors with additional information on the applicants’ aptitude or person-
ality, we find no gender differences in the perceived applicant performance.
Together, these findings show the malleability of statistical discrimination

26



and provide levers to improve hiring and reduce gender imbalance.

[Feng2022] Runhan Feng, Ziyang Yan, Shiyan Peng, and Yuanyuan Zhang.
Automated detection of password leakage from public GitHub repositories.
In Proceedings of the 44th International Conference on Software Engineer-
ing. ACM, May 2022, DOI 10.1145/3510003.3510150.
Abstract: The prosperity of the GitHub community has raised new con-
cerns about data security in public repositories. Practitioners who manage
authentication secrets such as textual passwords and API keys in the source
code may accidentally leave these texts in the public repositories, resulting
in secret leakage. If such leakage in the source code can be automatically de-
tected in time, potential damage would be avoided. With existing approaches
focusing on detecting secrets with distinctive formats (e.g., API keys, cryp-
tographic keys in PEM format), textual passwords, which are ubiquitously
used for authentication, fall through the crack. Given that textual passwords
could be virtually any strings, a naive detection scheme based on regular ex-
pression performs poorly. This paper presents PassFinder, an automated
approach to effectively detecting password leakage from public repositories
that involve various programming languages on a large scale. PassFinder
utilizes deep neural networks to unveil the intrinsic characteristics of tex-
tual passwords and understand the semantics of the code snippets that use
textual passwords for authentication, i.e., the contextual information of the
passwords in the source code. Using this new technique, we performed the
first large-scale and longitudinal analysis of password leakage on GitHub. We
inspected newly uploaded public code files on GitHub for 75 days and found
that password leakage is pervasive, affecting over sixty thousand reposito-
ries. Our work contributes to a better understanding of password leakage
on GitHub, and we believe our technique could promote the security of the
open-source ecosystem.

[Ferreira2021] Fabio Ferreira, Hudson Silva Borges, and Marco Tulio Valente.
On the (un-)adoption of JavaScript front-end frameworks. Software: Prac-
tice and Experience, 52(4):947–966, Oct 2021, DOI 10.1002/spe.3044.
Abstract: JavaScript is characterized by a rich ecosystem of libraries and
frameworks. A key element in this ecosystem are frameworks used for im-
plementing the front-end of web-based applications, such as Vue and React.
However, despite their relevance, we have few works investigating the factors
that drive the adoption—and un-adoption—of front-end-based JavaScript
frameworks. Therefore, in this paper, we first report the results of a sur-
vey with 49 developers where we asked them to describe the factors they
consider when selecting a front-end framework. In the second part of the
work, we focus on projects that migrate from one framework to another
since JavaScript’s ecosystem is also very dynamic. Finally, we provide a
quantitative characterization of the migration effort and reveal the main
barriers faced by the developers during this effort. Although not completely
generalizable, our central findings are as follows: (a) popularity and learn-
ability are the key factors that motivate the choice of front-end frameworks

27



in JavaScript; (b) from the 49 surveyed developers, one out of four have
plans to migrate to another framework in the future; (c) the time spent per-
forming the migration is greater than or equal to the time spent using the
old framework in all studied projects. We conclude with a list of implications
for practitioners, framework developers, tool builders, and researchers.

[Ferreira2022] Fabio Ferreira, Hudson Silva Borges, and Marco Tulio Valente.
On the (un-)adoption of JavaScript front-end frameworks. Software: Prac-
tice and Experience, 52(4):947–966, Oct 2021, DOI 10.1002/spe.3044.
Abstract: JavaScript is characterized by a rich ecosystem of libraries and
frameworks. A key element in this ecosystem are frameworks used for im-
plementing the front-end of web-based applications, such as Vue and React.
However, despite their relevance, we have few works investigating the factors
that drive the adoption—and un-adoption—of front-end-based JavaScript
frameworks. Therefore, in this article, we first report the results of a sur-
vey with 49 developers where we asked them to describe the factors they
consider when selecting a front-end framework. In the second part of the
work, we focus on projects that migrate from one framework to another
since JavaScript’s ecosystem is also very dynamic. Finally, we provide a
quantitative characterization of the migration effort and reveal the main
barriers faced by the developers during this effort. Although not completely
generalizable, our central findings are as follows: (a) popularity and learn-
ability are the key factors that motivate the choice of front-end frameworks
in JavaScript; (b) from the 49 surveyed developers, one out of four have
plans to migrate to another framework in the future; (c) the time spent per-
forming the migration is greater than or equal to the time spent using the
old framework in all studied projects. We conclude with a list of implications
for practitioners, framework developers, tool builders, and researchers.

[FinnieAnsley2022] James Finnie-Ansley, Paul Denny, Brett A. Becker, An-
drew Luxton-Reilly, and James Prather. The robots are coming: Ex-
ploring the implications of OpenAI codex on introductory programming.
In Australasian Computing Education Conference. ACM, Feb 2022, DOI
10.1145/3511861.3511863.
Abstract: Recent advances in artificial intelligence have been driven by
an exponential growth in digitised data. Natural language processing, in
particular, has been transformed by machine learning models such as Ope-
nAI’s GPT-3 which generates human-like text so realistic that its developers
have warned of the dangers of its misuse. In recent months OpenAI released
Codex, a new deep learning model trained on Python code from more than
50 million GitHub repositories. Provided with a natural language descrip-
tion of a programming problem as input, Codex generates solution code as
output. It can also explain (in English) input code, translate code between
programming languages, and more. In this work, we explore how Codex
performs on typical introductory programming problems. We report its per-
formance on real questions taken from introductory programming exams and

28



compare it to results from students who took these same exams under nor-
mal conditions, demonstrating that Codex outscores most students. We then
explore how Codex handles subtle variations in problem wording using sev-
eral published variants of the well-known ”Rainfall Problem” along with one
unpublished variant we have used in our teaching. We find the model passes
many test cases for all variants. We also explore how much variation there is
in the Codex generated solutions, observing that an identical input prompt
frequently leads to very different solutions in terms of algorithmic approach
and code length. Finally, we discuss the implications that such technology
will have for computing education as it continues to evolve, including both
challenges and opportunities.

[Flyvbjerg2022] Bent Flyvbjerg, Alexander Budzier, Jong Seok Lee, Mark
Keil, Daniel Lunn, and Dirk W Bester. The empirical reality of IT project
cost overruns: Discovering a power-law distribution. J. Manag. Inf. Syst.,
39(3):607–639, Jul 2022, DOI 10.1080/07421222.2022.2096544.
Abstract: If managers assume a normal or near-normal distribution of In-
formation Technology (IT) project cost overruns, as is common, and cost
overruns can be shown to follow a power-law distribution, managers may be
unwittingly exposing their organizations to extreme risk by severely under-
estimating the probability of large cost overruns. In this research, we collect
and analyze a large sample comprised of 5,392 IT projects to empirically
examine the probability distribution of IT project cost overruns. Further,
we propose and examine a mechanism that can explain such a distribution.
Our results reveal that IT projects are far riskier in terms of cost than nor-
mally assumed by decision makers and scholars. Specifically, we found that
IT project cost overruns follow a power-law distribution in which there are
a large number of projects with relatively small overruns and a fat tail that
includes a smaller number of projects with extreme overruns. A possible
generative mechanism for the identified power-law distribution is found in
interdependencies among technological components in IT systems. We pro-
pose and demonstrate, through computer simulation, that a problem in a
single technological component can lead to chain reactions in which other
interdependent components are affected, causing substantial overruns. What
the power law tells us is that extreme IT project cost overruns will occur
and that the prevalence of these will be grossly underestimated if managers
assume that overruns follow a normal or near-normal distribution. This un-
derscores the importance of realistically assessing and mitigating the cost
risk of new IT projects up front.

[Foidl2022] Harald Foidl, Michael Felderer, and Rudolf Ramler. Data smells.
In Proceedings of the 1st International Conference on AI Engineering: Soft-
ware Engineering for AI. ACM, May 2022, DOI 10.1145/3522664.3528590.
Abstract: High data quality is fundamental for today’s AI-based systems.
However, although data quality has been an object of research for decades,
there is a clear lack of research on potential data quality issues (e.g., ambigu-
ous, extraneous values). These kinds of issues are latent in nature and thus

29



often not obvious. Nevertheless, they can be associated with an increased risk
of future problems in AI-based systems (e.g., technical debt, data-induced
faults). As a counterpart to code smells in software engineering, we refer
to such issues as Data Smells. This article conceptualizes data smells and
elaborates on their causes, consequences, detection, and use in the context
of AI-based systems. In addition, a catalogue of 36 data smells divided into
three categories (i.e., Believability Smells, Understandability Smells, Con-
sistency Smells) is presented. Moreover, the article outlines tool support for
detecting data smells and presents the result of an initial smell detection on
more than 240 real-world datasets.

[Fregnan2023] Enrico Fregnan, Josua Fröhlich, Davide Spadini, and Al-
berto Bacchelli. Graph-based visualization of merge requests for code
review. Journal of Systems and Software, 195:111506, Jan 2023, DOI
10.1016/j.jss.2022.111506.

[Friend2022] Michelle Friend, Monica Mcgill, and Anni Reinking. Solve this!
K-12 CS education teachers’ problems of practice. In Koli Calling ’22: 22nd
Koli Calling International Conference on Computing Education Research.
ACM, Nov 2022, DOI 10.1145/3564721.3564738.
Abstract: Problem. Educational research identifies answerable questions,
but often does not address the problems K-12 teachers identify as important.
Further, academic research findings can be difficult for teachers to apply
to their practices and unique contexts. Currently, little research exists on
the lived experiences of primary and secondary instructors who teach com-
puter science (CS) or computational thinking (CT) and also on the specific
problems of practice teachers face when teaching CS. Research Question.
What problems of practice do K-12 teachers face when teaching CS/CT?
Method. Data for this qualitative study was collected using an online ques-
tionnaire distributed to teachers internationally. CS/CT teachers responded
to an open-ended prompt asking for problems related to teaching CS. The
data was analyzed using descriptive first-round coding and focused second-
round coding. Validity was established through collaborative coding. Anal-
ysis was theorized using locus of control. Findings. Problems with students
encompassed behavioral, cognitive, and attitudinal issues, as well as lack
of home support or resources. Teachers identified many problems of policy
notably stemming from lack of resources or support from administrators.
A smaller number of challenges, such as lack of content knowledge, were
situated within teachers themselves. While some problems such as student
motivation are general, a number of responses identified unique challenges in
CS education compared to other disciplines. Implications. Identifying prob-
lems faced by teachers can guide professional development offerings, help
researchers develop studies that would result in meaningful improvement
to CS education, and suggest policy decisions which would result in better
outcomes for students.

30



[Furia2022] Carlo A. Furia, Richard Torkar, and Robert Feldt. Apply-
ing bayesian analysis guidelines to empirical software engineering data:
The case of programming languages and code quality. ACM Transac-
tions on Software Engineering and Methodology, 31(3):1–38, Mar 2022, DOI
10.1145/3490953.
Abstract: Statistical analysis is the tool of choice to turn data into infor-
mation, and then information into empirical knowledge. The process that
goes from data to knowledge is, however, long, uncertain, and riddled with
pitfalls. To be valid, it should be supported by detailed, rigorous guidelines,
which help ferret out issues with the data or model, and lead to qualified
results that strike a reasonable balance between generality and practical rel-
evance. Such guidelines are being developed by statisticians to support the
latest techniques for Bayesian data analysis. In this article, we frame these
guidelines in a way that is apt to empirical research in software engineer-
ing. To demonstrate the guidelines in practice, we apply them to reanalyze
a GitHub dataset about code quality in different programming languages.
The dataset’s original analysis (Ray et al., 2014) and a critical reanalysis
(Berger et al., 2019) have attracted considerable attention—in no small part
because they target a topic (the impact of different programming languages)
on which strong opinions abound. The goals of our reanalysis are largely
orthogonal to this previous work, as we are concerned with demonstrat-
ing, on data in an interesting domain, how to build a principled Bayesian
data analysis and to showcase its benefits. In the process, we will also shed
light on some critical aspects of the analyzed data and of the relationship
between programming languages and code quality—such as the impact of
project-specific characteristics other than the used programming language.
The high-level conclusions of our exercise will be that Bayesian statistical
techniques can be applied to analyze software engineering data in a way that
is principled, flexible, and leads to convincing results that inform the state
of the art while highlighting the boundaries of its validity. The guidelines
can support building solid statistical analyses and connecting their results,
and hence help buttress continued progress in empirical software engineering
research.

[Furia2023] Carlo A. Furia, Richard Torkar, and Robert Feldt. Towards causal
analysis of empirical software engineering data: The impact of programming
languages on coding competitions, 2023.
Abstract: There is abundant observational data in the software engineering
domain, whereas running large-scale controlled experiments is often practi-
cally impossible. Thus, most empirical studies can only report statistical
correlations—instead of potentially more insightful and robust causal re-
lations. This paper discusses some novel techniques that support analyz-
ing purely observational data for causal relations. Using fundamental causal
models such as directed acyclic graphs, one can rigorously express, and par-
tially validate, causal hypotheses; and then use the causal information to
guide the construction of a statistical model that captures genuine causal

31



relations—such that correlation does imply causation. We apply these ideas
to analyzing public data about programmer performance in Code Jam, a
large world-wide coding contest organized by Google every year. Specifically,
we look at the impact of different programming languages on a participant’s
performance in the contest. While the overall effect associated with program-
ming languages is weak compared to other variables—regardless of whether
we consider correlational or causal links—we found considerable differences
between a purely statistical and a causal analysis of the very same data. The
takeaway message is that even an imperfect causal analysis of observational
data can help answer the salient research questions more precisely and more
robustly than with just purely statistical techniques.

[Gaffney2022] Kevin P Gaffney, Martin Prammer, Larry Brasfield, D Richard
Hipp, Dan Kennedy, and Jignesh M Patel. SQLite. Proceedings VLDB En-
dowment, 15(12):3535–3547, Aug 2022, DOI 10.14778/3554821.3554842.
Abstract: In the two decades following its initial release, SQLite has be-
come the most widely deployed database engine in existence. Today, SQLite
is found in nearly every smartphone, computer, web browser, television, and
automobile. Several factors are likely responsible for its ubiquity, including
its in-process design, standalone codebase, extensive test suite, and cross-
platform file format. While it supports complex analytical queries, SQLite is
primarily designed for fast online transaction processing (OLTP), employing
row-oriented execution and a B-tree storage format. However, fueled by the
rise of edge computing and data science, there is a growing need for efficient
in-process online analytical processing (OLAP). DuckDB, a database engine
nicknamed “the SQLite for analytics”, has recently emerged to meet this
demand. While DuckDB has shown strong performance on OLAP bench-
marks, it is unclear how SQLite compares. Furthermore, we are aware of no
work that attempts to identify root causes for SQLite’s performance behavior
on OLAP workloads. In this paper, we discuss SQLite in the context of this
changing workload landscape. We describe how SQLite evolved from its hum-
ble beginnings to the full-featured database engine it is today. We evaluate
the performance of modern SQLite on three benchmarks, each representing
a different flavor of in-process data management, including transactional,
analytical, and blob processing. We delve into analytical data processing on
SQLite, identifying key bottlenecks and weighing potential solutions. As a
result of our optimizations, SQLite is now up to 4.2X faster on SSB. Finally,
we discuss the future of SQLite, envisioning how it will evolve to meet new
demands and challenges.

[Galappaththi2022] Akalanka Galappaththi, Sarah Nadi, and Christoph
Treude. Does this apply to me? In Proc. International Confer-
ence on Mining Software Repositories (MSR). ACM, May 2022, DOI
10.1145/3524842.3528435.
Abstract: Stack Overflow has become an essential technical resource for
developers. However, given the vast amount of knowledge available on Stack
Overflow, finding the right information that is relevant for a given task is

32



still challenging, especially when a developer is looking for a solution that
applies to their specific requirements or technology stack. Clearly marking
answers with their technical context, i.e., the information that characterizes
the technologies and assumptions needed for this answer, is potentially one
way to improve navigation. However, there is no information about how of-
ten such context is mentioned, and what kind of information it might offer.
In this paper, we conduct an empirical study to understand the occurrence
of technical context in Stack Overflow answers and comments, using tags as
a proxy for technical context. We specifically focus on additional context,
where answers/comments mention information that is not already discussed
in the question. Our results show that nearly half of our studied threads
contain at least one additional context. We find that almost 50% of the ad-
ditional context are either a library/framework, a programming language,
a tool/application, an API, or a database. Overall, our findings show the
promise of using additional context as navigational cues.

[Gamblin2022] Todd Gamblin, Massimiliano Culpo, Gregory Becker, and
Sergei Shudler. Using answer set programming for hpc dependency solv-
ing, 2022.

[Georgiou2022] Stefanos Georgiou, Maria Kechagia, Tushar Sharma, Fed-
erica Sarro, and Ying Zou. Green AI. In Proceedings of the 44th In-
ternational Conference on Software Engineering. ACM, May 2022, DOI
10.1145/3510003.3510221.
Abstract: The use of Artificial Intelligence (AI), and more specifically of
Deep Learning (DL), in modern software systems, is nowadays widespread
and continues to grow. At the same time, its usage is energy de-manding and
contributes to the increased CO2 emissions, and has a great financial cost
as well. Even though there are many studies that examine the capabilities of
DL, only a few focus on its green aspects, such as energy consumption. This
paper aims at raising awareness of the costs incurred when using different
DL frameworks. To this end, we perform a thorough empirical study to mea-
sure and compare the energy consumption and run-time performance of six
different DL models written in the two most popular DL frameworks, namely
PYTORCH and TENSORFLOW. We use a well-known benchmark of DL
models, Deep LEARNINGEXAMPLES, created by NVIDIA, to compare
both the training and inference costs of DL. Finally, we manually investi-
gate the functions of these frameworks that took most of the time to execute
in our experiments. The results of our empirical study reveal that there is a
statistically significant difference between the cost incurred by the two DL
frameworks in 94% of the cases studied. While Tensorflow achieves signifi-
cantly better energy and run-time performance than PYTORCH, and with
large effect sizes in 100% of the cases for the training phase, PYTORCH
instead exhibits significantly better energy and run-time performance than
TENSORFLOW in the inference phase for 66% of the cases, always, with
large effect sizes. Such a large difference in performance costs does not, how-
ever, seem to affect the accuracy of the models produced, as both frameworks

33



achieve comparable scores under the same configurations. Our manual analy-
sis, of the documentation and source code of the functions examined, reveals
that such a difference in performance costs is under-documented, in these
frameworks. This suggests that developers need to improve the documenta-
tion of their DL frameworks, the source code of the functions used in these
frameworks, as well as to enhance existing DL algorithms.

[Getseva2022] Vanesa Getseva and Amruth N Kumar. An empirical analy-
sis of code-tracing concepts. In Proc. Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE). ACM, Jul 2022, DOI
10.1145/3502718.3524794.
Abstract: Which code-tracing concepts are introductory programming stu-
dents likely to learn from classroom instruction and which ones need addi-
tional problem-solving practice to master? Are there relationships among
programming concepts that can be used to build adaptive assessment in-
struments? To answer these questions, we analyzed the data collected over
several semesters by a suite of code-tracing tutors called problets, that ad-
ministered pre-test, practice, post-test protocol. Each tutor covered a single
programming topic, which consisted of 9-25 concepts. For each concept, we
used the pretest data to calculate the probability that students knew the
concept before using the tutor. Using a weighted average of the concept
probabilities, we found that students had learned some topics more than
others: if/if-else (0.85), function behavior (0.76), arrays (0.73), while (0.7),
for (0.69), switch (0.67), and debugging functions (0.55). Some of the con-
cepts on which students needed additional practice included bugs, nested
loops and back-to-back loops. Expressions, even when used in novel con-
texts, were not challenging for students. We built a Bayesian network for
each topic based on conditional probabilities to discover the concepts that
must be covered, and those whose coverage is redundant in the presence of
other concepts. A strength of this empirical study is that it uses a large
dataset collected from multiple institutions over multiple semesters. We also
list threats to the validity of the study.

[Ghorbani2023] Amir Ghorbani, Nathan Cassee, Derek Robinson, Adam
Alami, Neil A. Ernst, Alexander Serebrenik, and Andrzej Wasowski. Au-
tonomy is an acquired taste: Exploring developer preferences for github
bots, 2023.
Abstract: Software bots fulfill an important role in collective software de-
velopment, and their adoption by developers promises increased productiv-
ity. Past research has identified that bots that communicate too often can
irritate developers, which affects the utility of the bot. However, it is not
clear what other properties of human-bot collaboration affect developers’
preferences, or what impact these properties might have. The main idea of
this paper is to explore characteristics affecting developer preferences for in-
teractions between humans and bots, in the context of GitHub pull requests.
We carried out an exploratory sequential study with interviews and a sub-
sequent vignette-based survey. We find developers generally prefer bots that

34



are personable but show little autonomy, however, more experienced develop-
ers tend to prefer more autonomous bots. Based on this empirical evidence,
we recommend bot developers increase configuration options for bots so that
individual developers and projects can configure bots to best align with their
own preferences and project cultures.

[Gorz2022] Philipp Görz, Björn Mathis, Keno Hassler, Emre Güler, Thorsten
Holz, Andreas Zeller, and Rahul Gopinath. How to compare fuzzers, 2022.

[Gote2022] Christoph Gote, Pavlin Mavrodiev, Frank Schweitzer, and Ingo
Scholtes. Big data = big insights? operationalising brooks’ law in a massive
github data set, 2022.

[Graziotin2022] Daniel Graziotin, Per Lenberg, Robert Feldt, and Stefan
Wagner. Psychometrics in behavioral software engineering: A method-
ological introduction with guidelines. ACM Trans. Softw. Eng. Methodol.,
31(1):1–36, Jan 2022, DOI 10.1145/3469888.
Abstract: A meaningful and deep understanding of the human aspects of
software engineering (SE) requires psychological constructs to be considered.
Psychology theory can facilitate the systematic and sound development as
well as the adoption of instruments (e.g., psychological tests, questionnaires)
to assess these constructs. In particular, to ensure high quality, the psycho-
metric properties of instruments need evaluation. In this article, we provide
an introduction to psychometric theory for the evaluation of measurement
instruments for SE researchers. We present guidelines that enable using ex-
isting instruments and developing new ones adequately. We conducted a
comprehensive review of the psychology literature framed by the Standards
for Educational and Psychological Testing. We detail activities used when
operationalizing new psychological constructs, such as item pooling, item
review, pilot testing, item analysis, factor analysis, statistical property of
items, reliability, validity, and fairness in testing and test bias. We pro-
vide an openly available example of a psychometric evaluation based on our
guideline. We hope to encourage a culture change in SE research towards the
adoption of established methods from psychology. To improve the quality of
behavioral research in SE, studies focusing on introducing, validating, and
then using psychometric instruments need to be more common.

[Greiler2022] Michaela Greiler, Margaret-Anne Storey, and Abi Noda. An ac-
tionable framework for understanding and improving developer experience,
2022.
Abstract: Developer experience is an important concern for software or-
ganizations as enhancing developer experience improves productivity, satis-
faction, engagement and retention. We set out to understand what affects
developer experience through semi-structured interviews with 21 develop-
ers from industry, which we transcribed and iteratively coded. Our findings
elucidate factors that affect developer experience and characteristics that in-
fluence their respective importance to individual developers. We also identify

35



strategies employed by individuals and teams to improve developer experi-
ence and the barriers that stand in their way. Lastly, we describe the coping
mechanisms of developers when developer experience cannot be sufficiently
improved. Our findings result in the DX Framework, an actionable concep-
tual framework for understanding and improving developer experience. The
DX Framework provides a go-to reference for organizations that want to en-
able more productive and effective work environments for their developers.

[Grotov2022] Konstantin Grotov, Sergey Titov, Vladimir Sotnikov, Yaroslav
Golubev, and Timofey Bryksin. A large-scale comparison of python code in
jupyter notebooks and scripts, 2022.

[Guizani2022a] Mariam Guizani, Thomas Zimmermann, Anita Sarma, and
Denae Ford. Attracting and retaining oss contributors with a maintainer
dashboard, 2022.

[Guizani2022b] Mariam Guizani, Igor Steinmacher, Jillian Emard, Abrar
Fallatah, Margaret Burnett, and Anita Sarma. How to debug inclusiv-
ity bugs? a debugging process with information architecture, 2022, DOI
10.1145/3510458.3513009.

[Haduong2019] Paulina Haduong. “i like computers. I hate coding”: a por-
trait of two teens’ experiences. Inf. Learn. Sci., 120(5/6):349–365, May 2019,
DOI 10.1108/ILS-05-2018-0037.
Abstract: Purpose Some empirical evidence suggests that historically
marginalized young people may enter introductory programming experiences
with skepticism or reluctance, because of negative perceptions of the com-
puting field. This paper aims to explore how learner identity and motivation
can affect their experiences in an introductory computer science (CS) expe-
rience, particularly for young people who have some prior experience with
computing. In this program, learners were asked to develop digital media
artifacts about civic issues using Scratch, a block-based programming lan-
guage. Design/methodology/approach Through participant observation as
a teacher and designer of the course, artifact analysis of student-generated
computer programs and design journals, as well as with two follow-up 1-h
interviews, the author used the qualitative method of portraiture to examine
how two reluctant learners experienced a six-week introductory CS program.
Findings These learners’ experiences illuminate the ways in which identity,
community and competence can play a role in supporting learner motiva-
tion in CS education experiences. Research limitations/implications As more
students have multiple introductory computing encounters, educators need
to take into account not only their perceptions of the computing field more
broadly but also specific prior encounters with programming. Because of the
chosen research approach, the research results may lack generalizability. Re-
searchers are encouraged to explore other contexts and examples further.
Practical implications This portrait highlights the need for researchers and
educators to take into account student motivation in the design of learning

36



environments. Originality/value This portrait offers a novel examination of
novice programmer experiences through the choice in method, as well as new
examples of how learner identity can affect student motivation.

[Hartel2022] Johannes Härtel and Ralf Lämmel. Operationalizing threats
to MSR studies by simulation-based testing. In Proc. International Con-
ference on Mining Software Repositories (MSR). ACM, May 2022, DOI
10.1145/3524842.3527960.
Abstract: Quantitative studies on the border between Mining Software
Repository (MSR) and Empirical Software Engineering (ESE) apply data
analysis methods, like regression modeling, statistic tests or correlation anal-
ysis, to commits or pulls to better understand the software development
process. Such studies assure the validity of the reported results by follow-
ing a sound methodology. However, with increasing complexity, parts of the
methodology can still go wrong. This may result in MSR/ESE studies with
undetected threats to validity. In this paper, we propose to systematically
protect against threats by operationalizing their treatment using simula-
tions. A simulation substitutes observed and unobserved data, related to
an MSR/ESE scenario, with synthetic data, carefully defined according to
plausible assumptions on the scenario. Within a simulation, unobserved data
becomes transparent, which is the key difference to a real study, necessary to
detect threats to an analysis methodology. Running an analysis methodology
on synthetic data may detect basic technical bugs and misinterpretations,
but it also improves the trust in the methodology. The contribution of a
simulation is to operationalize testing the impact of important assumptions.
Assumptions still need to be rated for plausibility. We evaluate simulation-
based testing by operationalizing undetected threats in the context of four
published MSR/ESE studies. We recommend that future research uses such
more systematic treatment of threats, as a contribution against the repro-
ducibility crisis.

[Head2020] Andrew Head, Jason Jiang, James Smith, Marti A Hearst, and
Björn Hartmann. Composing flexibly-organized step-by-step tutorials from
linked source code, snippets, and outputs. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems. ACM, Apr 2020, DOI
10.1145/3313831.3376798.
Abstract: Programming tutorials are a pervasive, versatile medium for
teaching programming. In this paper, we report on the content and struc-
ture of programming tutorials, the pain points authors experience in writing
them, and a design for a tool to help improve this process. An interview
study with 12 experienced tutorial authors found that they construct docu-
ments by interleaving code snippets with text and illustrative outputs. It also
revealed that authors must often keep related artifacts of source programs,
snippets, and outputs consistent as a program evolves. A content analysis
of 200 frequently-referenced tutorials on the web also found that most tuto-
rials contain related artifacts—duplicate code and outputs generated from
snippets—that an author would need to keep consistent with each other. To

37



address these needs, we designed a tool called Torii with novel authoring
capabilities. An in-lab study showed that tutorial authors can successfully
use the tool for the unique affordances identified, and provides guidance for
designing future tools for tutorial authoring.

[Hellman2022] Jazlyn Hellman, Jiahao Chen, Md Sami Uddin, Jinghui
Cheng, and Jin L C Guo. Characterizing user behaviors in open-source
software user forums. In Proceedings of the 15th International Conference
on Cooperative and Human Aspects of Software Engineering. ACM, May
2022, DOI 10.1145/3528579.3529178.
Abstract: User forums of Open Source Software (OSS) enable end-users to
collaboratively discuss problems concerning the OSS applications. Despite
decades of research on OSS, we know very little about how end-users engage
with OSS communities on these forums, in particular, the challenges that
hinder their continuous and meaningful participation in the OSS community.
Many previous works are developer-centric and overlook the importance of
end-user forums. As a result, end-users’ expectations are seldom reflected
in OSS development. To better understand user behaviors in OSS user fo-
rums, we carried out an empirical study analyzing about 1.3 million posts
from user forums of four popular OSS applications: Zotero, Audacity, VLC,
and RStudio. Through analyzing the contribution patterns of three common
user types (end-users, developers, and organizers), we observed that end-
users not only initiated most of the threads (above 96% of threads in three
projects, 86% in the other), but also acted as the significant contributors for
responding to other users’ posts, even though they tended to lack confidence
in their activities as indicated by psycho-linguistic analyses. Moreover, we
found end-users more open, reflecting a more positive emotion in communi-
cation than organizers and developers in the forums. Our work contributes
new knowledge about end-users’ activities and behaviors in OSS user forums
that the vital OSS stakeholders can leverage to improve end-user engagement
in the OSS development process.

[Hidellaarachchi2022] Dulaji Hidellaarachchi, John Grundy, Rashina Hoda,
and Ingo Mueller. Does personality impact requirements engineering activi-
ties?, 2022.

[Hoda2021] Rashina Hoda. Socio-technical grounded theory for software en-
gineering. IEEE Transactions on Software Engineering, pages 1–1, 2021,
DOI 10.1109/tse.2021.3106280.
Abstract: Grounded Theory (GT), a sociological research method designed
to study social phenomena, is increasingly being used to investigate the hu-
man and social aspects of software engineering (SE). However, being written
by and for sociologists, GT is often challenging for a majority of SE re-
searchers to understand and apply. Additionally, SE researchers attempting
ad hoc adaptations of traditional GT guidelines for modern socio-technical
(ST) contexts often struggle in the absence of clear and relevant guidelines
to do so, resulting in poor quality studies. To overcome these research com-

38



munity challenges and leverage modern research opportunities, this paper
presents Socio-Technical Grounded Theory (STGT) designed to ease ap-
plication and achieve quality outcomes. It defines what exactly is meant
by an ST research context and presents the STGT guidelines that expand
GT’s philosophical foundations, provide increased clarity and flexibility in its
methodological steps and procedures, define possible scope and contexts of
application, encourage frequent reporting of a variety of interim, preliminary,
and mature outcomes, and introduce nuanced evaluation guidelines for dif-
ferent outcomes. It is hoped that the SE research community and related ST
disciplines such as computer science, data science, artificial intelligence, in-
formation systems, human computer/robot/AI interaction, human-centered
emerging technologies (and increasingly other disciplines being transformed
by rapid digitalisation and AI-based augmentation), will benefit from apply-
ing STGT to conduct quality research studies and systematically produce
rich findings and mature theories with confidence.

[Hundhausen2022] C D Hundhausen, P T Conrad, A S Carter, and O Ades-
ope. Assessing individual contributions to software engineering projects:
a replication study. Comput. Sci. Educ., 32(3):335–354, Jul 2022, DOI
10.1080/08993408.2022.2071543.
Abstract: ABSTRACT Background and Context Assessing team members’
indivdiual contributions to software development projects poses a key prob-
lem for computing instructors. While instructors typically rely on subjective
assessments, objective assessments could provide a more robust picture. To
explore this possibility, In a 2020 paper, Buffardi presented a correlational
analysis of objective metrics and subjective metrics in an advanced software
engineering project course (n= 41 students and 10 teams), finding only two
significant correlations. Objective To explore the robustness of Buffardi’s
findings and gain further insight, we conducted a larger scale replication of
the Buffardi study (n = 118 students and 25 teams) in three courses at three
institutions. Method We collected the same data as in the Buffardi study and
computed the same measures from those data. We replicated Buffardi’s ex-
ploratory, correlational and regression analyses of objective and subjective
measures. Findings While replicating four of Buffardi’s five significant corre-
lational findings and partially replicating the findings of Buffardi’s regression
analyses, our results go beyond those of Buffardi by identifying eight addi-
tional significant correlations. Implications In contrast to Buffardi’s study,
our larger scale study suggests that subjective and objective measures of in-
dividual performance in team software development projects can be fruitfully
combined to provide consistent and complementary assessments of individual
performance.

[Huszar2022] Ferenc Huszár, Sofia Ira Ktena, Conor O’Brien, Luca Belli, An-
drew Schlaikjer, and Moritz Hardt. Algorithmic amplification of politics on
twitter. Proc. Natl. Acad. Sci. U. S. A., 119(1):e2025334119, Jan 2022, DOI
10.1073/pnas.2025334119.
Abstract: Significance The role of social media in political discourse has

39



been the topic of intense scholarly and public debate. Politicians and com-
mentators from all sides allege that Twitter’s algorithms amplify their op-
ponents’ voices, or silence theirs. Policy makers and researchers have thus
called for increased transparency on how algorithms influence exposure to
political content on the platform. Based on a massive-scale experiment in-
volving millions of Twitter users, a fine-grained analysis of political parties
in seven countries, and 6.2 million news articles shared in the United States,
this study carries out the most comprehensive audit of an algorithmic rec-
ommender system and its effects on political content. Results unveil that the
political right enjoys higher amplification compared to the political left. Con-
tent on Twitter’s home timeline is selected and ordered by personalization
algorithms. By consistently ranking certain content higher, these algorithms
may amplify some messages while reducing the visibility of others. There’s
been intense public and scholarly debate about the possibility that some
political groups benefit more from algorithmic amplification than others.
We provide quantitative evidence from a long-running, massive-scale ran-
domized experiment on the Twitter platform that committed a randomized
control group including nearly 2 million daily active accounts to a reverse-
chronological content feed free of algorithmic personalization. We present two
sets of findings. First, we studied tweets by elected legislators from major
political parties in seven countries. Our results reveal a remarkably consis-
tent trend: In six out of seven countries studied, the mainstream political
right enjoys higher algorithmic amplification than the mainstream political
left. Consistent with this overall trend, our second set of findings study-
ing the US media landscape revealed that algorithmic amplification favors
right-leaning news sources. We further looked at whether algorithms amplify
far-left and far-right political groups more than moderate ones; contrary to
prevailing public belief, we did not find evidence to support this hypothesis.
We hope our findings will contribute to an evidence-based debate on the role
personalization algorithms play in shaping political content consumption.

[Idowu2022] Samuel Idowu, Daniel Strüber, and Thorsten Berger. Asset man-
agement in machine learning: State-of-research and state-of-practice. ACM
Comput. Surv., Jun 2022, DOI 10.1145/3543847.
Abstract: Machine learning components are essential for today’s software
systems, causing a need to adapt traditional software engineering practices
when developing machine-learning-based systems. This need is pronounced
due to many development-related challenges of machine learning components
such as asset, experiment, and dependency management. Recently, many as-
set management tools addressing these challenges have become available. It
is essential to understand the support such tools offer to facilitate research
and practice on building new management tools with native supports for ma-
chine learning and software engineering assets. This article positions machine
learning asset management as a discipline that provides improved methods
and tools for performing operations on machine learning assets. We present
a feature-based survey of 18 state-of-practice and 12 state-of-research tools

40



supporting machine-learning asset management. We overview their features
for managing the types of assets used in machine learning experiments. Most
state-of-research tools focus on tracking, exploring, and retrieving assets to
address development concerns such as reproducibility, while the state-of-
practice tools also offer collaboration and workflow-execution-related oper-
ations. In addition, assets are primarily tracked intrusively from the source
code through APIs and managed via web dashboards or command-line in-
terfaces. We identify asynchronous collaboration and asset reusability as
directions for new tools and techniques.

[Imam2021] Ahmed Imam and Tapajit Dey. Tracking hackathon code creation
and reuse. In Proc. International Conference on Mining Software Reposito-
ries (MSR). IEEE, May 2021, DOI 10.1109/msr52588.2021.00085.
Abstract: Background: Hackathons have become popular events for teams
to collaborate on projects and develop software prototypes. Most existing re-
search focuses on activities during an event with limited attention to the evo-
lution of the code brought to or created during a hackathon. Aim: We aim to
understand the evolution of hackathon-related code, specifically, how much
hackathon teams rely on pre-existing code or how much new code they de-
velop during a hackathon. Moreover, we aim to understand if and where that
code gets reused. Method: We collected information about 22,183 hackathon
projects from Devpost—a hackathon database—and obtained related code
(blobs), authors, and project characteristics from the World of Code. We
investigated if code blobs in hackathon projects were created before, during,
or after an event by identifying the original blob creation date and author,
and also checked if the original author was a hackathon project member. We
tracked code reuse by first identifying all commits containing blobs created
during an event before determining all projects that contain those commits.
Result: While only approximately 9.14% of the code blobs are created dur-
ing hackathons, this amount is still significant considering time and member
constraints of such events. Approximately a third of these code blobs get
reused in other projects. Conclusion: Our study demonstrates to what ex-
tent pre-existing code is used and new code is created during a hackathon
and how much of it is reused elsewhere afterwards. Our findings help to bet-
ter understand code reuse as a phenomenon and the role of hackathons in
this context and can serve as a starting point for further studies in this area.

[Imtiaz2022] Nasif Imtiaz, Aniqa Khanom, and Laurie Williams. Open or
sneaky? fast or slow? light or heavy?: Investigating security releases of
open source packages. IEEE Transactions on Software Engineering, pages
1–21, 2022, DOI 10.1109/tse.2022.3181010.
Abstract: Vulnerabilities in open source packages can be a security risk for
the downstream client projects. When a new vulnerability is discovered, a
package should quickly release a fix in a new version, referred to as a se-
curity release in this study. The security release should be well-documented
and require minimal migration effort to facilitate fast adoption by the clients.

41



However, to what extent the open source packages follow these recommen-
dations is not known. In this paper, we study (1) the time lag between fix
and release; (2) how security fixes are documented in the release notes; (3)
code change characteristics (size and semantic versioning) of the release; and
(4) the time lag between the release and an advisory publication for secu-
rity releases over a dataset of 4,377 security advisories across seven pack-
age ecosystems. We find that the median security release becomes available
within 4 days of the corresponding fix and contains 131 lines of code (LOC)
change. However, one-fourth of the releases in our data set still came at least
20 days after the fix was made. Further, we find that 61.5% of the security
releases come with a release note that documents the corresponding security
fix. Still, Snyk and NVD, two popular databases, take a median of 17 days
(from the release) to publish a security advisory, possibly resulting in de-
layed notifications to the client projects. We also find that security releases
may contain breaking change(s) as 13.2% indicated backward incompatibil-
ity through semantic versioning, while 6.4% mentioned breaking change(s)
in the release notes. Based on our findings, we point out areas for future
work, such as private fork for security fixes and standardized practice for
announcing security releases.

[Jeffries2022] Bryn Jeffries, Jung A Lee, and Irena Koprinska. 115 ways
not to say hello, world! In Proc. Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE). ACM, Jul 2022, DOI
10.1145/3502718.3524809.
Abstract: Online programming courses can provide detailed automatic
feedback for code that fails to meet various test conditions, but novice stu-
dents often struggle with syntax errors and are unable to write valid testable
code. Even for very simple exercises, the range of incorrect code can be sur-
prising to educators with mastery of a programming language. This research
paper presents an analysis of the error messages from code run by students in
an introductory Python 3 programming course, participated in by 8680 pri-
mary and high-school students from 680 institutions. The invalid programs
demonstrate a wide diversity of mistakes: even for a one-line “Hello World!”
exercise there were 115 unique invalid programs. The most common errors
are identified and compared to the topics introduced in the course. The most
generic errors in selected exercises are investigated in greater detail to un-
derstand the underlying causes. While the majority of students attempting
an exercise reach a successful outcome, many students encounter at least one
error in their code. Of these, many such errors indicate basic mistakes, such
as unquoted string literals, even in exercises late in the course for which some
proficiency of earlier concepts is assumed. These observations suggest there is
significant scope to provide greater reinforcement of students’ understanding
of earlier concepts.

[Joblin2022] Mitchell Joblin and Sven Apel. How do successful and failed
projects differ? a socio-technical analysis. ACM Trans. Softw. Eng.
Methodol., Feb 2022, DOI 10.1145/3504003.

42



Abstract: Software development is at the intersection of the social realm ,
involving people who develop the software, and the technical realm , involv-
ing artifacts (code, docs, etc.) that are being produced. It has been shown
that a socio-technical perspective provides rich information about the state of
a software project. In particular, we are interested in socio-technical factors
that are associated with project success. For this purpose, we frame the task
as a network classification problem. We show how a set of heterogeneous net-
works composed of social and technical entities can be jointly embedded in a
single vector space enabling mathematically sound comparisons between dis-
tinct software projects. Our approach is specifically designed using intuitive
metrics stemming from network analysis and statistics to ease the interpreta-
tion of results in the context of software engineering wisdom. Based on a se-
lection of 32 open-source projects, we perform an empirical study to validate
our approach considering three prediction scenarios to test the classification
model’s ability generalizing to: (1) randomly held-out project snapshots,
(2) future project states, and (3) entirely new projects. Our results provide
evidence that a socio-technical perspective is superior to a pure social or
technical perspective when it comes to early indicators of future project suc-
cess. To our surprise, the methodology proposed here even shows evidence
of being able to generalize to entirely novel (project hold-out set) software
projects reaching predication accuracies of 80%, which is a further testament
to the efficacy of our approach and beyond what has been possible so far. In
addition, we identify key features that are strongly associated with project
success. Our results indicate that even relatively simple socio-technical net-
works capture highly relevant and interpretable information about the early
indicators of future project success.

[Johnson2016] Philip Johnson, Dan Port, and Emily Hill. An athletic ap-
proach to software engineering education. In 2016 IEEE 29th International
Conference on Software Engineering Education and Training (CSEET).
IEEE, Apr 2016, DOI 10.1109/cseet.2016.29.
Abstract: We present our findings after two years of experience involving
three instructors using an ”athletic” approach to software engineering educa-
tion (AthSE). Co-author Johnson developed AthSE in 2013 to address issues
he experienced teaching graduate and undergraduate software engineering.
Co-authors Port and Hill subsequently adapted the original approach to their
own software courses. AthSE is a pedagogy in which the course is organized
into a series of skills to be mastered. For each skill, students are given prac-
tice ”Workouts” along with videos showing the instructor performing the
Workout both correctly and quickly. Unlike traditional home-work assign-
ments, students are advised to repeat the Workout not only until they can
complete it correctly, but also as quickly as the instructor. In this experience
report we investigate the following question: how can software engineering
education be redesigned as an athletic endeavor, and will this provide more
efficient and effective learning among students and more rapidly lead them
to greater competency and confidence?

43



[Kacsmar2022] Bailey Kacsmar. Improving interactive instruction: Faculty
engagement requires starting small and telling all. In Koli Calling ’22: 22nd
Koli Calling International Conference on Computing Education Research.
ACM, Nov 2022, DOI 10.1145/3564721.3564739.
Abstract: Interactive instruction, such as student-centered learning or ac-
tive learning, is known to benefit student success as well as diversity in
computer science. However, there is a persistent and substantial dissonance
between research and practice of computer science education techniques.
Current research on computer science education, while extensive, sees lim-
ited adoption beyond the original researchers. The developed educational
technologies can lack sufficient detail for replication or be too specific and
require extensive reworking to be employable by other instructors. Further-
more, instructors face barriers to adopting interactive techniques within their
classroom due to student reception, resources, and awareness. We argue that
the advancement of computer science education, in terms of propagation
and sustainability of student-centered teaching, requires guided approaches
for incremental instructional changes as opposed to revolutionary pedagogy.
This requires the prioritization of lightweight techniques that can fit within
existing lecture formats to enable instructors to overcome barriers hindering
the adoption of interactive techniques. Furthermore, such techniques and in-
novations must be documented in the form of computing education research
artifacts, building upon the practices of software artifacts.

[Khan2022] Faizan Khan, Boqi Chen, Daniel Varro, and Shane McIntosh.
An empirical study of type-related defects in python projects. IEEE
Transactions on Software Engineering, 48(8):3145–3158, Aug 2022, DOI
10.1109/tse.2021.3082068.
Abstract: In recent years, Python has experienced an explosive growth
in adoption, particularly among open source projects. While Python’s
dynamically-typed nature provides developers with powerful programming
abstractions, that same dynamic type system allows for type-related defects
to accumulate in code bases. To aid in the early detection of type-related
defects, type annotations were introduced into the Python ecosystem (i.e.,
PEP-484) and static type checkers like mypy have appeared on the market.
While applying a type checker like mypy can in theory help to catch type-
related defects before they impact users, little is known about the real impact
of adopting a type checker to reveal defects in Python projects. In this pa-
per, we study the extent to which Python projects benefit from such type
checking features. For this purpose, we mine the issue tracking and version
control repositories of 210 Python projects on GitHub. Inspired by the work
of Gao et al. on type-related defects in JavaScript, we add type annotations
to test whether mypy detects an error that would have helped developers
to avoid real defects. We observe that 15 percent of the defects could have
been prevented by mypy. Moreover, we find that there is no significant dif-
ference between the experience level of developers committing type-related
defects and the experience of developers committing defects that are not

44



type-related. In addition, a manual analysis of the anti-patterns that most
commonly lead to type-checking faults reveals that the redefinition of Python
references, dynamic attribute initialization and incorrectly handled Null ob-
jects are the most common causes of type-related faults. Since our study is
conducted on fixed public defects that have gone through code reviews and
multiple test cycles, these results represent a lower bound on the benefits
of adopting a type checker. Therefore, we recommend incorporating a static
type checker like mypy into the development workflow, as not only will it
prevent type-related defects but also mitigate certain anti-patterns during
development.

[Knutas2023] Antti Knutas, Dominik Siemon, Natasha Tylosky, and Gio-
vanni Maccani. Contradicting motivations in civic tech software develop-
ment: Analysis of a grassroots project, 2023.
Abstract: Grassroots civic tech, or software for social change, is an emerg-
ing practice where people create and then use software to create positive
change in their community. In this interpretive case study, we apply En-
geström’s expanded activity theory as a theoretical lens to analyze motiva-
tions, how they relate to for example group goals or development tool sup-
ported processes, and what contradictions emerge. Participants agreed on
big picture motivations, such as learning new skills or improving the com-
munity. The main contradictions occurred inside activity systems on details
of implementation or between system motives, instead of big picture motiva-
tions. Two most significant contradictions involved planning, and converging
on design and technical approaches. These findings demonstrate the value of
examining civic tech development processes as evolving activity systems.

[Kokinda2023] Ella Kokinda and Paige Rodeghero. Streaming software de-
velopment: Accountability, community, and learning, 2023.
Abstract: People use the Internet to learn new skills, stay connected with
friends, and find new communities to engage with. Live streaming platforms
like Twitch.tv, YouTube Live, and Facebook Gaming provide a place where
all three of these activities intersect and enable users to live-stream them-
selves playing a video game or live-coding software and game development, as
well as the ability to participate in chat while watching someone else engage
in an activity. Through fifteen interviews with software and game devel-
opment streamers, we investigate why people choose to stream themselves
programming and if they perceive themselves improving their programming
skills by live streaming. We found that the motivations to stream included
accountability, self-education, community, and visibility of the streamers’
work, and streamers perceived a positive influence on their ability to write
source code. Our findings implicate that alternative learning methods like
live streaming programming are a beneficial tool in the age of the virtual
classroom. This work also contributes to and extends research efforts sur-
rounding educational live streaming and collaboration in developer commu-
nities.

45



[Kotti2022] Zoe Kotti, Georgios Gousios, and Diomidis Spinellis. Impact of
software engineering research in practice: A patent and author survey anal-
ysis, 2022, DOI 10.1109/TSE.2022.3208210.
Abstract: Existing work on the practical impact of software engineering
(SE) research examines industrial relevance rather than adoption of study
results, hence the question of how results have been practically applied re-
mains open. To answer this and investigate the outcomes of impactful re-
search, we performed a quantitative and qualitative analysis of 4 354 SE
patents citing 1 690 SE papers published in four leading SE venues between
1975–2017. Moreover, we conducted a survey on 475 authors of 593 top-cited
and awarded publications, achieving 26% response rate. Overall, researchers
have equipped practitioners with various tools, processes, and methods, and
improved many existing products. SE practice values knowledge-seeking re-
search and is impacted by diverse cross-disciplinary SE areas. Practitioner-
oriented publication venues appear more impactful than researcher-oriented
ones, while industry-related tracks in conferences could enhance their im-
pact. Some research works did not reach a wide footprint due to limited
funding resources or unfavorable cost-benefit trade-off of the proposed solu-
tions. The need for higher SE research funding could be corroborated through
a dedicated empirical study. In general, the assessment of impact is subject
to its definition. Therefore, academia and industry could jointly agree on a
formal description to set a common ground for subsequent research on the
topic.

[Kreuzberger2022] Dominik Kreuzberger, Niklas Kühl, and Sebastian
Hirschl. Machine learning operations (mlops): Overview, definition, and
architecture, 2022.
Abstract: The final goal of all industrial machine learning (ML) projects is
to develop ML products and rapidly bring them into production. However,
it is highly challenging to automate and operationalize ML products and
thus many ML endeavors fail to deliver on their expectations. The paradigm
of Machine Learning Operations (MLOps) addresses this issue. MLOps in-
cludes several aspects, such as best practices, sets of concepts, and develop-
ment culture. However, MLOps is still a vague term and its consequences for
researchers and professionals are ambiguous. To address this gap, we conduct
mixed-method research, including a literature review, a tool review, and ex-
pert interviews. As a result of these investigations, we provide an aggregated
overview of the necessary principles, components, and roles, as well as the
associated architecture and workflows. Furthermore, we furnish a definition
of MLOps and highlight open challenges in the field. Finally, this work pro-
vides guidance for ML researchers and practitioners who want to automate
and operate their ML products with a designated set of technologies.

[Kudrjavets2022] Gunnar Kudrjavets, Nachiappan Nagappan, and Ayushi
Rastogi. Do small code changes merge faster? a multi-language empirical
investigation, 2022, DOI 10.1145/3524842.3528448.

46



[Kuhrmann2022] Marco Kuhrmann, Paolo Tell, Regina Hebig, Jil Klunder,
Jurgen Munch, Oliver Linssen, Dietmar Pfahl, Michael Felderer, Christian R.
Prause, Stephen G. MacDonell, Joyce Nakatumba-Nabende, David Raffo,
Sarah Beecham, Eray Tuzun, Gustavo Lopez, Nicolas Paez, Diego Font-
devila, Sherlock A. Licorish, Steffen Kupper, Gunther Ruhe, Eric Knauss,
Ozden Ozcan-Top, Paul Clarke, Fergal McCaffery, Marcela Genero, Au-
rora Vizcaino, Mario Piattini, Marcos Kalinowski, Tayana Conte, Rafael
Prikladnicki, Stephan Krusche, Ahmet Coskuncay, Ezequiel Scott, Fabio
Calefato, Svetlana Pimonova, Rolf-Helge Pfeiffer, Ulrik Pagh Schultz, Rog-
ardt Heldal, Masud Fazal-Baqaie, Craig Anslow, Maleknaz Nayebi, Kurt
Schneider, Stefan Sauer, Dietmar Winkler, Stefan Biffl, Maria Cecilia Bas-
tarrica, and Ita Richardson. What makes agile software development agile?
IEEE Transactions on Software Engineering, 48(9):3523–3539, Sep 2022,
DOI 10.1109/tse.2021.3099532.

[Kumar2022] Pranjay Kumar, Davin Ie, and Melina Vidoni. On the de-
velopers’ attitude towards CRAN checks. In Proc. International Con-
ference on Program Comprehension (ICPC). ACM, May 2022, DOI
10.1145/3524610.3528389.
Abstract: R is a package-based, multi-paradigm programming language
for scientific software. It provides an easy way to install third-party code,
datasets, tests, documentation and examples through CRAN (Comprehen-
sive R Archive Network). Prior works indicated developers tend to code
workarounds to bypass CRAN’s automated checks (performed when sub-
mitting a package) instead of fixing the code-doing so reduces packages’
quality. It may become a threat to those analyses written in R that rely on
miss-checked code. This preliminary study card-sorted source code comments
and analysed StackOverflow (SO) conversations discussing CRAN checks to
understand developers’ attitudes. We determined that about a quarter of
SO posts aim to bypass a check with a workaround; the most affected are
code-related problems, package dependencies, installation and feasibility. We
analyse these checks and outline future steps to improve similar automated
analyses.

[Kuttal2021] Sandeep Kaur Kuttal, Xiaofan Chen, Zhendong Wang, Sogol
Balali, and Anita Sarma. Visual resume: Exploring developers’ online con-
tributions for hiring. Information and Software Technology, 138:106633, Oct
2021, DOI 10.1016/j.infsof.2021.106633.
Abstract: Context: Recruiters and practitioners are increasingly relying
on online activities of developers to find a suitable candidate. Past empirical
studies have identified technical and soft skills that managers use in online
peer production sites when making hiring decisions. However, finding candi-
dates with relevant skills is a labor-intensive task for managers, due to the
sheer amount of information online peer production sites contain. Objective:
We designed a profile aggregation tool—Visual Resume—that aggregates
contribution information across two types of peer production sites: a code
hosting site (GitHub) and a technical Q&A forum (Stack Overflow). Visual

47



Resume displays summaries of developers’ contributions and allows easy ac-
cess to their contribution details. It also facilitates pairwise comparisons of
candidates through a card-based design. We present the motivation for such
a design and design guidelines for creating such recruitment tool. Methods:
We performed a scenario-based evaluation to identify how participants use
developers’ online contributions in peer production sites as well as how they
used Visual Resume when making hiring decisions. Results: Our analysis
helped in identifying the technical and soft skill cues that were most use-
ful to our participants when making hiring decisions in online production
sites. We also identified the information features that participants used and
the ways the participants accessed that information to select a candidate.
Conclusions: Our results suggest that Visual Resume helps in participants
evaluate cues for technical and soft skills more efficiently as it presents an
aggregated view of candidate’s contributions, allows drill down to details
about contributions, and allows easy comparison of candidates via movable
cards that could be arranged to match participants’ needs.

[Lamba2020] Hemank Lamba, Asher Trockman, Daniel Armanios, Christian
Kästner, Heather Miller, and Bogdan Vasilescu. Heard it through the gitvine:
an empirical study of tool diffusion across the npm ecosystem. In Proc. Eu-
ropean Software Engineering Conference/International Symposium on the
Foundations of Software Engineering (ESEC/FSE). ACM, Nov 2020, DOI
10.1145/3368089.3409705.
Abstract: Automation tools like continuous integration services, code cov-
erage reporters, style checkers, dependency managers, etc. are all known
to provide significant improvements in developer productivity and software
quality. Some of these tools are widespread, others are not. How do these au-
tomation “best practices” spread? And how might we facilitate the diffusion
process for those that have seen slower adoption? In this paper, we rely on a
recent innovation in transparency on code hosting platforms like GitHub—
the use of repository badges—to track how automation tools spread in open-
source ecosystems through different social and technical mechanisms over
time. Using a large longitudinal data set, multivariate network science tech-
niques, and survival analysis, we study which socio-technical factors can best
explain the observed diffusion process of a number of popular automation
tools. Our results show that factors such as social exposure, competition,
and observability affect the adoption of tools significantly, and they provide
a roadmap for software engineers and researchers seeking to propagate best
practices and tools.

[Langhout2021] Chris Langhout and Mauŕıcio Aniche. Atoms of confusion in
java, 2021.

[LawrenceDill2022] Carolyn J Lawrence-Dill, Robyn L Allscheid, Albert
Boaitey, Todd Bauman, Edward S Buckler, 4th, Jennifer L Clarke, Christo-
pher Cullis, Jack Dekkers, Cassandra J Dorius, Shawn F Dorius, David Ertl,
Matthew Homann, Guiping Hu, Mary Losch, Eric Lyons, Brenda Murdoch,

48



Zahra-Katy Navabi, Somashekhar Punnuri, Fahad Rafiq, James M Reecy,
Patrick S Schnable, Nicole M Scott, Moira Sheehan, Xavier Sirault, Mar-
garet Staton, Christopher K Tuggle, Alison Van Eenennaam, and Rachael
Voas. Ten simple rules to ruin a collaborative environment. PLoS Comput.
Biol., 18(4):e1009957, Apr 2022, DOI 10.1371/journal.pcbi.1009957.

[Leelaprute2022] Pattara Leelaprute, Bodin Chinthanet, Supatsara Wat-
tanakriengkrai, Raula Gaikovina Kula, Pongchai Jaisri, and Takashi Ishio.
Does coding in pythonic zen peak performance? preliminary experiments of
nine pythonic idioms at scale, 2022.

[Leinonen2022] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul
Denny, James Prather, and Brett A. Becker. Using large language models
to enhance programming error messages, 2022.

[Leite2022] Leonardo Leite, Nelson Lago, Claudia Melo, Fabio Kon, and Paulo
Meirelles. A theory of organizational structures for development and infras-
tructure professionals. IEEE Transactions on Software Engineering, pages
1–30, 2022, DOI 10.1109/tse.2022.3199169.
Abstract: DevOps and continuous delivery have impacted the organi-
zational structures of development and infrastructure groups in software-
producing organizations. Our research aims at revealing the different options
adopted by the software industry to organize such groups, understanding
why different organizations adopt distinct structures, and discovering how
organizations handle the drawbacks of each structure. We interviewed 68
carefully-selected IT professionals, 45 working in Brazil, 10 in the USA, 8
in Europe, 1 in Canada, and 4 in globally distributed teams. By analyz-
ing these conversations through a Grounded Theory process, we identified
conditions, causes, reasons to avoid, consequences, and contingencies re-
lated to each discovered structure (segregated departments, collaborative
departments, API-mediated departments, and single department). In this
way, we offer a theory to explain organizational structures for development
and infrastructure professionals. This theory can support practitioners and
researchers in comprehending and discussing the DevOps phenomenon and
its related issues, and also provides valuable input to practitioners’ decision-
making.

[Leven2022] William Levén, Hampus Broman, Terese Besker, and Richard
Torkar. The broken windows theory applies to technical debt, 2022.

[Li2019] Chen Li, Emily Chan, Paul Denny, Andrew Luxton-Reilly, and Ewan
Tempero. Towards a framework for teaching debugging. In Proceedings of
the Twenty-First Australasian Computing Education Conference on - ACE
’19. ACM Press, 2019, DOI 10.1145/3286960.3286970.
Abstract: Debugging is an important component of software development,
yet most novice programmers are not explicitly taught to apply systematic
strategies or processes for debugging. In this paper we adapt a framework de-
veloped for teaching troubleshooting to the debugging domain, and explore

49



how the literature on teaching debugging maps to this framework. We iden-
tify debugging processes that are fundamental for novices to learn, aspects
of debugging that novices typically struggle to develop, and shortcomings of
tools designed to support teaching of debugging.

[Li2022] Annie Li, Madeline Endres, and Westley Weimer. Debugging with
stack overflow. In Proceedings of the ACM/IEEE 44th International Confer-
ence on Software Engineering: Software Engineering Education and Train-
ing. ACM, May 2022, DOI 10.1145/3510456.3514147.
Abstract: Debugging can be challenging for novice and expert program-
mers alike. Programmers routinely turn to online resources such as Stack
Overflow for help, but understanding of debugging search practices, as well
as tool support to find debugging resources, remains limited. Existing tools
that mine online help forums are generally not aimed at novices, and pro-
grammers face varying levels of success when looking for online resources.
Furthermore, training online code search skills is pedagogically challenging,
as we have little understanding of how expertise impacts programmers’ web
search behavior while debugging code.We help fill these knowledge gaps with
the results of a study of 40 programmers investigating differences in Stack
Overflow search behavior at three levels of expertise: novices, experienced
programmers who are novices in Python (the language we use in our study),
and experienced Python programmers. We observe significant differences be-
tween all three levels in their ability to find posts helpful for debugging a
given error, with both general and language-specific expertise facilitating
Stack Overflow search efficacy and debugging success. We also conduct an
exploratory investigation of factors that correlate with this difference, such
as the display rank of the selected link and the number of links checked per
search query. We conclude with an analysis of how online search behavior
and results vary by Python error type. Our findings can inform online code
search pedagogy, as well as inform the development of future automated
tools.

[Li2023] Ze Shi Li, Nowshin Nawar Arony, Kezia Devathasan, and Daniela
Damian. ”software is the easy part of software engineering” – lessons and
experiences from a large-scale, multi-team capstone course, 2023.
Abstract: Capstone courses in undergraduate software engineering are a
critical final milestone for students. These courses allow students to create a
software solution and demonstrate the knowledge they accumulated in their
degrees. However, a typical capstone project team is small containing no
more than 5 students and function independently from other teams. To bet-
ter reflect real-world software development and meet industry demands, we
introduce in this paper our novel capstone course. Each student was assigned
to a large-scale, multi-team (i.e., company) of up to 20 students to collab-
oratively build software. Students placed in a company gained first-hand
experiences with respect to multi-team coordination, integration, communi-
cation, agile, and teamwork to build a microservices based project. Further-
more, each company was required to implement plug-and-play so that their

50



services would be compatible with another company, thereby sharing com-
mon APIs. Through developing the product in autonomous sub-teams, the
students enhanced not only their technical abilities but also their soft skills
such as communication and coordination. More importantly, experiencing
the challenges that arose from the multi-team project trained students to
realize the pitfalls and advantages of organizational culture. Among many
lessons learned from this course experience, students learned the critical im-
portance of building team trust. We provide detailed information about our
course structure, lessons learned, and propose recommendations for other
universities and programs. Our work concerns educators interested in launch-
ing similar capstone projects so that students in other institutions can reap
the benefits of large-scale, multi-team development.

[Liang2022] Jenny T Liang, Thomas Zimmermann, and Denae Ford. Un-
derstanding skills for OSS communities on GitHub. In Proc. European
Software Engineering Conference/International Symposium on the Foun-
dations of Software Engineering (ESEC/FSE). ACM, Nov 2022, DOI
10.1145/3540250.3549082.
Abstract: The development of open source software (OSS) is a broad field
which requires diverse skill sets. For example, maintainers help lead the
project and promote its longevity, technical writers assist with documenta-
tion, bug reporters identify defects in software, and developers program the
software. However, it is unknown which skills are used in OSS development
as well as OSS contributors’ general attitudes towards skills in OSS. In this
paper, we address this gap by administering a survey to a diverse set of
455 OSS contributors. Guided by these responses as well as prior literature
on software development expertise and social factors of OSS, we develop a
model of skills in OSS that considers the many contexts OSS contributors
work in. This model has 45 skills in the following 9 categories: technical
skills, working styles, problem solving, contribution types, project-specific
skills, interpersonal skills, external relations, management, and characteris-
tics. Through a mix of qualitative and quantitative analyses, we find that
OSS contributors are actively motivated to improve skills and perceive many
benefits in sharing their skills with others. We then use this analysis to de-
rive a set of design implications and best practices for those who incorporate
skills into OSS tools and platforms, such as GitHub.

[Lin2022] Yu-Tzu Lin, Martin K.-C. Yeh, and Sheng-Rong Tan. Teaching
programming by revealing thinking process: Watching experts’ live cod-
ing videos with reflection annotations. IEEE Transactions on Education,
65(4):617–627, Nov 2022, DOI 10.1109/te.2022.3155884.
Abstract: Contribution: Programming is a complex cognitive activity that
involves both conceptual understanding and procedural skills, which is chal-
lenging for novices. To develop both program comprehension and imple-
mentation competency, this study proposed a live-coding-based instruction.
Experts’ live coding with think-aloud was recorded. Students then learn algo-
rithmic planning and coding skills by observing experts’ thinking and coding

51



processes from the videos. To deploy this pedagogical strategy, a learning
platform was developed to present the videos to students who could also
annotate their reflection about the videos in the system to deepen their un-
derstanding of syntax and concepts of computer programming. Background:
Traditional lecture-based programming instruction focuses more on the ex-
planation of syntax and concepts but lacks revealing the dynamic and non-
linear thinking and coding process. Research Questions: This study is to
explore the effects of live-coding-based instruction on students’ program-
ming knowledge, including declarative program knowledge (program com-
prehension) and procedural program knowledge (coding skills), and whether
the instruction changes their attitude toward programming learning or not.
Methodology: An empirical study was conducted with 33 high-school stu-
dents who were novice programmers in one semester to explore the effective-
ness of the live-coding-based instruction and the use of the learning plat-
form. Findings: The experiment results show that watching flowcharting (r
= 0.369,p¡0.05) or coding processes (r = 0.409, p¡0.05) of experts improves
coding skills. This implies that explicit depiction of algorithmic planning and
coding processes are essential for building procedural programming knowl-
edge. In addition, reflection on syntactic content of experts’ programming
plays an important role in programming (r = 0.511, p¡0.01). The research
findings suggest that programming instruction could focus more on devel-
oping students’ problem-solving abilities by demonstrating the dynamic and
nonlinear programming processes and providing opportunities for students
to reflect on how syntactic knowledge could be applied to programming.

[Lin2023] Jiahuei Lin, Mohammed Sayagh, and Ahmed E. Hassan. The
co-evolution of the WordPress platform and its plugins. ACM Transac-
tions on Software Engineering and Methodology, 32(1):1–24, Jan 2023, DOI
10.1145/3533700.
Abstract: One can extend the features of a software system by installing a
set of additional components called plugins. WordPress, as a typical exam-
ple of such plugin-based software ecosystems, is used by millions of websites
and has a large number (i.e., 54,777) of available plugins. These plugin-based
software ecosystems are diferent from traditional ecosystems (e.g., NPM de-
pendencies) in a sense that there is a high coupling between a platform and
its plugins, compared to traditional ecosystems for which components might
not necessarily depend on each other (e.g., NPM libraries do not depend on a
speciic version of NPM or a speciic version of a client software system). The
high coupling between a plugin and its platform and other plugins causes
incompatibility issues that occur during the co-evolution of a plugin and its
platform as well as other plugins. In fact, incompatibility issues represent
a major challenge when upgrading WordPress or its plugins. According to
our study of the top 500 most-released WordPress plugins, we observe that
incompatibility issues represent the 3r d major cause for bad releases, which
are rapidly (within the next 24 hours) ixed via urgent releases. 32% of these
incompatibilities are between a plugin and WordPress while 19% are be-

52



tween peer plugins. In this paper, we study how plugins co-evolve with the
underlying platform as well as other plugins, in an efort to understand the
practices that are related support such co-evolution and reduce incompat-
ibility issues. In particular, we investigate how plugins support the latest
available versions of WordPress, as well as how plugins are related to each
other, and how they co-evolve. We observe that a plugin’s support of new
versions of WordPress with a large amount of code change is risky, as the
releases which declare such support have a higher chance to be followed by
an urgent release compared to ordinary releases. Although plugins support
the latest WordPress version, plugin developers omit important changes such
as deleting the use of removed WordPress APIs, which are removed a me-
dian of 873 days after the APIs have been removed from the source code
of WordPress. Plugins introduce new releases that are made according to
a median of 5 other plugins, which we refer to as peer-triggered releases.
A median of 20% of the peer-triggered releases are urgent releases that ix
problems in their previous releases. The most common goal of peer-triggered
releases is the ixing of incompatibility issues that a plugin detects as late as
after a median of 36 days since the last release of another plugin. Our work
sheds light into the co-evolution of WordPress plugins with their platform as
well as peer plugins in an efort to uncover the practices of plugin evolution,
so WordPress can accordingly design approaches to avoid incompatibility
issues.

[Liu2022] Eric S. Liu, Dylan A. Lukes, and William G. Griswold. Refactoring
in computational notebooks. ACM Transactions on Software Engineering
and Methodology, Dec 2022, DOI 10.1145/3576036.
Abstract: Due to the exploratory nature of computational notebook de-
velopment, a notebook can be extensively evolved even though it is small,
potentially incurring substantial technical debt. Indeed, in interview stud-
ies notebook authors have attested to performing on-going tidying and big
cleanups. However, many notebook authors are not trained as software devel-
opers, and environments like JupyterLab possess few features to aid note-
book maintenance. As software refactoring is traditionally a critical tool
for reducing technical debt, we sought to better understand the unique and
growing ecology of computational notebooks by investigating the refactoring
of public Jupyter notebooks. We randomly selected 15,000 Jupyter notebooks
hosted on GitHub and studied 200 with meaningful commit histories. We
found that notebook authors do refactor, favoring a few basic classic refac-
torings as well as those involving the notebook cell construct. Those with a
computing background refactored differently than others, but not more so.
Exploration-focused notebooks had a unique refactoring profile compared
to more exposition-focused notebooks. Authors more often refactored their
code as they went along, rather than deferring maintenance to big cleanups.
These findings point to refactoring being intrinsic to notebook development.

[Lorey2022] Tobias Lorey, Paul Ralph, and Michael Felderer. Social sci-
ence theories in software engineering research. In Proceedings of the 44th

53



International Conference on Software Engineering. ACM, May 2022, DOI
10.1145/3510003.3510076.
Abstract: As software engineering research becomes more concerned with
the psychological, sociological and managerial aspects of software develop-
ment, relevant theories from reference disciplines are in-creasingly important
for understanding the field’s core phenomena of interest. However, the de-
gree to which software engineering research draws on relevant social sciences
remains unclear. This study therefore investigates the use of social science
theories in five influential software engineering journals over 13 years. It an-
alyzes not only the extent of theory use but also what, how and where these
theories are used. While 87 different theories are used, less than two percent
of papers use a social science theory, most theories are used in only one paper,
most social sciences are ignored, and the theories are rarely tested for ap-
plicability to software engineering contexts. Ignoring relevant social science
theories may (1) under-mine the community’s ability to generate, elaborate
and maintain a cumulative body of knowledge; and (2) lead to oversimpli-
fied mod-els of software engineering phenomena. More attention to theory is
needed for software engineering to mature as a scientific discipline.

[Lu2021] Kuang-Chen Lu, Ben Greenman, and Shriram Krishnamurthi. Types
for tables: A language design benchmark. Art Sci. Eng. Program., 6(2), Nov
2021, DOI 10.22152/programming-journal.org/2022/6/8.
Abstract: Context Tables are ubiquitous formats for data. Therefore, tech-
niques for writing correct programs over tables, and debugging incorrect
ones, are vital. Our specific focus in this paper is on rich types that ar-
ticulate the properties of tabular operations. We wish to study both their
expressive power and diagnostic quality. Inquiry There is no ”standard li-
brary” of table operations. As a result, every paper (and project) is free
to use its own (sub)set of operations. This makes artifacts very difficult to
compare, and it can be hard to tell whether omitted operations were left
out by oversight or because they cannot actually be expressed. Furthermore,
virtually no papers discuss the quality of type error feedback. Approach We
combed through several existing languages and libraries to create a ”stan-
dard library” of table operations. Each entry is accompanied by a detailed
specification of its ”type,” expressed independent of (and hence not con-
strained by) any type language. We also studied and categorized a corpus of
(student) program edits that resulted in table-related errors. We used this
to generate a suite of erroneous programs. Finally, we adapted the concept
of a datasheet to facilitate comparisons of different implementations. Knowl-
edge Our benchmark creates a common ground to frame work in this area.
Language designers who claim to support typed programming over tables
have a clear suite against which to demonstrate their system’s expressive
power. Our family of errors also gives them a chance to demonstrate the
quality of feedback. Researchers who improve one aspect—especially error
reporting—without changing the other can demonstrate their improvement,
as can those who engage in trade-offs between the two. The net result should

54



be much better science in both expressiveness and diagnostics. We also in-
troduce a datasheet format for presenting this knowledge in a methodical
way. ubiquitous, and the expressive power of type systems keeps growing.
Our benchmark and datasheet can help lead to more orderly science. It also
benefits programmers trying to choose a language.

[Luders2022] Clara Marie Lüders, Abir Bouraffa, and Walid Maalej. Beyond
duplicates. In Proc. International Conference on Mining Software Reposito-
ries (MSR). ACM, May 2022, DOI 10.1145/3524842.3528457.
Abstract: Software projects use Issue Tracking Systems (ITS) like JIRA to
track issues and organize the workflows around them. Issues are often inter-
connected via different links such as the default JIRA link types Duplicate,
Relate, Block, or Subtask. While previous research has mostly focused on
analyzing and predicting duplication links, this work aims at understanding
the various other link types, their prevalence, and characteristics towards a
more reliable link type prediction. For this, we studied 607,208 links connect-
ing 698,790 issues in 15 public JIRA repositories. Besides the default types,
the custom types Depend, Incorporate, Split, and Cause were also com-
mon. We manually grouped all 75 link types used in the repositories into
five general categories: General Relation, Duplication, Composition, Tem-
poral/Causal, and Workflow. Comparing the structures of the corresponding
graphs, we observed several trends. For instance, Duplication links tend to
represent simpler issue graphs often with two components and Composition
links present the highest amount of hierarchical tree structures (97.7%). Sur-
prisingly, General Relation links have a significantly higher transitivity score
than Duplication and Temporal/ Causal links. Motivated by the differences
between the link types and by their popularity, we evaluated the robustness
of two state-of-the-art duplicate detection approaches from the literature on
the JIRA dataset. We found that current deep-learning approaches confuse
between Duplication and other links in almost all repositories. On average,
the classification accuracy dropped by 6% for one approach and 12% for the
other. Extending the training sets with other link types seems to partly solve
this issue. We discuss our findings and their implications for research and
practice.

[Lunn2021] Stephanie Lunn, Monique Ross, Zahra Hazari, Mark Allen Weiss,
Michael Georgiopoulos, and Kenneth Christensen. The impact of technical
interviews, and other professional and cultural experiences on students’ com-
puting identity. In Proceedings of the 26th ACM Conference on Innovation
and Technology in Computer Science Education V. 1. ACM, Jun 2021, DOI
10.1145/3430665.3456362.
Abstract: Increasingly companies assess a computing candidate’s capa-
bilities using technical interviews (TIs). Yet students struggle to code on
demand, and there is already an insufficient amount of computing graduates
to meet industry needs. Therefore, it is important to understand students’
perceptions of TIs, and other professional experiences (e.g., computing jobs).
We surveyed 740 undergraduate computing students at three universities to

55



examine their experiences with the hiring process, as well as the impact of
professional and cultural experiences (e.g., familial support) on computing
identity. We considered the interactions between these experiences and social
identity for groups underrepresented in computing - women, Black/African
American, and Hispanic/Latinx students. Among other findings, we observed
that students that did not have positive experiences with TIs had a reduced
computing identity, but that facing discrimination during technical inter-
views had the opposite effect. Social support may play a role. Having friends
in computing bolsters computing identity for Hispanic/Latinx students, as
does a supportive home environment for women. Also, freelance computing
jobs increase computing identity for Black/African American students. Our
findings are intended to raise awareness of the best way for educators to help
diverse groups of students to succeed, and to inform them of the experiences
that may influence students’ engagement, resilience, and computing identity
development.

[MacNeil2022] Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim,
Sami Sarsa, Paul Denny, Seth Bernstein, and Juho Leinonen. Experiences
from using code explanations generated by large language models in a web
software development e-book, 2022.

[Martin2023] Florence Martin, Swapna Kumar, Albert D Ritzhaupt, and
Drew Polly. Bichronous online learning: Award-winning online in-
structor practices of blending asynchronous and synchronous online
modalities. Internet High. Educ., 56(100879):100879, Jan 2023, DOI
10.1016/j.iheduc.2022.100879.

[Mashey2021] John R. Mashey. Interactions, impacts, and coincidences of
the first golden age of computer architecture. IEEE Micro, 41(6):131–139,
Nov 2021, DOI 10.1109/mm.2021.3112876.
Abstract: In their 2018 Turing Award lecture and 2019 paper, John Hen-
nessy and David Patterson reviewed computer architecture progress since
the 1960s. They projected a second golden age akin to the first, approxi-
mately 1986–1996, when new instruction set architectures, almost all reduced
instruction set computers (RISCs), revolutionized the industry, eliminated
most minicomputer vendors, rivaled mainframes, and began a takeover of
supercomputing. The C language and derivatives came to pervade systems
programming, whereas Unix derivatives came to run many servers, desk-
tops, and smartphones. Such outcomes were not inevitable but depended on
evolutionary interactions of computer architecture and languages, industry
dynamics, and sometimes random coincidences.

[Matsubara2022] Patricia G. F. Matsubara, Igor Steinmacher, Bruno
Gadelha, and Tayana Conte. The best defense is a good defense: adapting
negotiation methods for tackling pressure over software project estimates,
2022, DOI 10.1145/3510455.3512775.

56



[May2019] Anna May, Johannes Wachs, and Anikó Hannák. Gender differ-
ences in participation and reward on stack overflow. Empirical Software En-
gineering, 24(4):1997–2019, Feb 2019, DOI 10.1007/s10664-019-09685-x.
Abstract: Programming is a valuable skill in the labor market, making the
underrepresentation of women in computing an increasingly important is-
sue. Online question and answer platforms serve a dual purpose in this field:
they form a body of knowledge useful as a reference and learning tool, and
they provide opportunities for individuals to demonstrate credible, verifiable
expertise. Issues, such as male-oriented site design or overrepresentation of
men among the site’s elite may therefore compound the issue of women’s
underrepresentation in IT. In this paper we audit the differences in behavior
and outcomes between men and women on Stack Overflow, the most pop-
ular of these Q&A sites. We observe significant differences in how men and
women participate in the platform and how successful they are. For example,
the average woman has roughly half of the reputation points, the primary
measure of success on the site, of the average man. Using an Oaxaca-Blinder
decomposition, an econometric technique commonly applied to analyze dif-
ferences in wages between groups, we find that most of the gap in success
between men and women can be explained by differences in their activity
on the site and differences in how these activities are rewarded. Specifically,
1) men give more answers than women and 2) are rewarded more for their
answers on average, even when controlling for possible confounders such as
tenure or buy-in to the site. Women ask more questions and gain more re-
ward per question. We conclude with a hypothetical redesign of the site’s
scoring system based on these behavioral differences, cutting the reputation
gap in half.

[NandSharma2022] Pankajeshwara Nand Sharma, Bastin Tony
Roy Savarimuthu, and Nigel Stanger. Unearthing open source decision-
making processes: A case study of Python enhancement proposals. Softw.
Pract. Exp., 52(10):2312–2346, Oct 2022, DOI 10.1002/spe.3128.
Abstract: Good governance practices are pivotal to the success of Open
Source Software (OSS) projects. However, the decision-making processes
that are made available to stakeholders are at times incomplete and may
remain buried and hidden in large amounts of software repository data.
This work bridges this gap by unearthing enacted decision-making processes
available for Python Enhancement Proposals (PEPs) from 1.54 million email
messages that embody decisions made during the evolution of the Python
language. This work employs a design science approach in operationalizing
a framework called DeMaP miner that is used to discover hidden processes
using information retrieval and information extraction techniques. It also
uses process mining techniques to visualize the processes, and comparative
structural analysis techniques to compare different decision processes.
The work identifies a richer set of decision-making activities than those
reported on the Python website and in prior research work (48 new decision
activities, 199 new pathways and 6 new stages). The extracted decision

57



process has been positively evaluated by a prominent member of the Python
steering council. The extracted process can be used for process compliance
checking and process improvement in OSS communities. Additionally, the
DeMaP Miner framework can be extended and customized to suit other
OSS projects, such as the OpenJDK project.

[Nguyen2022] Nhan Nguyen and Sarah Nadi. An empirical evaluation
of GitHub copilot’s code suggestions. In Proc. International Confer-
ence on Mining Software Repositories (MSR). ACM, May 2022, DOI
10.1145/3524842.3528470.
Abstract: GitHub and OpenAI recently launched Copilot, an ”AI pair pro-
grammer” that utilizes the power of Natural Language Processing, Static
Analysis, Code Synthesis, and Artificial Intelligence. Given a natural lan-
guage description of the target functionality, Copilot can generate corre-
sponding code in several programming languages. In this paper, we perform
an empirical study to evaluate the correctness and understandability of Copi-
lot’s suggested code. We use 33 LeetCode questions to create queries for
Copilot in four different programming languages. We evaluate the correct-
ness of the corresponding 132 Copilot solutions by running LeetCode’s pro-
vided tests, and evaluate understandability using SonarQube’s cyclomatic
complexity and cognitive complexity metrics. We find that Copilot’s Java
suggestions have the highest correctness score (57%) while JavaScript is the
lowest (27%). Overall, Copilot’s suggestions have low complexity with no
notable differences between the programming languages. We also find some
potential Copilot shortcomings, such as generating code that can be further
simplified and code that relies on undefined helper methods.

[Nicacio2022] Jalves Nicacio and Fabio Petrillo. An approach to build consis-
tent software architecture diagrams using devops system descriptors, 2022,
DOI 10.1145/3550356.3561567.

[Noble2022] James Noble, David Streader, Isaac Oscar Gariano, and
Miniruwani Samarakoon. More programming than programming: Teach-
ing formal methods in a software engineering programme, 2022.

[Olejniczak2020] Anthony J. Olejniczak and Molly J. Wilson. Who’s writing
open access (OA) articles? characteristics of OA authors at ph.d.-granting
institutions in the united states. Quantitative Science Studies, 1(4):1429–
1450, Dec 2020, DOI 10.1162/qss_a_00091.
Abstract: The open access (OA) publication movement aims to present
research literature to the public at no cost and with no restrictions. While
the democratization of access to scholarly literature is a primary focus of the
movement, it remains unclear whether OA has uniformly democratized the
corpus of freely available research, or whether authors who choose to publish
in OA venues represent a particular subset of scholars—those with access to
resources enabling them to afford article processing charges (APCs). We
investigated the number of OA articles with article processing charges (APC

58



OA) authored by 182,320 scholars with known demographic and institutional
characteristics at American research universities across 11 broad fields of
study. The results show, in general, that the likelihood for a scholar to author
an APC OA article increases with male gender, employment at a prestigious
institution (AAU member universities), association with a STEM discipline,
greater federal research funding, and more advanced career stage (i.e., higher
professorial rank). Participation in APC OA publishing appears to be skewed
toward scholars with greater access to resources and job security.

[Palomba2021] Fabio Palomba, Damian Andrew Tamburri, Francesca Arcelli
Fontana, Rocco Oliveto, Andy Zaidman, and Alexander Serebrenik. Beyond
technical aspects: How do community smells influence the intensity of code
smells? IEEE Transactions on Software Engineering, 47(1):108–129, Jan
2021, DOI 10.1109/tse.2018.2883603.
Abstract: Code smells are poor implementation choices applied by devel-
opers during software evolution that often lead to critical flaws or failure.
Much in the same way, community smells reflect the presence of organi-
zational and socio-technical issues within a software community that may
lead to additional project costs. Recent empirical studies provide evidence
that community smells are often—if not always—connected to circumstances
such as code smells. In this paper we look deeper into this connection by con-
ducting a mixed-methods empirical study of 117 releases from 9 open-source
systems. The qualitative and quantitative sides of our mixed-methods study
were run in parallel and assume a mutually-confirmative connotation. On
the one hand, we survey 162 developers of the 9 considered systems to inves-
tigate whether developers perceive relationship between community smells
and the code smells found in those projects. On the other hand, we perform
a fine-grained analysis into the 117 releases of our dataset to measure the
extent to which community smells impact code smell intensity (i.e., critical-
ity). We then propose a code smell intensity prediction model that relies on
both technical and community-related aspects. The results of both sides of
our mixed-methods study lead to one conclusion: community-related factors
contribute to the intensity of code smells. This conclusion supports the joint
use of community and code smells detection as a mechanism for the joint
management of technical and social problems around software development
communities.

[Panthaplackel2022] Sheena Panthaplackel, Milos Gligoric, Junyi Jessy Li,
and Raymond J. Mooney. Using developer discussions to guide fixing bugs
in software, 2022.
Abstract: Automatically fixing software bugs is a challenging task. While
recent work showed that natural language context is useful in guiding bug-
fixing models, the approach required prompting developers to provide this
context, which was simulated through commit messages written after the
bug-fixing code changes were made. We instead propose using bug report
discussions, which are available before the task is performed and are also
naturally occurring, avoiding the need for any additional information from

59



developers. For this, we augment standard bug-fixing datasets with bug re-
port discussions. Using these newly compiled datasets, we demonstrate that
various forms of natural language context derived from such discussions can
aid bug-fixing, even leading to improved performance over using commit
messages corresponding to the oracle bug-fixing commits.

[PapapanagiotakisBousy2022] Iason Papapanagiotakis Bousy, Earl T.
Barr, and David Clark. PopArt: Ranked testing efficiency.
IEEE Transactions on Software Engineering, pages 1–18, 2022, DOI
10.1109/tse.2022.3214796.
Abstract: Too often, programmers are under pressure to maximize their
confidence in the correctness of their code with a tight testing budget. Should
they spend some of that budget on finding “interesting” inputs or spend
their entire testing budget on test executions? Work on testing efficiency
has explored two competing approaches to answer this question: systematic
partition testing (ST), which defines a testing partition and tests its parts,
and random testing (RT), which directly samples inputs with replacement. A
consensus as to which is better when has yet to emerge. We present Probabil-
ity Ordered Partition Testing (POPART), a new systematic partition-based
testing strategy that visits the parts of a testing partition in decreasing prob-
ability order and in doing so leverages any non-uniformity over that partition.
We show how to construct a homogeneous testing partition, a requirement
for systematic testing, by using an executable oracle and the path partition.
A program’s path partition is a naturally occurring testing partition that
is usually skewed for the simple reason that some paths execute more fre-
quently than others. To confirm this conventional wisdom, we instrument
programs from the Codeflaws repository and find that 80% of them have a
skewed path probability distribution. POPART visits the parts of a testing
partition in decreasing probability order. We then compare POPART with
RT to characterise the configuration space in which each is more efficient.
We show that, when simulating Codeflaws, POPART outperforms RT after
100,000 executions. Our results reaffirm RT’s power for very small testing
budgets but also show that for any application requiring high (above 90%)
probability-weighted coverage POPART should be preferred. In such cases,
despite paying more for each test execution, we prove that POPART out-
performs RT: it traverses parts whose cumulative probability bounds that of
random testing, showing that sampling without replacement pays for itself,
given a nonuniform probability over a testing partition.

[Pashchenko2022] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, An-
tonino Sabetta, and Fabio Massacci. Vuln4real: A methodology for counting
actually vulnerable dependencies. IEEE Transactions on Software Engineer-
ing, 48(5):1592–1609, May 2022, DOI 10.1109/tse.2020.3025443.
Abstract: Vulnerable dependencies are a known problem in today’s free
open-source software ecosystems because FOSS libraries are highly inter-
connected, and developers do not always update their dependencies. Our

60



paper proposes Vuln4Real, the methodology for counting actually vulnera-
ble dependencies, that addresses the over-inflation problem of academic and
industrial approaches for reporting vulnerable dependencies in FOSS soft-
ware, and therefore, caters to the needs of industrial practice for correct
allocation of development and audit resources. To understand the indus-
trial impact of a more precise methodology, we considered the 500 most
popular FOSS Java libraries used by SAP in its own software. Our analy-
sis included 25767 distinct library instances in Maven. We found that the
proposed methodology has visible impacts on both ecosystem view and the
individual library developer view of the situation of software dependencies:
Vuln4Real significantly reduces the number of false alerts for deployed code
(dependencies wrongly flagged as vulnerable), provides meaningful insights
on the exposure to third-parties (and hence vulnerabilities) of a library, and
automatically predicts when dependency maintenance starts lagging, so it
may not receive updates for arising issues.

[Pelanek2022] Radek Pelánek and Tomáš Effenberger. The landscape of com-
putational thinking problems for practice and assessment. ACM Transac-
tions on Computing Education, Dec 2022, DOI 10.1145/3578269.
Abstract: To provide practice and assessment of computational thinking,
we need specific problems students can solve. There are many such problems,
but they are hard to find. Learning environments and assessments often use
only specific types of problems and thus do not cover computational think-
ing in its whole scope. We provide an extensive catalog of well-structured
computational thinking problem sets together with a systematic encoding
of their features. Based on this encoding, we propose a four-level taxonomy
that provides an organization of a wide variety of problems. The catalog,
taxonomy, and problem features are useful for content authors, designers of
learning environments, and researchers studying computational thinking.

[Pereira2017] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome
Cunha, João Paulo Fernandes, and João Saraiva. Energy efficiency across
programming languages: how do energy, time, and memory relate? In Pro-
ceedings of the 10th ACM SIGPLAN International Conference on Software
Language Engineering. ACM, Oct 2017, DOI 10.1145/3136014.3136031.
Abstract: This paper presents a study of the runtime, memory usage and
energy consumption of twenty seven well-known software languages. We
monitor the performance of such languages using ten different programming
problems, expressed in each of the languages. Our results show interesting
findings, such as, slower/faster languages consuming less/more energy, and
how memory usage influences energy consumption. Finally, we show how
to use our results to provide software engineers support to decide which
language to use when energy efficiency is a concern.

[Pinckney2022] Donald Pinckney, Federico Cassano, Arjun Guha, Jon Bell,
Massimiliano Culpo, and Todd Gamblin. Flexible and optimal dependency
management via max-smt, 2022.

61



[Pinto2022] Gustavo Pinto and Alberto de Souza. Cognitive-driven develop-
ment helps software teams to keep code units under the limit!, 2022.

[Pizard2022] Sebastián Pizard, Diego Vallespir, and Barbara Kitchenham. A
longitudinal case study on the effects of an evidence-based software engi-
neering training, 2022, DOI 10.1145/3510456.3514150.

[Poulos2021] Alexandra Poulos, Sally A. McKee, and Jon C. Calhoun. Posits
and the state of numerical representations in the age of exascale and edge
computing. Software: Practice and Experience, 52(2):619–635, Sep 2021,
DOI 10.1002/spe.3022.
Abstract: Growing constraints on memory utilization, power consump-
tion, and I/O throughput have increasingly become limiting factors to the
advancement of high performance computing (HPC) and edge computing
applications. IEEE-754 floating-point types have been the de facto standard
for floating-point number systems for decades, but the drawbacks of this
numerical representa- tion leave much to be desired. Alternative represen-
tations are gaining traction, both in HPC and machine learning environ-
ments. Posits have recently been proposed as a drop-in replacement for the
IEEE-754 floating-point representa- tion. We survey the state-of-the-art and
state-of-the-practice in the development and use of posits in edge computing
and HPC. The current literature supports posits as a promising alternative
to traditional floating-point systems, both as a stand-alone replacement and
in a mixed-precision environment. Development and standardization of the
posit type is ongoing, and much research remains to explore the application
of posits in different domains, how to best implement them in hardware, and
where they fit with other numerical representations.

[Prana2019] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung,
Thushari Atapattu, and David Lo. Categorizing the content of GitHub
README files. Empir. Softw. Eng., 24(3):1296–1327, Jun 2019, DOI
10.1007/s10664-018-9660-3.

[PreslerMarshall2022a] Kai Presler-Marshall, Sarah Heckman, and
Kathryn T Stolee. Identifying struggling teams in software engineer-
ing courses through weekly surveys. In Proc. Technical Symposium
on Computer Science Education (SIGCSE). ACM, Feb 2022, DOI
10.1145/3478431.3499367.
Abstract: Teaming is increasingly a core aspect of professional software
engineering and most undergraduate computer science curricula. At NC
State University, we teach communication and project-management skills
explicitly through a junior-level software engineering course. However, some
students may have a dysfunctional team experience that imperils their
ability to learn these skills. Identifying these teams during a team project is
important so the teaching staff can intervene early and hopefully alleviate
the issues. We propose a weekly reflection survey to help the course teaching
staff proactively identify teams that may not be on track to learn the course

62



outcomes. The questions on the survey focus on team communication
and collaboration over the previous week. We evaluate our survey on two
semesters of the undergraduate software engineering course by comparing
teams with poor end-of-project grades or peer evaluations against teams
flagged on a weekly basis through the surveys. We find that the survey can
identify most teams that later struggled on the project, typically by the
half-way mark of the project, and thus may provide instructors with an
actionable early-warning about struggling teams. Furthermore, a majority
of students (64.4%) found the survey to be a helpful tool for keeping their
team on track. Finally, we discuss future work for improving the survey and
engaging with student teams.

[PreslerMarshall2022b] Kai Presler-Marshall, Sarah Heckman, and
Kathryn T Stolee. What makes team[s] work? a study of team char-
acteristics in software engineering projects. In Proc. Conference on
International Computing Education Research (ICER). ACM, Aug 2022,
DOI 10.1145/3501385.3543980.
Abstract: Teaming is a core component in practically all professional
software engineering careers, and as such, is a key skill taught in many
undergraduate Computer Science programs. However, not all teams manage
to work together effectively, and in education, this can deprive some
students of successful teaming experiences. In this work, we seek to gain
insights into the characteristics of successful and unsuccessful undergraduate
student teams in a software engineering course. We conduct semi-structured
interviews with 18 students who have recently completed a team-based
software engineering course to understand how they worked together, what
challenges they faced, and how they tried to overcome these challenges.
Our results show that common problems include communicating, setting
and holding to deadlines, and effectively identifying tasks and their relative
difficulty. Additionally, we find that self-reflection on what is working and
not working or external motivators such as grades help some, but not all,
teams overcome these challenges. Finally, we conclude with recommen-
dations for educators on successful behaviours to steer teams towards,
and recommendations for researchers on future work to better understand
challenges that teams face.

[Qamar2022] Khushbakht Ali Qamar, Emre Sülün, and Eray Tüzün. Tax-
onomy of bug tracking process smells: Perceptions of practitioners and an
empirical analysis. Inf. Softw. Technol., 150(106972):106972, Oct 2022, DOI
10.1016/j.infsof.2022.106972.

[Queiroz2022] Francisco Queiroz, Maria Lonsdale, and Rejane Spitz. Sci-
ence as a game: conceptual model and application in scientific soft-
ware design. Int. j. des. creat. innov., 10(4):222–246, Oct 2022, DOI
10.1080/21650349.2022.2088623.
Abstract: Scientific inquiry is often described as, and compared to, a game.
This paper expands on that analogy to propose a conceptual model of scien-

63



tific practice built upon Jesper Juul’s game definition, and informed by par-
allels between the two activities collected from selected works from history
and philosophy of science. Moreover, the paper presents a design method,
based on the model described, for fostering creative solutions in scientific
software user interface design. Results from pilot case studies suggest both
model and method are helpful, allowing participants to describe requirements
and ideate solutions, as well providing a framework for the exploration of
the game-science analogy within the context of scientific research conducted
through computational resources.

[Ragkhitwetsagul2022] Chaiyong Ragkhitwetsagul and Matheus Paixao.
Recommending code improvements based on stack overflow answer edits,
2022.

[Rahman2020b] Mohammad Masudur Rahman, Foutse Khomh, and Marco
Castelluccio. Why are some bugs non-reproducible? an empirical in-
vestigation using data fusion. In Proc. International Conference on
Software Maintenance and Evolution (ICSME). IEEE, Sep 2020, DOI
10.1109/icsme46990.2020.00063.
Abstract: Software developers attempt to reproduce software bugs to un-
derstand their erroneous behaviours and to fix them. Unfortunately, they
often fail to reproduce (or fix) them, which leads to faulty, unreliable
software systems. However, to date, only a little research has been done
to better understand what makes the software bugs non-reproducible. In
this paper, we conduct a multimodal study to better understand the non-
reproducibility of software bugs. First, we perform an empirical study us-
ing 576 non-reproducible bug reports from two popular software systems
(Firefox, Eclipse) and identify 11 key factors that might lead a reported
bug to non-reproducibility. Second, we conduct a user study involving 13
professional developers where we investigate how the developers cope with
non-reproducible bugs. We found that they either close these bugs or so-
licit for further information, which involves long deliberations and counter-
productive manual searches. Third, we offer several actionable insights on
how to avoid non-reproducibility (e.g., false-positive bug report detector)
and improve reproducibility of the reported bugs (e.g., sandbox for bug re-
production) by combining our analyses from multiple studies (e.g., empirical
study, developer study).

[Rahman2021] Akond Rahman, Md Rayhanur Rahman, Chris Parnin, and
Laurie Williams. Security smells in ansible and chef scripts. ACM Transac-
tions on Software Engineering and Methodology, 30(1):1–31, Jan 2021, DOI
10.1145/3408897.
Abstract: Context: Security smells are recurring coding patterns that are
indicative of security weakness and require further inspection. As infrastruc-
ture as code (IaC) scripts, such as Ansible and Chef scripts, are used to
provision cloud-based servers and systems at scale, security smells in IaC
scripts could be used to enable malicious users to exploit vulnerabilities in

64



the provisioned systems. Goal: The goal of this article is to help practition-
ers avoid insecure coding practices while developing infrastructure as code
scripts through an empirical study of security smells in Ansible and Chef
scripts. Methodology: We conduct a replication study where we apply qual-
itative analysis with 1,956 IaC scripts to identify security smells for IaC
scripts written in two languages: Ansible and Chef. We construct a static
analysis tool called Security Linter for Ansible and Chef scripts (SLAC) to
automatically identify security smells in 50,323 scripts collected from 813
open source software repositories. We also submit bug reports for 1,000 ran-
domly selected smell occurrences. Results: We identify two security smells
not reported in prior work: missing default in case statement and no integrity
check. By applying SLAC we identify 46,600 occurrences of security smells
that include 7,849 hard-coded passwords. We observe agreement for 65 of
the responded 94 bug reports, which suggests the relevance of security smells
for Ansible and Chef scripts amongst practitioners. Conclusion: We observe
security smells to be prevalent in Ansible and Chef scripts, similarly to that
of the Puppet scripts. We recommend practitioners to rigorously inspect the
presence of the identified security smells in Ansible and Chef scripts using
(i) code review, and (ii) static analysis tools.

[Rahman2022] Mohammad M. Rahman, Foutse Khomh, and Marco Castel-
luccio. Works for me! cannot reproduce – a large scale empirical study of
non-reproducible bugs. Empirical Software Engineering, 27(5), May 2022,
DOI 10.1007/s10664-022-10153-2.
Abstract: Software developers attempt to reproduce software bugs to un-
derstand their erroneous behaviours and to fix them. Unfortunately, they
often fail to reproduce (or fix) them, which leads to faulty, unreliable soft-
ware systems. However, to date, only a little research has been done to
better understand what makes the software bugs non-reproducible. In this
article, we conduct a multi-modal study to better understand the non-
reproducibility of software bugs. First, we perform an empirical study us-
ing 576 non-reproducible bug reports from two popular software systems
(Firefox, Eclipse) and identify 11 key factors that might lead a reported
bug to non-reproducibility. Second, we conduct a user study involving 13
professional developers where we investigate how the developers cope with
non-reproducible bugs. We found that they either close these bugs or so-
licit for further information, which involves long deliberations and counter-
productive manual searches. Third, we offer several actionable insights on
how to avoid non-reproducibility (e.g., false-positive bug report detector)
and improve reproducibility of the reported bugs (e.g., sandbox for bug
reproduction) by combining our analyses from multiple studies (e.g., em-
pirical study, developer study). Fourth, we explain the differences between
reproducible and non-reproducible bug reports by systematically interpret-
ing multiple machine learning models that classify these reports with high
accuracy. We found that links to existing bug reports might help improve
the reproducibility of a reported bug. Finally, we detect the connected bug

65



reports to a non-reproducible bug automatically and further demonstrate
how 93 bugs connected to 71 non-reproducible bugs from our dataset can
offer complementary information (e.g., attachments, screenshots, program
flows).

[Rao2022] Nikitha Rao, Jason Tsay, Martin Hirzel, and Vincent J. Hellen-
doorn. Comments on comments: Where code review and documentation
meet, 2022, DOI 10.1145/3524842.3528475.

[Ritschel2022a] Nico Ritschel, Vladimir Kovalenko, Reid Holmes, Ronald
Garcia, and David C. Shepherd. Comparing block-based programming mod-
els for two-armed robots. IEEE Transactions on Software Engineering,
48(5):1630–1643, May 2022, DOI 10.1109/tse.2020.3027255.
Abstract: Modern industrial robots can work alongside human workers and
coordinate with other robots. This means they can perform complex tasks,
but doing so requires complex programming. Therefore, robots are typically
programmed by experts, but there are not enough to meet the growing de-
mand for robots. To reduce the need for experts, researchers have tried to
make robot programming accessible to factory workers without programming
experience. However, none of that previous work supports coordinating mul-
tiple robot arms that work on the same task. In this paper we present four
block-based programming language designs that enable end-users to program
two-armed robots. We analyze the benefits and trade-offs of each design on
expressiveness and user cognition, and evaluate the designs based on a sur-
vey of 273 professional participants of whom 110 had no previous program-
ming experience. We further present an interactive experiment based on a
prototype implementation of the design we deem best. This experiment con-
firmed that novices can successfully use our prototype to complete realistic
robotics tasks. This work contributes to making coordinated programming
of robots accessible to end-users. It further explores how visual program-
ming elements can make traditionally challenging programming tasks more
beginner-friendly.

[Ritschel2022b] Nico Ritschel, Anand Ashok Sawant, David Weintrop, Reid
Holmes, Alberto Bacchelli, Ronald Garcia, Chandrika K R, Avijit Mandal,
Patrick Francis, and David C. Shepherd. Training industrial end-user pro-
grammers with interactive tutorials. Software: Practice and Experience, Nov
2022, DOI 10.1002/spe.3167.
Abstract: Newly released robot programming tools have made it feasible for
end-users to program industrial robots by combining block-based languages
and lead-through programming. To use these systems effectively, end-users,
who usually have limited or no programming experience, require training. To
train users, tutoring systems are often used for block-based programming—
some even for lead-through programming—but no tutorial system combines
these two types of programming. We present CoBlox Interactive Tutorials
(CITs), a novel tutoring approach that teaches how to use both the hardware
and software components that comprise a typical end-user robot program-

66



ming environment. As users switch between the two programming styles,
CITs provide them with extensive scaffolding, give users immediate feed-
back on missteps

[Rombaut2023] Benjamin Rombaut, Filipe R. Cogo, Bram Adams, and
Ahmed E. Hassan. There’s no such thing as a free lunch: Lessons learned
from exploring the overhead introduced by the greenkeeper dependency bot
in npm. ACM Transactions on Software Engineering and Methodology,
32(1):1–40, Jan 2023, DOI 10.1145/3522587.
Abstract: Dependency management bots are increasingly being used to
support the software development process, for example to automatically up-
date a dependency when a new version is available. Yet, human intervention
is often required to either accept or reject any action or recommendation the
bot creates. In this paper, our objective is to study the extent to which depen-
dency management bots create additional, and sometimes unnecessary, work
for their users. To accomplish this, we analyze 93,196 issue reports opened
by Greenkeeper, a popular dependency management bot used in open source
software projects in the npm ecosystem. We ind that Greenkeeper is respon-
sible for half of all issues reported in client projects, inducing a signiicant
amount of overhead that must be addressed by clients, since many of these
issues were created as a result of Greenkeeper taking incorrect action on
a dependency update (i.e., false alarms). Reverting a broken dependency
update to an older version, which is a potential solution that requires the
least overhead and is automatically attempted by Greenkeeper, turns out to
not be an efective mechanism. Finally, we observe that 56% of the commits
referenced by Greenkeeper issue reports only change the client’s dependency
speciication ile to resolve the issue. Based on our indings, we argue that
dependency management bots should (i) be conigurable to allow clients to
reduce the amount of generated activity by the bots, (ii) take into considera-
tion more sources of information than only the pass/fail status of the client’s
build pipeline to help eliminate false alarms, and (iii) provide more efective
incentives to encourage clients to resolve dependency issues.

[Rule2019] Adam Rule, Amanda Birmingham, Cristal Zuniga, Ilkay Altintas,
Shih-Cheng Huang, Rob Knight, Niema Moshiri, Mai H Nguyen, Sara Brin
Rosenthal, Fernando Pérez, and Peter W Rose. Ten simple rules for writing
and sharing computational analyses in jupyter notebooks. PLoS Comput.
Biol., 15(7):e1007007, Jul 2019, DOI 10.1371/journal.pcbi.1007007.

[Sanders2019] Kate Sanders, Judy Sheard, Brett A Becker, Anna Eckerdal,
Sally Hamouda, and Simon. Inferential statistics in computing education
research. In Proc. Conference on International Computing Education Re-
search (ICER). ACM, Jul 2019, DOI 10.1145/3291279.3339408.
Abstract: The goal of most computing education research is to effect pos-
itive change in how computing is taught and learned. Statistical techniques
are one important tool for achieving this goal. In this paper we report on
an analysis of ICER papers that use inferential statistics. We present the

67



most commonly used techniques; an overview of the techniques the ICER
community has used over its first 14 years of papers, grouped according to
the purpose of the technique; and a detailed analysis of three of the most
commonly used techniques (t-test, chi-squared test, and Mann-Whitney-
Wilcoxon). We identify common flaws in reporting and give examples of
papers where statistics are reported well. In sum, the paper draws a pic-
ture of the use of inferential statistics by the ICER community. This picture
is intended to help orient researchers who are new to the use of statistics
in computing education research and to encourage reflection by the ICER
community on how it uses statistics and how it can improve that use.

[Schmitt2022] Paul Schmitt, Jana Iyengar, Christopher Wood, and Barath
Raghavan. The decoupling principle. In Proceedings of the 21st
ACM Workshop on Hot Topics in Networks. ACM, Nov 2022, DOI
10.1145/3563766.3564112.
Abstract: The three decade struggle to ensure Internet data
confidentiality—a key aspect of communications privacy—is finally behind
us. Encryption is fast, secure, and standard in all browsers, modern trans-
ports, and major protocols. Yet it has long seemed that network privacy is
not unified by core principles but a grab bag of techniques and ideas applied
to an equally wide range of applications, contexts, layers of infrastructure,
and software stacks. Here we attempt to distill a principle—one that is old
but seldom discussed as such—for building privacy into Internet services. We
explore what privacy properties are desirable and achievable when we apply
this principle. We evaluate several classic systems and ones that have been
recently deployed with this principle applied, and discuss future directions
for network privacy building upon these efforts.

[Schroder2021] Michael Schröder and Jürgen Cito. An empirical investiga-
tion of command-line customization. Empirical Software Engineering, 27(2),
Dec 2021, DOI 10.1007/s10664-021-10036-y.
Abstract: The interactive command line, also known as the shell, is a
prominent mechanism used extensively by a wide range of software profes-
sionals (engineers, system administrators, data scientists, etc.). Shell cus-
tomizations can therefore provide insight into the tasks they repeatedly per-
form, how well the standard environment supports those tasks, and ways
in which the environment could be productively extended or modified. To
characterize the patterns and complexities of command-line customization,
we mined the collective knowledge of command-line users by analyzing more
than 2.2 million shell alias definitions found on GitHub. Shell aliases al-
low command-line users to customize their environment by defining arbi-
trarily complex command substitutions. Using inductive coding methods,
we found three types of aliases that each enable a number of customiza-
tion practices: Shortcuts (for nicknaming commands, abbreviating subcom-
mands, and bookmarking locations), Modifications (for substituting com-
mands, overriding defaults, colorizing output, and elevating privilege), and
Scripts (for transforming data and chaining subcommands). We conjecture

68



that identifying common customization practices can point to particular
usability issues within command-line programs, and that a deeper under-
standing of these practices can support researchers and tool developers in
designing better user experiences. In addition to our analysis, we provide an
extensive reproducibility package in the form of a curated dataset together
with well-documented computational notebooks enabling further knowledge
discovery and a basis for learning approaches to improve command-line work-
flows.

[Schurhoff2022] Christian Schürhoff, Stefan Hanenberg, and Volker Gruhn.
An empirical study on a single company’s cost estimations of 338 soft-
ware projects. Empirical Software Engineering, 28(1), Nov 2022, DOI
10.1007/s10664-022-10245-z.

[Shan2023] Shawn Shan, Jenna Cryan, Emily Wenger, Haitao Zheng, Rana
Hanocka, and Ben Y. Zhao. Glaze: Protecting artists from style mimicry by
text-to-image models, 2023.
Abstract: Recent text-to-image diffusion models such as MidJourney and
Stable Diffusion threaten to displace many in the professional artist com-
munity. In particular, models can learn to mimic the artistic style of spe-
cific artists after “fine-tuning” on samples of their art. In this paper, we
describe the design, implementation and evaluation of Glaze, a tool that en-
ables artists to apply “style cloaks” to their art before sharing online. These
cloaks apply barely perceptible perturbations to images, and when used as
training data, mislead generative models that try to mimic a specific artist.
In coordination with the professional artist community, we deploy user stud-
ies to more than 1000 artists, assessing their views of AI art, as well as
the efficacy of our tool, its usability and tolerability of perturbations, and
robustness across different scenarios and against adaptive countermeasures.
Both surveyed artists and empirical CLIP-based scores show that even at
low perturbation levels (p=0.05), Glaze is highly successful at disrupting
mimicry under normal conditions (¿92%) and against adaptive countermea-
sures (¿85%).

[Shankar2022] Shreya Shankar, Rolando Garcia, Joseph M. Hellerstein, and
Aditya G. Parameswaran. Operationalizing machine learning: An interview
study, 2022.

[Sharafi2022] Zohreh Sharafi, Ian Bertram, Michael Flanagan, and Westley
Weimer. Eyes on code: A study on developers’ code navigation strategies.
IEEE Transactions on Software Engineering, 48(5):1692–1704, May 2022,
DOI 10.1109/tse.2020.3032064.
Abstract: What code navigation strategies do developers use and what
mechanisms do they employ to find relevant information? Do their strate-
gies evolve over the course of longer tasks? Answers to these questions can
provide insight to educators and software tool designers to support a wide va-
riety of programmers as they tackle increasingly-complex software systems.

69



However, little research to date has measured developers’ code navigation
strategies in ecologically-valid settings, or analyzed how strategies progressed
throughout a maintenance task. We propose a novel experimental design
that more accurately represents the software maintenance process in terms
of software complexity and IDE interactions. Using this framework, we con-
duct an eye-tracking study (n=36) of realistic bug-fixing tasks, dynamically
and empirically identifying relevant code areas. We introduce a three-phase
model to characterize developers’ navigation behavior supported by statis-
tical variations in eye movements over time. We also propose quantifiable
notion of ”thrashing” with the code as a navigation activity. We find that
thrashing is associated with lower effectiveness. Our results confirm that the
relevance of various code elements changes over time, and that our proposed
three-phase model is capable of capturing these significant changes. We dis-
cuss our findings and their implications for tool designers, educators, and
the research community.

[Shimada2022] Naomichi Shimada, Tao Xiao, Hideaki Hata, Christoph
Treude, and Kenichi Matsumoto. Github sponsors: Exploring a new way
to contribute to open source, 2022, DOI 10.1145/3510003.3510116.

[Shome2022] Arumoy Shome, Lúıs Cruz, and Arie van Deursen. Data smells
in public datasets. In Proceedings of the 1st International Conference
on AI Engineering: Software Engineering for AI. ACM, May 2022, DOI
10.1145/3522664.3528621.
Abstract: The adoption of Artificial Intelligence (AI) in high-stakes do-
mains such as healthcare, wildlife preservation, autonomous driving and
criminal justice system calls for a data-centric approach to AI. Data sci-
entists spend the majority of their time studying and wrangling the data,
yet tools to aid them with data analysis are lacking. This study identifies the
recurrent data quality issues in public datasets. Analogous to code smells,
we introduce a novel catalogue of data smells that can be used to indicate
early signs of problems or technical debt in machine learning systems. To
understand the prevalence of data quality issues in datasets, we analyse 25
public datasets and identify 14 data smells.

[Shreeve2021] Benjamin Shreeve, Joseph Hallett, Matthew Edwards,
Kopo M. Ramokapane, Richard Atkins, and Awais Rashid. The best laid
plans or lack thereof: Security decision-making of different stakeholder
groups, 2021, DOI 10.1109/TSE.2020.3023735.
Abstract: Cyber security requirements are influenced by the priorities and
decisions of a range of stakeholders. Board members and CISOs determine
strategic priorities. Managers have responsibility for resource allocation and
project management. Legal professionals concern themselves with regulatory
compliance. Little is understood about how the security decision-making ap-
proaches of these different stakeholders contrast, and if particular groups
of stakeholders have a better appreciation of security requirements during
decision-making. Are risk analysts better decision makers than CISOs? Do

70



security experts exhibit more effective strategies than board members? This
paper explores the effect that different experience and diversity of expertise
has on the quality of a team’s cyber security decision-making and whether
teams with members from more varied backgrounds perform better than
those with more focused, homogeneous skill sets. Using data from 208 ses-
sions and 948 players of a tabletop game run in the wild by a major national
organization over 16 months, we explore how choices are affected by player
background (e.g., cyber security experts versus risk analysts, board-level
decision makers versus technical experts) and different team make-ups (ho-
mogeneous teams of security experts versus various mixes). We find that
no group of experts makes significantly better game decisions than anyone
else, and that their biases lead them to not fully comprehend what they are
defending or how the defenses work.

[Shrestha2021] Nischal Shrestha, Titus Barik, and Chris Parnin. Unravel: A
fluent code explorer for data wrangling. In The 34th Annual ACM Sym-
posium on User Interface Software and Technology. ACM, Oct 2021, DOI
10.1145/3472749.3474744.
Abstract: Data scientists have adopted a popular design pattern in pro-
gramming called the fluent interface for composing data wrangling code.
The fluent interface works by combining multiple transformations on a
data table—or dataframes—with a single chain of expressions, which pro-
duces an output. Although fluent code promotes legibility, the intermediate
dataframes are lost, forcing data scientists to unravel the chain through te-
dious code edits and re-execution. Existing tools for data scientists do not al-
low easy exploration or support understanding of fluent code. To address this
gap, we designed a tool called Unravel that enables structural edits via drag-
and-drop and toggle switch interactions to help data scientists explore and
understand fluent code. Data scientists can apply simple structural edits via
drag-and-drop and toggle switch interactions to reorder and (un)comment
lines. To help data scientists understand fluent code, Unravel provides func-
tion summaries and always-on visualizations highlighting important changes
to a dataframe. We discuss the design motivations behind Unravel and how
it helps understand and explore fluent code. In a first-use study with 14
data scientists, we found that Unravel facilitated diverse activities such as
validating assumptions about the code or data, exploring alternatives, and
revealing function behavior.

[Silva2022] Yasin N Silva, Alexis Loza, and Humberto Razente. DBSnap-eval.
In Proc. Conference on Innovation and Technology in Computer Science Ed-
ucation (ITiCSE). ACM, Jul 2022, DOI 10.1145/3502718.3524822.
Abstract: Learning to construct database queries can be a challenging task
because students need to learn the specific query language syntax as well as
properly understand the effect of each query operator and how multiple op-
erators interact in a query. While some previous studies have looked into
the types of database query errors students make and how the availabil-
ity of expected query results can help to increase the success rate, there is

71



very little that is known regarding the patterns that emerge while students
are constructing a query. To be able to look into the process of construct-
ing a query, in this paper we introduce DBSnap-Eval, a tool that supports
tree-based queries (similar to SQL query plans) and a block-based querying
interface to help separate the syntax and semantics of a query. DBSnap-
Eval closely monitors the actions students take to construct a query such
as adding a dataset or connecting a dataset with an operator. This paper
presents an initial set of results about database query construction patterns
using DBSnap-Eval. Particularly, it reports identified patterns in the process
students follow to answer common database queries.

[Soltani2020] Mozhan Soltani, Felienne Hermans, and Thomas Bäck. The
significance of bug report elements. Empir. Softw. Eng., 25(6):5255–5294,
Nov 2020, DOI 10.1007/s10664-020-09882-z.
Abstract: AbstractOpen source software projects often use issue reposi-
tories, where project contributors submit bug reports. Using these repos-
itories, more bugs in software projects may be identified and fixed. How-
ever, the content and therefore quality of bug reports vary. In this study,
we aim to understand the significance of different elements in bug reports.
We interviewed 35 developers to gain insights into their perceptions on the
importance of various contents in bug reports. To assess our findings, we
surveyed 305 developers. The results show developers find it highly impor-
tant that bug reports include crash description, reproducing steps or test
cases, and stack traces. Software version, fix suggestions, code snippets, and
attached contents have lower importance for software debugging. Further-
more, to evaluate the quality of currently available bug reports, we mined
issue repositories of 250 most popular projects on Github. Statistical analy-
sis on the mined issues shows that crash reproducing steps, stack traces, fix
suggestions, and user contents, have statistically significant impact on bug
resolution times, for 7̃0%, 7̃6%, 5̃5%, and 3̃3% of the projects. However, on
avarage, over 70% of bug reports lack these elements.

[Spinellis2023] Diomidis Spinellis. Open reproducible publication research,
2023.
Abstract: Considerable scientific work involves locating, analyzing, system-
atizing, and synthesizing other publications. Its results end up in a paper’s
“background” section or in standalone articles, which include meta-analyses
and systematic literature reviews. The required research is aided through the
use of online scientific publication databases and search engines, such as Web
of Science, Scopus, and Google Scholar. However, use of online databases suf-
fers from a lack of repeatability and transparency, as well as from technical
restrictions. Thankfully, open data, powerful personal computers, and open
source software now make it possible to run sophisticated publication stud-
ies on the desktop in a self-contained environment that peers can readily
reproduce. Here we report a Python software package and an associated
command-line tool that can populate embedded relational databases with

72



slices from the complete set of Crossref publication metadata,1 ORCID au-
thor records,2 and other open data sets, for in-depth processing through
performant queries. We demonstrate the software’s utility by analyzing the
underlying dataset’s contents, by visulizing the evolution of publications in
diverse scientific fields and relationships between them, by outlining sci-
entometric facts associated with COVID-19 research, and by replicating
commonly-used bibliometric measures of productivity and impact.

[Stokes2022] Chase Stokes and Marti Hearst. Why more text is (often) better:
Themes from reader preferences for integration of charts and text, 2022.

[Storey2022] Margaret-Anne Storey, Brian Houck, and Thomas Zimmer-
mann. How developers and managers define and trade productivity for
quality. In Proc. Conference on Human Aspects of Software Engineering
(CHASE). ACM, May 2022, DOI 10.1145/3528579.3529177.
Abstract: Background: Developer productivity and software quality are
different but related multi-dimensional lenses into the software engineering
process. The terms are used liberally in industry settings, but there is a lack
of consensus and awareness of what these terms mean in specific contexts
and which trade-offs should be considered. Objective & Method: Through an
exploratory survey study with developers and managers at Microsoft, we in-
vestigated how these cohorts define productivity and quality, how aligned
they are in their views, how aware they are of other views, and if and
how they trade quality for productivity. Results: We find developers and
managers, as cohorts, are not well-aligned in their views of productivity—
developers think more about work activities, while more managers consider
performance or quality outcomes. We find developers and managers have
more aligned views of what quality means, with the majority defining qual-
ity in terms of robustness, while the timely delivery of evolvable features
that delight users are also key quality aspects. Over half of the develop-
ers and managers we surveyed make productivity and quality trade-offs but
with good reasons for doing so. Conclusion: Alignment on how developers
and managers define productivity and quality is essential if they are to de-
sign effective improvement interventions and meaningful metrics to measure
productivity and quality improvements. Our research provides a frame for
developers and managers to align their views and to make informed decisions
on productivity and quality trade-offs.

[Strode2022] Diane Strode, Torgeir Dingsøyr, and Yngve Lindsjorn. A team-
work effectiveness model for agile software development. Empir. Softw. Eng.,
27(2), Mar 2022, DOI 10.1007/s10664-021-10115-0.
Abstract: Teamwork is crucial in software development, particularly in ag-
ile development teams which are cross-functional and where team members
work intensively together to develop a cohesive software solution. Effective
teamwork is not easy; prior studies indicate challenges with communication,
learning, prioritization, and leadership. Nevertheless, there is much advice
available for teams, from agile methods, practitioner literature, and general

73



studies on teamwork to a growing body of empirical studies on teamwork in
the specific context of agile software development. This article presents the
agile teamwork effectiveness model (ATEM) for colocated agile development
teams. The model is based on evidence from focus groups, case studies, and
multi-vocal literature and is a revision of a general team effectiveness model.
Our model of agile teamwork effectiveness is composed of shared leadership,
team orientation, redundancy, adaptability, and peer feedback. Coordinat-
ing mechanisms are needed to facilitate these components. The coordinating
mechanisms are shared mental models, communication, and mutual trust.
We critically examine the model and discuss extensions for very small, multi-
team, distributed, and safety-critical development contexts. The model is
intended for researchers, team members, coaches, and leaders in the agile
community.

[Tan2022] Wen Siang Tan, Markus Wagner, and Christoph Treude. Detect-
ing outdated code element references in software repository documentation,
2022.

[Tan2023] Xin Tan, Yiran Chen, Haohua Wu, Minghui Zhou, and Li Zhang.
Is it enough to recommend tasks to newcomers? understanding mentoring
on good first issues. ICSE 2023, 2023.
Abstract: Newcomers are critical for the success and continuity of open
source software (OSS) projects. To attract newcomers and facilitate their
onboarding, many OSS projects recommend tasks for newcomers, such as
good first issues (GFIs). Previous studies have preliminarily investigated
the effects of GFIs and techniques to identify suitable GFIs. However, it is
still unclear whether just recommending tasks is enough and how significant
mentoring is for newcomers. To better understand mentoring in OSS commu-
nities, we analyze the resolution process of 48,402 GFIs from 964 repositories
through a mix-method approach. We investigate the extent, the mentorship
structures, the discussed topics, and the relevance of expert involvement. We
find that 7̃0% of GFIs have expert participation, with each GFI usually hav-
ing one expert who makes two comments. Half of GFIs will receive their first
expert comment within 8.5 hours after a newcomer comment. Through analy-
sis of the collaboration networks of newcomers and experts, we observe that
community mentorship presents four types of structure: centralized men-
toring, decentralized mentoring, collaborative mentoring, and distributed
mentoring. As for discussed topics, we identify 14 newcomer challenges and
18 expert mentoring content. By fitting the generalized linear models, we
find that expert involvement positively correlates with newcomers’ success-
ful contributions but negatively correlates with newcomers’ retention. Our
study manifests the status and significance of mentoring in the OSS projects,
which provides rich practical implications for optimizing the mentoring pro-
cess and helping newcomers contribute smoothly and successfully.

[Tenhunen2023] Saara Tenhunen, Tomi Männistö, Matti Luukkainen, and
Petri Ihantola. A systematic literature review of capstone courses in soft-

74



ware engineering, 2023, DOI 10.48550/ARXIV.2301.03554.
Abstract: Context: Tertiary education institutions aim to prepare their
computer science and software engineering students for working life. While
much of the technical principles are covered in lower-level courses, team-
based capstone projects are a common way to provide students with hands-
on experience and teach soft skills. Objective: This paper explores the char-
acteristics of software engineering capstone courses presented in the litera-
ture. The goal of this work is to understand the pros and cons of different
approaches by synthesising the various aspects of software engineering cap-
stone courses and related experiences. Method: In a systematic literature
review for 2007–2007, we identified 127 primary studies. These studies were
analysed based on their presented course characteristics and the reported
course outcomes. Results: The characteristics were synthesised into a taxon-
omy consisting of duration, team sizes, client and project sources, project im-
plementation, and student assessment. We found out that capstone courses
generally last one semester and divide students into groups of 4–5 where they
work on a project for a client. For a slight majority of courses, the clients
are external to the course staff and students are often expected to produce
a proof-of-concept level software product as the main end deliverable. The
courses also offer versatile assessments for students throughout the project.
Conclusions: This paper provides researchers and educators with a clas-
sification of characteristics of software engineering capstone courses based
on previous research. We also further synthesise insights on the reported
outcomes of capstone courses. Our review study aims to help educators to
identify various ways of organising capstones and effectively plan and de-
liver their own capstone courses. The characterisation also helps researchers
to conduct further studies on software engineering capstones.

[Tian2022] Yingchen Tian, Yuxia Zhang, Klaas-Jan Stol, Lin Jiang, and
Hui Liu. What makes a good commit message? In Proc. Interna-
tional Conference on Software Engineering (ICSE). ACM, May 2022, DOI
10.1145/3510003.3510205.
Abstract: A key issue in collaborative software development is communi-
cation among developers. One modality of communication is a commit mes-
sage, in which developers describe the changes they make in a repository.
As such, commit messages serve as an ”audit trail” by which developers can
understand how the source code of a project has changed-and why. Hence,
the quality of commit messages affects the effectiveness of communication
among developers. Commit messages are often of poor quality as developers
lack time and motivation to craft a good message. Several automatic ap-
proaches have been proposed to generate commit messages. However, these
are based on uncurated datasets including considerable proportions of poorly
phrased commit messages. In this multi-method study, we first define what
constitutes a ”good” commit message, and then establish what proportion of
commit messages lack information using a sample of almost 1,600 messages
from five highly active open source projects. We find that an average of circa

75



44% of messages could be improved, suggesting the use of uncurated datasets
may be a major threat when commit message generators are trained with
such data. We also observe that prior work has not considered semantics
of commit messages, and there is surprisingly little guidance available for
writing good commit messages. To that end, we develop a taxonomy based
on recurring patterns in commit messages’ expressions. Finally, we investi-
gate whether ”good” commit messages can be automatically identified; such
automation could prompt developers to write better commit messages.

[Tigina2023] Maria Tigina, Anastasiia Birillo, Yaroslav Golubev, Hieke Ke-
uning, Nikolay Vyahhi, and Timofey Bryksin. Analyzing the quality of sub-
missions in online programming courses, 2023.
Abstract: Programming education should aim to provide students with
a broad range of skills that they will later use while developing software.
An important aspect in this is their ability to write code that is not only
correct but also of high quality. Unfortunately, this is difficult to control
in the setting of a massive open online course. In this paper, we carry out
an analysis of the code quality of submissions from JetBrains Academy –
a platform for studying programming in an industry-like project-based set-
ting with an embedded code quality assessment tool called Hyperstyle. We
analyzed more than a million Java submissions and more than 1.3 million
Python submissions, studied the most prevalent types of code quality issues
and the dynamics of how students fix them. We provide several case studies
of different issues, as well as an analysis of why certain issues remain unfixed
even after several attempts. Also, we studied abnormally long sequences of
submissions, in which students attempted to fix code quality issues after
passing the task. Our results point the way towards the improvement of on-
line courses, such as making sure that the task itself does not incentivize
students to write code poorly.

[Timperley2021] Christopher S. Timperley, Lauren Herckis, Claire Le Goues,
and Michael Hilton. Understanding and improving artifact sharing in soft-
ware engineering research. Empirical Software Engineering, 26(4), May 2021,
DOI 10.1007/s10664-021-09973-5.

[Tissenbaum2021] Mike Tissenbaum, David Weintrop, Nathan Holbert,
and Tamara Clegg. The case for alternative endpoints in computing
education. Br. J. Educ. Technol., 52(3):1164–1177, May 2021, DOI
10.1111/bjet.13072.
Abstract: This paper argues for a reexamination of the nature and goals
of broad computing education initiatives. Instead of starting with specific
values or goals, we instead begin by considering various desired endpoints of
computing instruction and then work backward to reason about what form
learning activities might take and what are the underlying values and prin-
ciples that support learners in reaching these endpoints. The result of this
exercise is a push for rethinking the form of contemporary computing educa-
tion with an eye toward more diverse, equitable and meaningful endpoints.

76



With a focus on the role that constructionistfocused pedagogies and designs
can play in supporting these endpoints, we examine four distinct cases and
the endpoints they support. This paper is not intended to encompass all
the possible alternate endpoints for computer science education; rather, this
work seeks to start a conversation around the nature of and need for al-
ternate endpoints, as a means to reevaluate the current tools and curricula
to prepare learners for a future of active and empowered computingliterate
citizens.

[Tiwari2023] Deepika Tiwari, Martin Monperrus, and Benoit Baudry. Rick:
Generating mocks from production data, 2023.
Abstract: Test doubles, such as mocks and stubs, are nifty fixtures in unit
tests. They allow developers to test individual components in isolation from
others that lie within or outside of the system. However, implementing test
doubles within tests is not straightforward. With this demonstration, we
introduce RICK, a tool that observes executing applications in order to au-
tomatically generate tests with realistic mocks and stubs. R I C K monitors
the invocation of target methods and their interactions with external compo-
nents. Based on the data collected from these observations, RICK produces
unit tests with mocks, stubs, and mock-based oracles. We highlight the ca-
pabilities of RICK, and how it can be used with real-world Java applications,
to generate tests with mocks.

[Trautsch2023] Alexander Trautsch, Johannes Erbel, Steffen Herbold, and
Jens Grabowski. What really changes when developers intend to improve
their source code: a commit-level study of static metric value and static
analysis warning changes. Empirical Software Engineering, 28(2), Jan 2023,
DOI 10.1007/s10664-022-10257-9.
Abstract: Many software metrics are designed to measure aspects that are
believed to be related to software quality. Static software metrics, e.g., size,
complexity and coupling are used in defect prediction research as well as
software quality models to evaluate software quality. Static analysis tools
also include boundary values for complexity and size that generate warn-
ings for developers. While this indicates a relationship between quality and
software metrics, the extent of it is not well understood. Moreover, recent
studies found that complexity metrics may be unreliable indicators for under-
standability of the source code. To explore this relationship, we leverage the
intent of developers about what constitutes a quality improvement in their
own code base. We manually classify a randomized sample of 2,533 commits
from 54 Java open source projects as quality improving depending on the
intent of the developer by inspecting the commit message. We distinguish
between perfective and corrective maintenance via predefined guidelines and
use this data as ground truth for the fine-tuning of a state-of-the art deep
learning model for natural language processing. The benchmark we provide
with our ground truth indicates that the deep learning model can be con-
fidently used for commit intent classification. We use the model to increase

77



our data set to 125,482 commits. Based on the resulting data set, we in-
vestigate the differences in size and 14 static source code metrics between
changes that increase quality, as indicated by the developer, and changes
unrelated to quality. In addition, we investigate which files are targets of
quality improvements. We find that quality improving commits are smaller
than non-quality improving commits. Perfective changes have a positive im-
pact on static source code metrics while corrective changes do tend to add
complexity. Furthermore, we find that files which are the target of perfec-
tive maintenance already have a lower median complexity than files which
are the target of non-perfective changes. Our study results provide empirical
evidence for which static source code metrics capture quality improvement
from the developers point of view. This has implications for program under-
standing as well as code smell detection and recommender systems.

[Trinkenreich2022] Bianca Trinkenreich, Igor Wiese, Anita Sarma, Marco
Gerosa, and Igor Steinmacher. Women’s participation in open source soft-
ware: A survey of the literature. ACM Transactions on Software Engineering
and Methodology, 31(4):1–37, Aug 2022, DOI 10.1145/3510460.
Abstract: Women are underrepresented in Open Source Software (OSS)
projects, as a result of which, not only do women lose career and skill de-
velopment opportunities, but the projects themselves suffer from a lack of
diversity of perspectives. Practitioners and researchers need to understand
more about the phenomenon; however, studies about women in open source
are spread across multiple fields, including information systems, software
engineering, and social science. This paper systematically maps, aggregates,
and synthesizes the state-of-the-art on women’s participation in OSS. It fo-
cuses on women contributors’ representation and demographics, how they
contribute, their motivations and challenges, and strategies employed by
communities to attract and retain women. We identified 51 articles (pub-
lished between 2000 and 2021) that investigated women’s participation in
OSS. We found evidence in these papers about who are the women who
contribute, what motivates them to contribute, what types of contributions
they make, challenges they face, and strategies proposed to support their
participation. According to these studies, only about 5% of projects were re-
ported to have women as core developers, and women authored less than 5%
of pull-requests, but had similar or even higher rates of pull request accep-
tances than men. Women make both code and non-code contributions and
their motivations to contribute include, learning new skills, altruism, reci-
procity, and kinship. Challenges that women face in OSS are mainly social,
including lack of peer parity and non-inclusive communication from a toxic
culture. We found ten strategies reported in the literature, which we mapped
to the reported challenges. Based on these results, we provide guidelines for
future research and practice.

[Trinkenreich2023a] Bianca Trinkenreich, Klaas-Jan Stol, Igor Steinmacher,
Marco Gerosa, Anita Sarma, Marcelo Lara, Michael Feathers, Nicholas Ross,
and Kevin Bishop. A model for understanding and reducing developer

78



burnout, 2023.
Abstract: Job burnout is a type of work-related stress associated with a
state of physical or emotional exhaustion that also involves a sense of re-
duced accomplishment and loss of personal identity. Burnt out can affect
one’s physical and mental health and has become a leading industry con-
cern and can result in high workforce turnover. Through an empirical study
at Globant, a large multi-national company, we created a theoretical model
to evaluate the complex interplay among organizational culture, work sat-
isfaction, and team climate, and how they impact developer burnout. We
conducted a survey of developers in software delivery teams (n=3,281) to
test our model and analyzed the data using structural equation modeling,
moderation, and multi-group analysis. Our results show that Organizational
Culture, Climate for Learning, Sense of Belonging, and Inclusiveness are
positively associated with Work Satisfaction, which in turn is associated
with Reduced Burnout. Our model generated through a largescale survey
can guide organizations in how to reduce workforce burnout by creating a
climate for learning, inclusiveness in teams, and a generative organizational
culture where new ideas are welcome, information is actively sought and bad
news can be shared without fear.

[Trinkenreich2023b] Bianca Trinkenreich, Klaas-Jan Stol, Anita Sarma,
Daniel M. German, Marco A. Gerosa, and Igor Steinmacher. Do i belong?
modeling sense of virtual community among linux kernel contributors, 2023.
Abstract: The sense of belonging to a community is a basic human need
that impacts an individual’s behavior, long-term engagement, and job satis-
faction, as revealed by research in disciplines such as psychology, healthcare,
and education. Despite much research on how to retain developers in Open
Source Software (OSS) projects and other virtual, peer-production commu-
nities, there is a paucity of research investigating what might contribute
to a sense of belonging in these communities. To that end, we develop a
theoretical model that seeks to understand the link between OSS developer
motives and a Sense of Virtual Community (SVC). We test the model with
a dataset collected in the Linux Kernel developer community (N=225), us-
ing structural equation modeling techniques. Our results for this case study
show that intrinsic motivations (social or hedonic motives) are positively
associated with a sense of virtual community, but living in an authoritative
country and being paid to contribute can reduce the sense of virtual com-
munity. Based on these results, we offer suggestions for open source projects
to foster a sense of virtual community, with a view to retaining contributors
and improving projects’ sustainability.

[Truong2022] Kimberly Truong, Courtney Miller, Bogdan Vasilescu, and
Christian Kästner. The unsolvable problem or the unheard answer? In Proc.
International Conference on Mining Software Repositories (MSR). ACM,
May 2022, DOI 10.1145/3524842.3528488.
Abstract: Talks at practitioner-focused open-source software conferences
are a valuable source of information for software engineering researchers.

79



They provide a pulse of the community and are valuable source material for
grey literature analysis. We curated a dataset of 24,669 talks from 87 open-
source conferences between 2010 and 2021. We stored all relevant metadata
from these conferences and provide scripts to collect the transcripts. We be-
lieve this data is useful for answering many kinds of questions, such as: What
are the important/highly discussed topics within practitioner communities?
How do practitioners interact? And how do they present themselves to the
public? We demonstrate the usefulness of this data by reporting our find-
ings from two small studies: a topic model analysis providing an overview
of open-source community dynamics since 2011 and a qualitative analysis
of a smaller community-oriented sample within our dataset to gain a better
understanding of why contributors leave open-source software.

[Tshukudu2020] Ethel Tshukudu and Quintin Cutts. Understanding concep-
tual transfer for students learning new programming languages. In Proc.
Conference on International Computing Education Research (ICER). ACM,
Aug 2020, DOI 10.1145/3372782.3406270.
Abstract: Prior research has shown that students face transition challenges
between programming languages (PL) over the course of their education. We
could not find research attempting to devise a model that describes the tran-
sition process and how students’ learning of programming concepts is affected
during the shift. In this paper, we propose a model to describe PL transfer
for relative novices. In the model, during initial stages of learning a new
language, students will engage in learning three categories of concepts, True
Carryover Concepts, False Carryover Concepts, or Abstract True Carryover
Concepts; during the transition, learners automatically effect a transfer of
semantics between languages based on syntax matching. In order to find
support for the model, we conducted two empirical studies. Study 1 inves-
tigated near-novice undergraduate students transitioning from procedural
Python to object-oriented Java while Study 2 investigated near-novice post-
graduate students doing a transfer from object-oriented Java to procedural
Python. Results for both studies indicate that students had little or no diffi-
culty with transitioning on TCC due to positive semantic transfer based on
syntax similarities while they had the most difficulty transitioning on FCC
due to negative semantic transfer. Students had little or no semantic transfer
on ATCC due to differences in syntax between the languages. We suggest
ways in which the model can inform pedagogy on how to ease the transition
process.

[Tuna2022] Erdem Tuna, Vladimir Kovalenko, and Eray Tüzün. Bug track-
ing process smells in practice. In Proc. International Conference on Software
Engineering (ICSE). ACM, May 2022, DOI 10.1145/3510457.3513080.
Abstract: Software teams use bug tracking (BT) tools to report and man-
age bugs. Each record in a bug tracking system (BTS) is a reporting entity
consisting of several information fields. The contents of the reports are simi-
lar across different tracking tools, though not the same. The variation in the
workflow between teams prevents defining an ideal process of running BTS.

80



Nevertheless, there are best practices reported both in white and gray litera-
ture. Developer teams may not adopt the best practices in their BT process.
This study investigates the non-compliance of developers with best practices,
so-called smells, in the BT process. We mine bug reports of four projects in
the BTS of JetBrains, a software company, to observe the prevalence of BT
smells in an industrial setting. Also, we survey developers to see (1) if they
recognize the smells, (2) their perception of the severity of the smells, and
(3) the potential benefits of a BT process smell detection tool. We found
that (1) smells occur, and their detection requires a solid understanding of
the BT practices of the projects, (2) smell severity perception varies across
smell types, and (3) developers considered that a smell detection tool would
be useful for six out of the 12 smell categories.

[Turk2021] Tomaž Turk. SDFunc: Modular spreadsheet design with sheet-
defined functions in microsoft excel. Software: Practice and Experience,
52(2):415–426, Sep 2021, DOI 10.1002/spe.3027.
Abstract: The goal of the SDFunc tool is to enable spreadsheet devel-
opers to build their model computations in Microsoft Excel according to
the modular design approach, that is, the separation of the functionalities
into independent, interchangeable modules with interfaces that provide in-
put and output elements. This concept has been theoretically developed in
recent years and is known as sheet-defined functions in the literature. In
this article, we are presenting our implementation of the tool and the eval-
uation steps that we took to make the tool interesting and suitable for the
assessment of the modular approach in spreadsheet development by the in-
dustry, specifically within organizational and companies’ settings where the
spreadsheet developers and end-users involved in experiments expect to use
a well-established spreadsheet platform. We also demonstrated that sheet-
defined functions can be implemented by development tools already present
in Microsoft Excel.

[VanBreukelen2023] Sterre van Breukelen, Ann Barcomb, Sebastian Baltes,
and Alexander Serebrenik. ”still around”: Experiences and survival strate-
gies of veteran women software developers, 2023.
Abstract: The intersection of ageism and sexism can create a hostile envi-
ronment for veteran software developers belonging to marginalized genders.
In this study, we conducted 14 interviews to examine the experiences of peo-
ple at this intersection, primarily women, in order to discover the strategies
they employed in order to successfully remain in the field. We identified 283
codes, which fell into three main categories: Strategies, Experiences, and
Perception. Several strategies we identified, such as (Deliberately) Not Try-
ing to Look Younger, were not previously described in the software engineer-
ing literature. We found that, in some companies, older women developers
are recognized as having particular value, further strengthening the known
benefits of diversity in the workforce. Based on the experiences and strate-
gies, we suggest organizations employing software developers to consider the

81



benefits of hiring veteran women software developers. For example, compa-
nies can draw upon the life experiences of older women developers in order
to better understand the needs of customers from a similar demographic.
While we recognize that many of the strategies employed by our study par-
ticipants are a response to systemic issues, we still consider that, in the
shortterm, there is benefit in describing these strategies for developers who
are experiencing such issues today.

[Venturini2023] Daniel Venturini, Filipe Roseiro Cogo, Ivanilton Polato,
Marco A Gerosa, and Igor Scaliante Wiese. I depended on you and you
broke me: An empirical study of manifesting breaking changes in client
packages. TOSEM 2023, 2023.
Abstract: Complex software systems have a network of dependencies. De-
velopers often configure package managers (e.g., npm) to automatically up-
date dependencies with each publication of new releases containing bug
fixes and new features. When a dependency release introduces backward-
incompatible changes, commonly known as breaking changes, dependent
packages may not build anymore. This may indirectly impact downstream
packages, but the impact of breaking changes and how dependent packages
recover from these breaking changes remain unclear. To close this gap, we
investigated the manifestation of breaking changes in the npm ecosystem,
focusing on cases where packages’ builds are impacted by breaking changes
from their dependencies. We measured the extent to which breaking changes
affect dependent packages. Our analyses show that around 12% of the depen-
dent packages and 14% of their releases were impacted by a breaking change
during updates of non-major releases of their dependencies. We observed
that, from all of the manifesting breaking changes, 44% were introduced both
in minor and patch releases, which in principle should be backward compat-
ible. Clients recovered themselves from these breaking changes in half of the
cases, most frequently by upgrading or downgrading the provider’s version
without changing the versioning configuration in the package manager. We
expect that these results help developers understand the potential impact of
such changes and recover from them.

[Vidoni2021] Melina Vidoni. Evaluating unit testing practices in r packages.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, May 2021, DOI 10.1109/icse43902.2021.00136.
Abstract: ”Testing Technical Debt (TTD) occurs due to shortcuts (non-
optimal decisions) taken about testing; it is the test dimension of technical
debt. R is a package-based programming ecosystem that provides an easy
way to install third-party code, datasets, tests, documentation and examples.
This structure makes it especially vulnerable to TTD because errors present
in a package can transitively affect all packages and scripts that depend on it.
Thus, TTD can effectively become a threat to the validity of all analysis writ-
ten in R that rely on potentially faulty code. This two-part study provides
the first analysis in this area. First, 177 systematically-selected, open-source
R packages were mined and analysed to address quality of testing, testing

82



goals, and identify potential TTD sources. Second, a survey addressed how
R package developers perceive testing and face its challenges (response rate
of 19.4%). Results show that testing in R packages is of low quality; the
most common smells are inadequate and obscure unit testing, improper as-
serts, inexperienced testers and improper test design. Furthermore, skilled R
developers still face challenges such as time constraints, emphasis on devel-
opment rather than testing, poor tool documentation and a steep learning
curve.”

[Vidoni2022] Melina Vidoni. Understanding roxygen package documenta-
tion in r. Journal of Systems and Software, 188:111265, Jun 2022, DOI
10.1016/j.jss.2022.111265.
Abstract: R is a package-based programming ecosystem that provides an
easy way to install third-party code, datasets, and examples. Thus, R de-
velopers rely heavily on the documentation of the packages they import to
use them correctly and accurately. This documentation is often written us-
ing Roxygen, equivalent to Java’s well-known Javadoc. This two-part study
provides the first analysis in this area. First, 379 systematically-selected,
open-source R packages were mined and analysed to address the quality of
their documentation in terms of presence, distribution, and completeness to
identify potential sources of documentation debt of technical debt that de-
scribes problems in the documentation. Second, a survey addressed how R
package developers perceive documentation and face its challenges (with a
response rate of 10.04%). Results show that incomplete documentation is the
most common smell, with several cases of incorrect use of the Roxygen util-
ities. Unlike in traditional API documentation, developers do not focus on
how behaviour is implemented but on common use cases and parameter doc-
umentation. Respondents considered the examples section the most useful,
and commonly perceived challenges were unexplained examples, ambiguity,
incompleteness and fragmented information.

[Wang2020b] Zhendong Wang, Yang Feng, Yi Wang, James A Jones, and
David Redmiles. Unveiling elite developers’ activities in open source
projects. ACM Trans. Softw. Eng. Methodol., 29(3):1–35, Jul 2020, DOI
10.1145/3387111.
Abstract: Open source developers, particularly the elite developers who
own the administrative privileges for a project, maintain a diverse portfolio
of contributing activities. They not only commit source code but also exert
significant efforts on other communicative, organizational, and supportive
activities. However, almost all prior research focuses on specific activities
and fails to analyze elite developers’ activities in a comprehensive way. To
bridge this gap, we conduct an empirical study with fine-grained event data
from 20 large open source projects hosted on GITHUB. We investigate elite
developers’ contributing activities and their impacts on project outcomes.
Our analyses reveal three key findings: (1) elite developers participate in a
variety of activities, of which technical contributions (e.g., coding) only ac-
count for a small proportion; (2) as the project grows, elite developers tend

83



to put more effort into supportive and communicative activities and less ef-
fort into coding; and (3) elite developers’ efforts in nontechnical activities
are negatively correlated with the project’s outcomes in terms of productiv-
ity and quality in general, except for a positive correlation with the bug fix
rate (a quality indicator). These results provide an integrated view of elite
developers’ activities and can inform an individual’s decision making about
effort allocation, which could lead to improved project outcomes. The results
also provide implications for supporting these elite developers.

[Wang2020c] Qingye Wang. Why is my bug wontfix? In 2020 IEEE 2nd
International Workshop on Intelligent Bug Fixing (IBF). IEEE, Feb 2020,
DOI 10.1109/ibf50092.2020.9034539.
Abstract: Developers often use bug reports to triage and fix bugs. However,
not every bug can be fixed eventually. To understand the underlying reasons
why bugs are wontfix, we conduct an empirical study on three open source
projects (i.e., Mozilla, Eclipse and Apache OpenOffice) in Bugzilla. First,
we manually analyzed 600 wontfix bug reports. Second, we used the open
card sorting approach to label these bug reports why they were wontfix,
and we summarized 12 categories of reasons. Next, we further studied the
frequency distribution of the categories across projects. We found that Not
Support bug reports are the majority of the wontfix bug reports. Moreover,
the frequency distribution of wontfix bug reports across the 12 categories is
basically similar for the three open source projects.

[Wattenbach2022] Leonhard Wattenbach, Basel Aslan, Matteo Maria Fiore,
Henley Ding, Roberto Verdecchia, and Ivano Malavolta. Do you have the
energy for this meeting? In Proceedings of the 9th IEEE/ACM International
Conference on Mobile Software Engineering and Systems. ACM, May 2022,
DOI 10.1145/3524613.3527812.
Abstract: Context. With “work from home” policies becoming the norm
during the COVID-19 pandemic, videoconferencing apps have soared in pop-
ularity, especially on mobile devices. However, mobile devices only have
limited energy capacities, and their batteries degrade slightly with each
charge/discharge cycle. Goal. With this research we aim at comparing the
energy consumption of two Android videoconferencing apps, and studying
the impact that different features and settings of these apps have on energy
consumption. Method. We conduct an empirical experiment by utilizing as
subjects Google Meet and Zoom. We test the impact of multiple factors
on the energy consumption: number of call participants, microphone and
camera use, and virtual backgrounds. Results. Zoom results to be more
energy efficient than Google Meet, albeit only to a small extent. Camera
use is the most energy greedy feature, while the use of virtual background
only marginally impacts energy consumption. Number of participants affect
differently the energy consumption of the apps. As exception, microphone
use does not significantly affect energy consumption. Conclusions. Most fea-
tures of Android videoconferencing apps significantly impact their energy
consumption. As implication for users, selecting which features to use can

84



significantly prolong their mobile battery charge. For developers, our results
provide empirical evidence on which features are more energy-greedy, and
how features can impact differently energy consumption across apps.

[Win2023] Hsu Myat Win, Haibo Wang, and Shin Hwei Tan. Automatic de-
tecting unethical behavior in open-source software projects, 2023.
Abstract: Given the rapid growth of Open-Source Software (OSS) projects,
ethical considerations are becoming more important. Past studies focused on
specific ethical issues (e.g., gender bias and fairness in OSS). There is little
to no study on the different types of unethical behavior in OSS projects. We
present the first study of unethical behavior in OSS projects from the stake-
holders’ perspective. Our study of 316 GitHub issues provides a taxonomy
of 15 types of unethical behavior guided by six ethical principles (e.g., au-
tonomy). Examples of new unethical behavior include soft forking (copying
a repository without forking) and self-promotion (promoting a repository
without self-identifying as contributor to the repository). We also identify
18 types of software artifacts affected by the unethical behavior. The diverse
types of unethical behavior identified in our study (1) call for attentions of
developers and researchers when making contributions in GitHub, and (2)
point to future research on automated detection of unethical behavior in
OSS projects. Based on our study, we propose Etor, an approach that can
automatically detect six types of unethical behavior by using ontological en-
gineering and Semantic Web Rule Language (SWRL) rules to model GitHub
attributes and software artifacts. Our evaluation on 195,621 GitHub issues
(1,765 GitHub repositories) shows that Etor can automatically detect 548
unethical behavior with 74.8% average true positive rate. This shows the
feasibility of automated detection of unethical behavior in OSS projects.

[Wolter2022] Thomas Wolter, Ann Barcomb, Dirk Riehle, and Nikolay
Harutyunyan. Open source license inconsistencies on GitHub. ACM
Transactions on Software Engineering and Methodology, Dec 2022, DOI
10.1145/3571852.
Abstract: Almost all software, open or closed, builds on open source soft-
ware and therefore needs to comply with the license obligations of the open
source code. Not knowing which licenses to comply with poses a legal danger
to anyone using open source software. This article investigates the extent of
inconsistencies between licenses declared by an open source project at the
top level of the repository, and the licenses found in the code. We analysed
a sample of 1,000 open source GitHub repositories. We find that about half
of the repositories did not fully declare all licenses found in the code. Of
these, approximately ten percent represented a permissive vs. copyleft li-
cense mismatch. Furthermore, existing tools cannot fully identify licences.
We conclude that users of open source code should not only look at the de-
clared licenses of the open source code they intend to use, but rather examine
the software to understand its actual licenses.

85



[Wyrich2022] Marvin Wyrich, Justus Bogner, and Stefan Wagner. 40 years
of designing code comprehension experiments: A systematic mapping study,
2022.

[Young2021] Jean-Gabriel Young, Amanda Casari, Katie McLaughlin,
Milo Z. Trujillo, Laurent Hebert-Dufresne, and James P. Bagrow. Which
contributions count? analysis of attribution in open source. In Proc. Inter-
national Conference on Mining Software Repositories (MSR). IEEE, May
2021, DOI 10.1109/msr52588.2021.00036.
Abstract: Open source software projects usually acknowledge contributions
with text files, websites, and other idiosyncratic methods. These data sources
are hard to mine, which is why contributorship is most frequently measured
through changes to repositories, such as commits, pushes, or patches. Re-
cently, some open source projects have taken to recording contributor ac-
tions with standardized systems; this opens up a unique opportunity to
understand how community-generated notions of contributorship map onto
codebases as the measure of contribution. Here, we characterize contributor
acknowledgment models in open source by analyzing thousands of projects
that use a model called All Contributors to acknowledge diverse contribu-
tions like outreach, finance, infrastructure, and community management.
We analyze the life cycle of projects through this model’s lens and con-
trast its representation of contributorship with the picture given by other
methods of acknowledgment, including GitHub’s top committers indicator
and contributions derived from actions taken on the platform. We find that
community-generated systems of contribution acknowledgment make work
like idea generation or bug finding more visible, which generates a more
extensive picture of collaboration. Further, we find that models requiring
explicit attribution lead to more clearly defined boundaries around what is
and is not a contribution.

[Zakaria2022] Farid Zakaria, Thomas R. W. Scogland, Todd Gamblin, and
Carlos Maltzahn. Mapping out the hpc dependency chaos, 2022.

[Zerouali2021] Ahmed Zerouali, Tom Mens, and Coen De Roover. On
the usage of JavaScript, python and ruby packages in docker hub im-
ages. Science of Computer Programming, 207:102653, Jul 2021, DOI
10.1016/j.scico.2021.102653.
Abstract: Docker is one of the most popular containerization technologies.
A Docker container can be saved into an image including all environmental
packages required to run it, such as system and third-party packages from
language-specific package repositories. Relying on its modularity, an image
can be shared and included in other images to simplify the way of building
and packaging new software. However, some package managers allow to in-
clude duplicated packages in an image, increasing its footprint; and outdated
packages may miss new features and bug fixes or contain reported security
vulnerabilities, putting the image in which they are contained at risk. Pre-
vious research has focused on studying operating system packages within

86



Docker images, but little attention has been given to third-party packages.
This article empirically studies installation practices, outdatedness and vul-
nerabilities of JavaScript, Python and Ruby packages installed in 3,000 pop-
ular community Docker Hub images. In many cases, these installed packages
missed important releases leading to potential vulnerabilities of the images.
Our findings suggest that maintainers of Docker Hub community images
should invest more effort in updating outdated packages contained in those
images in order to significantly reduce the number of vulnerabilities. In ad-
dition to this, Python community images are generally much less outdated
and much less subject to vulnerabilities than NodeJS and Ruby community
images. Specifically for NodeJS community images, elimination of duplicate
package releases could lead to a significant reduction in their image footprint.

[Zhang2021] Xunhui Zhang, Yue Yu, Georgios Gousios, and Ayushi Rastogi.
Pull request decision explained: An empirical overview, 2021.
Abstract: Pull-based development model is widely used in open source,
leading the trends in distributed software development. One aspect which
has garnered significant attention is studies on pull request decision - iden-
tifying factors for explanation. Objective: This study builds on a decade
long research on pull request decision to explain it. We empirically investi-
gate how factors influence pull request decision and scenarios that change
the influence of factors. Method: We identify factors influencing pull request
decision on GitHub through a systematic literature review and infer it by
mining archival data. We collect a total of 3,347,937 pull requests with 95
features from 11,230 diverse projects on GitHub. Using this data, we explore
the relations of the factors to each other and build mixed-effect logistic re-
gression models to empirically explain pull request decision. Results: Our
study shows that a small number of factors explain pull request decision with
the integrator same or different from the submitter as the most important
factor. We also noted that some factors are important only in special cases
e.g., the percentage of failed builds is important for pull request decision
when continuous integration is used.

[Zhang2022b] Kaiwen Zhang and Guanjun Liu. Automatically transform rust
source to petri nets for checking deadlocks, 2022.

[Zhang2022c] Yuxia Zhang, Hui Liu, Xin Tan, Minghui Zhou, Zhi Jin, and
Jiaxin Zhu. Turnover of companies in OpenStack: Prevalence and rationale.
ACM Transactions on Software Engineering and Methodology, 31(4):1–24,
Oct 2022, DOI 10.1145/3510849.
Abstract: To achieve commercial goals, companies have made substantial
contributions to large open-source software (OSS) ecosystems such as Open-
Stack and have become the main contributors. However, they often withdraw
their employees for a variety of reasons, which may affect the sustainabil-
ity of OSS projects. While the turnover of individual contributors has been
extensively investigated, there is a lack of knowledge about the nature of
companies’ withdrawal. To this end, we conduct a mixed-methods empirical

87



study on OpenStack to reveal how common company withdrawals were, to
what degree withdrawn companies made contributions, and what the ratio-
nale behind withdrawals was. By analyzing the commit data of 18 versions of
OpenStack, we find that the number of companies that have left is increas-
ing and even surpasses the number of companies that have joined in later
versions. Approximately 12% of the companies in each version have exited
by the next version. Compared to the sustaining companies that joined in
the same version, the withdrawn companies tend to have a weaker contribu-
tion intensity but contribute to a similar scope of repositories in OpenStack.
Through conducting a developer survey, we find four aspects of reasons for
companies’ withdrawal from OpenStack: company, community, developer,
and project. The most common reasons lie in the company aspect, i.e., the
company either achieved its goals or failed to do so. By fitting the sur-
vival analysis model, we find that commercial goals are associated with the
probability of the company’s withdrawal, and that a company’s contribution
intensity and scale are positively correlated with its retention. Maintaining
good retention is important but challenging for OSS ecosystems, and our re-
sults may shed light on potential approaches to improve company retention
and reduce the negative impact of company withdrawal.

[Zheng2019] Wei Zheng, Chen Feng, Tingting Yu, Xibing Yang, and Xiaoxue
Wu. Towards understanding bugs in an open source cloud management
stack: An empirical study of OpenStack software bugs. J. Syst. Softw.,
151:210–223, May 2019, DOI 10.1016/j.jss.2019.02.025.

[Zhou2019] Jiayuan Zhou, Shaowei Wang, Cor-Paul Bezemer, and Ahmed E.
Hassan. Bounties on technical q&a sites: a case study of stack overflow
bounties. Empirical Software Engineering, 25(1):139–177, Jul 2019, DOI
10.1007/s10664-019-09744-3.

[Zhu2022] Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, and Linhai
Song. Learning and programming challenges of rust. In Proceedings of the
44th International Conference on Software Engineering. ACM, May 2022,
DOI 10.1145/3510003.3510164.
Abstract: Rust is a young systems programming language designed to pro-
vide both the safety guarantees of high-level languages and the execution
performance of low-level languages. To achieve this design goal, Rust pro-
vides a suite of safety rules and checks against those rules at the compile
time to eliminate many memory-safety and thread-safety issues. Due to its
safety and performance, Rust’s popularity has increased significantly in re-
cent years, and it has already been adopted to build many safety-critical
software systems. It is critical to understand the learning and programming
challenges imposed by Rust’s safety rules. For this purpose, we first con-
ducted an empirical study through close, manual inspection of 100 Rust-
related Stack Overflow questions. We sought to understand (1) what safety
rules are challenging to learn and program with, (2) under which contexts a
safety rule becomes more difficult to apply, and (3) whether the Rust com-

88



piler is sufficiently helpful in debugging safety-rule violations. We then per-
formed an online survey with 101 Rust programmers to validate the findings
of the empirical study. We invited participants to evaluate program variants
that differ from each other, either in terms of violated safety rules or the
code constructs involved in the violation, and compared the participants’
performance on the variants. Our mixed-methods investigation revealed a
range of consistent findings that can benefit Rust learners, practitioners,
and language designers.

89


